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We discuss unsuspected relations between Maxwell, Dirac, and the Seiberg-Witten
equations. First, we present the Maxwell-Dirac equivalence (MDE) of the first kind.
Crucial to that proposed equivalence is the possibility of solving for ψ (a repre-
sentative on a given spinorial frame of a Dirac-Hestenes spinor field) the equation
F =ψγ21ψ̃, where F is a given electromagnetic field. Such task is presented and
it permits to clarify some objections to the MDE which claim that no MDE may
exist because F has six (real) degrees of freedom and ψ has eight (real) degrees
of freedom. Also, we review the generalized Maxwell equation describing charges
and monopoles. The enterprise is worth, even if there is no evidence until now
for magnetic monopoles, because there are at least two faithful field equations
that have the form of the generalized Maxwell equations. One is the generalized
Hertz potential field equation (which we discuss in detail) associated with Maxwell
theory and the other is a (nonlinear) equation (of the generalized Maxwell type)
satisfied by the 2-form field part of a Dirac-Hestenes spinor field that solves the
Dirac-Hestenes equation for a free electron. This is a new result which can also be
called MDE of the second kind. Finally, we use the MDE of the first kind together
with a reasonable hypothesis to give a derivation of the famous Seiberg-Witten
equations on Minkowski spacetime. A physical interpretation for those equations
is proposed.

2000 Mathematics Subject Classification: 81Q05, 81R25, 15A66.

1. Introduction. In [1, 2, 3, 4, 5], using standard covariant spinor fields,

Campolattaro proposed that Maxwell equations are equivalent to a nonlinear

Dirac-like equation. The subject has been further developed in [35, 39] using

the Clifford bundle formalism, which is discussed together with some of its

applications in a series of papers, for example, [11, 12, 13, 17, 18, 19, 22, 26,

28, 29, 30, 35, 39, 40]. The crucial point in proving the Maxwell-Dirac equiva-

lence (MDE) starts once we observe that to any given representative of a Dirac-

Hestenes spinor field (for more information, see Section 2, and for details, see

[17, 22, 26, 30]) ψ ∈ sec[
∧0(M)+∧2(M)+∧4(M)] ⊂ sec��(M,g), there is an

associated electromagnetic field F ∈ sec
∧2(M)⊂ sec��(M,g) (F2 ≠ 0) through

the Rainich-Misner theorem [25, 35, 39, 40] by

F =ψγ21ψ̃. (1.1)
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Before proceeding, we recall that for null fields, that is, F2 = 0, the spinor

associated with F through (1.1) must be a Majorana spinor field [17, 18, 39],

but we do not need such concept in this paper. Now, since an electromagnetic

field F satisfying Maxwell equation has six degrees of freedom and a Dirac-

Hestenes spinor field has eight (real) degrees of freedom, some authors felt

uncomfortable with the approach used in [35, 40], where some gauge con-

ditions have been imposed on a nonlinear equation (equivalent to Maxwell

equation), thereby transforming it into usual linear Dirac equation (called the

Dirac-Hestenes equation in the Clifford bundle formalism). The claim, for exam-

ple, in [14] is that the MDE found in [35, 40] cannot be general. The argument

is that the imposition of gauge conditions implies that an ψ satisfying (1.1)

can have only six (real) degrees of freedom, and this implies that the Dirac-

Hestenes equation corresponding to Maxwell equation can be only satisfied by

a restricted class of Dirac-Hestenes spinor fields, namely, the ones that have

six degrees of freedom.

Incidentally, in [14], it is also claimed that the generalized Maxwell equation

∂F = Je+γ5Jm (1.2)

(where Je,Jm ∈ sec
∧1(M)) describing the electromagnetic field generated by

charges and monopoles [19] cannot hold in the Clifford bundle formalism be-

cause according to that author the formalism implies that Jm = 0.

In what follows, we analyze these claims of [14] and prove that they are

wrong (Section 3). The reasons for our enterprise is that, as will become clear

in what follows, understanding (1.1) and (1.2) together with some reasonable

hypothesis permits a derivation and even a possible physical interpretation of

the famous Seiberg-Witten monopole equations [21, 24, 36]. So, our plan is the

following. First we introduce in Section 2 the mathematical formalism used in

the paper, showing how to write Maxwell and Dirac equations using Clifford

fields. We also introduce Weyl spinor fields and parity operators in the Clifford

bundle formalism. In Section 3, we prove that, given F in (1.1), we can solve

that equation for ψ, and we find that ψ has eight degrees of freedom, two of

them being undetermined, the indetermination being related to the elements

of the stability group of the spin plane γ21. This is a nontrivial and beautiful

result which can called inversion formula. In Section 4, we introduce a gener-

alized Maxwell equation, and in Section 5, we introduce the generalized Hertz

equation. In Section 6, we prove a mathematical Dirac-Maxwell equivalence of

the first kind [2, 35], thereby deriving a Dirac-Hestenes equation from the free

Maxwell equations. In Section 7, we introduce a new form of a mathematical

Maxwell-Dirac equivalence (called MDE of the second kind) different from the

one studied in Section 6. This new MDE of the second kind suggests that the

electron is a “composite” system. To prove the MDE of the second kind, we

decompose a Dirac-Hestenes spinor field satisfying a Dirac-Hestenes equation
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in such a way that it results in a nonlinear generalized Maxwell-like equation

(see (7.1)) satisfied by a certain Hertz potential field, mathematically repre-

sented by an object of the same mathematical nature as an electromagnetic

field, that is, Π ∈ sec
∧2(M) ⊂ sec��(M). This new equivalence is very sug-

gestive in view of the fact that there are recent (wild) speculations that the

electron can be split into two components [6] (see also [38]). If this fantastic

claim announced by Maris [21] is true, it is necessary to understand what is

going on. The new MDE presented in Section 6 may eventually be useful to

understand the mechanism behind the “electron splitting” into electrinos. We

are not going to discuss these ideas here. Instead, we concentrate our atten-

tion in showing in Section 8 that the analogous on Minkowski spacetime of the

famous Seiberg-Witten monopole equations arises naturally from the MDE of

the first kind once a reasonable hypothesis is imposed. We also present a pos-

sible coherent interpretation of those equations. Indeed, we prove that when

the Dirac-Hestenes spinor field satisfying the first of Seiberg-Witten equations

is an eigenvector of the parity operator, then that equation describes a pair

of massless monopoles of opposite magnetic-like charges, coupled together

by its interaction electromagnetic field. Finally, in Section 9, we present our

conclusions.

2. Clifford and spin-Clifford bundles. Let �=(M,g,D) be Minkowski space-

time. The pair (M,g) is a four-dimensional, time-oriented, and space-oriented

Lorentzian manifold, with M � R4 and g ∈ secT 0,2M being a Lorentzian met-

ric of signature (1,3). Let T∗M [TM] be the cotangent [tangent] bundle. Let

T∗M =∪x∈MT∗x M , TM =∪x∈MTxM , and TxM � T∗x M �R1,3, where R1,3 is the

Minkowski vector space. Let D be the Levi-Civita connection of g, that is,

Dg = 0, R(D) = 0. Also T(D) = 0, R and T being, respectively, the torsion

and curvature tensors. Now, the Clifford bundle of differential forms ��(M) is

the bundle of algebras, that is, ��(M,g)=∪x∈M��(T∗x M), where for all x ∈M ,

��(T∗x M)=��1,3, the so-called spacetime algebra. Recall also that ��(M,g) is

a vector bundle associated to the orthonormal frame bundle, that is, ��(M,g)
= PSO+(1,3)×ad��1,3 [22, 26]. For any x ∈M , ��(T∗x M) is a linear space over the

real field R. Moreover, ��(T∗x M) is isomorphic to the Cartan algebra
∧
(T∗x M)

of the cotangent space and
∧
(T∗x M) =

∑4
k=0

∧k(T∗x M), where
∧k(T∗x M) is the(

4
k

)
-dimensional space of k-forms. Then, sections of ��(M,g) can be repre-

sented as a sum of nonhomogeneous differential forms. Let 〈xµ〉 be Lorentz

coordinate functions for M and let {eµ} ∈ secFM (the frame bundle) be an

orthonormal basis for TM , that is, g(eµ,eν) = ηµν = diag(1,−1,−1,−1). Let

γν = dxν ∈ sec
∧1(M) ⊂ sec��(M,g) (ν = 0,1,2,3) such that the set {γν} is

the dual basis of {eµ}. Moreover, we denote by ǧ the metric in the cotangent

bundle.

2.1. Clifford product. The fundamental Clifford product (in what follows to

be denoted by juxtaposition of symbols) is generated by γµγν +γνγµ = 2ηµν
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and if �∈ sec��(M,g), we have

�= s+vµγµ+ 1
2!
bµνγµγν+ 1

3!
aµνργµγνγρ+pγ5, (2.1)

where γ5 = γ0γ1γ2γ3 = dx0dx1dx2dx3 is the volume element and s,vµ,bµv ,
aµνρ, and p ∈ sec

∧0(M)⊂ sec��(M,g).
Let Ar ∈ sec

∧r (M) and Bs ∈ sec
∧s(M). For r = s = 1, we define the scalar

product as follows:

a·b = 1
2
(ab+ba)= ǧ(a,b) (2.2)

fora,b ∈ sec
∧1(M)⊂ sec��(M,g). We define also the exterior product (∀r ,s =

0,1,2,3) by

Ar ∧Bs =
〈
ArBs

〉
r+s , Ar ∧Bs = (−1)rsBs∧Ar , (2.3)

where 〈〉k is the component in
∧k(M) of the Clifford field. The exterior product

is extended by linearity to all sections of ��(M,g).
For Ar = a1∧···∧ar , Br = b1∧···∧br , the scalar product is defined here

as follows:

Ar ·Br =
(
a1∧···∧ar

)·(b1∧···∧br
)=

∣∣∣∣∣∣∣∣∣
a1 ·b1 ··· a1 ·br

...
...

...

ar ·b1 ··· ar ·br

∣∣∣∣∣∣∣∣∣ . (2.4)

We agree that if r = s = 0, the scalar product is simply the ordinary product

in the real field.

Also, if r ≠ s, then Ar ·Bs = 0. Finally, the scalar product is extended by

linearity to all sections of ��(M,g).
For r ≤ s, Ar = a1∧···∧ar , Bs = b1∧···∧bs , we define the left contraction

by

� :
(
Ar ,Bs

) � �→Ar�Bs = ∑
i1<···<ir

εi1···is
(
a1∧···∧ar

)
·(bi1∧···∧bis )∼bir+1∧···∧bis ,

(2.5)

where ∼ is the reverse mapping (reversion) defined by

∼: sec
p∧
(M)� a1∧···∧ap � �→ ap∧···∧a1 (2.6)

and extended by linearity to all sections of ��(M,g). We agree that for α,β∈
sec

∧0(M), the contraction is the ordinary (pointwise) product in the real field
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and that ifα∈ sec
∧0(M),Ar ∈ sec

∧r (M), and Bs∈sec
∧s(M), then (αAr )�Bs =

Ar�(αBs). The left contraction is extended by linearity to all pairs of elements

of sections of ��(M,g), that is, for A,B ∈ sec��(M,g),

A�B =
∑
r ,s
〈A〉r�〈B〉s , r ≤ s. (2.7)

It is also necessary to introduce the operator of the right contraction de-

noted by �. The definition is obtained from the one presenting the left con-

traction with the imposition that r ≥ s and taking into account that now if

Ar ∈ sec
∧r (M), Bs ∈ sec

∧s(M), then Ar�(αBs)= (αAr )�Bs .
The main formulas used in the Clifford calculus can be obtained from the

following ones (where a∈ sec
∧1(M)⊂ sec��(M,g)):

aBs = a�Bs+a∧Bs, Bsa= Bs�a+Bs∧a,

a�Bs = 1
2

(
aBs−(−)sBsa

)
,

Ar�Bs = (−)r(s−1)Bs�Ar ,

a∧Bs = 1
2

(
aBs+(−)sBsa

)
,

ArBs =
〈
ArBs

〉
|r−s| +

〈
Ar�Bs

〉
|r−s−2| +···+

〈
ArBs

〉
|r+s|

=
m∑
k=0

〈
ArBs

〉
|r−s|+2k.

(2.8)

2.1.1. Hodge star operator. Let 
 be the Hodge star operator, that is, the

mapping


 :
k∧
(M) �→

4−k∧
(M), Ak � �→
Ak, (2.9)

where for Ak ∈ sec
∧k(M)⊂ sec��(M,g),

[
Bk ·Ak

]
τg = Bk∧
Ak, ∀Bk ∈ sec

k∧
(M)⊂ sec��(M). (2.10)

In (2.10), τg ∈
∧4(M) is a standard volume element. Then we can verify that


Ak = Ãkγ5. (2.11)

2.1.2. Dirac operator. Let d and δ be, respectively, the differential and

Hodge codifferential operators acting on sections of
∧
(M). IfAp ∈ sec

∧p(M)⊂
sec��(M), then δAp = (−)p 
−1d
Ap , with 
−1
= identity.

The Dirac operator acting on sections of ��(M,g) is the invariant first-order

differential operator

∂ = γaDea, (2.12)
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where {ea} is an arbitrary orthonormal basis for TU ⊂ TM and {γb} is a basis

for T∗U ⊂ T∗M dual to the basis {ea}, that is, γb(ea) = δab , a,b = 0,1,2,3.

The reciprocal basis of {γb} is denoted by {γa} and we have γa · γb = ηab
(ηab = diag(1,−1,−1,−1)). Also,

Deaγ
b =−ωbca γc. (2.13)

Defining

ωa = 1
2
ωbca γb∧γc, (2.14)

we have that for any Ap ∈ sec
∧p(M), p = 0,1,2,3,4,

DeaA= ea+
1
2

[
ωa,A

]
. (2.15)

Using (2.15), we can show the very important result

∂Ap = ∂∧Ap+∂�Ap = dAp−δAp,
∂∧Ap = dAp, ∂�Ap =−δAp. (2.16)

2.2. Dirac-Hestenes spinor fields. Now, as is well known, an electromag-

netic field is represented by F ∈ sec
∧2(M)⊂ sec��(M,g). How can we repre-

sent the Dirac spinor fields in this formalism? We can show that Dirac-Hestenes

spinor fields do the job. We give here a short introduction to these objects

(when living on Minkowski spacetime) which serves mainly the purpose of fix-

ing notations. For a rigorous theory of these objects (using vector bundles) on

a general Riemann-Cartan manifold see [22]. Recall that there is a 2 : 1 map-

ping s′ :Θ′ →� between �, the set of all orthonormal ordered vector frames,

and Θ′, the set of all spin frames of T∗M . As discussed at length in [22, 26], a

spin coframe can be thought of as a basis of T∗M such that two ordered bases,

even if consisting of the same vectors but with the spatial vectors differing by

a 2π rotation, are considered distinct, and two ordered basis, even if consist-

ing of the same vectors but with the spatial vectors differing by a 4π rotation,

are identified. For short, in this paper, we simply call the spin coframes spin

frames. Also, vector coframes are simply called vector frames in what follows.

Consider the set � of mappings

M � x � �→u(x)∈ Spin+(1,3)� SL(2,C). (2.17)

Choose a constant spin frame {γa} ∈�, a= 0,1,2,3, and choose Ξ0 ∈Θ′ corre-

sponding to a constant mappingu0 ∈�. By constant we mean that the equation

γµ(x) = γµ(y) ((µ = 0,1,2,3) and u0(x) = u0(y), ∀x,y ∈ M) has meaning

due to the usual affine structure that can be given to Minkowski spacetime.

Ξ0,Ξu ∈Θ′ are related as follows:

u0s′
(
Ξ0
)
u−1

0 =us′
(
Ξu

)
u−1. (2.18)
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From now on, in order to simplify the notation, we take u0 = 1. The frame

s′(Ξ0)= {γa} is called the fiducial vector frame and Ξ0 the fiducial spin frame.

We note that (2.18) is satisfied by two such u’s differing by a signal, and, of

course, s′(Ξu)= s′(Ξ−u).
Let

T= {(
Ξu,ΨΣu

) |u∈�, Ξu ∈Θ′, ΨΞu ∈ sec
+∧
M ⊂ sec��+(M,g)

}
, (2.19)

where
∧+M =∧0M+∧2M+∧4M .

We define an equivalence relation on T by setting

(
Ξu,ΨΞu

)∼ (
Ξu′ ,ΨΞu′

)
(2.20)

if and only if

us′
(
Ξu

)
u−1 =u′−1s′

(
Ξu′

)
u′, ΨΞu′ = ΨΞuuu′−1. (2.21)

Definition 2.1. Any equivalence class [(Ξu,ΨΞu)] will be called a Dirac-

Hestenes spinor field (DHSF).

Before proceeding, we recall that a more rigorous definition of a DHSF as

a section of a spin-Clifford bundle is given in [22]. We will not need such a

sophistication in what follows.

Note that the pairs (Ξu,ΨΞu) and (Ξ−u,−ΨΣ−u) are equivalent but the pairs

(Ξu,ΨΣu) and (Ξ−u,ΨΞ−u) are not. This distinction is essential in order to give

a structure of linear space (over the real numbers) to the set �. Indeed, such a

linear structure on � is defined as follows:

a
[(
Ξu1 ,ΨΞu1

)]+b[(Ξu2 ,ΨΞu2

)]= [(
Ξu1 ,aΨΞu1

)]+[(Ξu2 ,bΨΞu2

)]
,

(a+b)[(Ξu1 ,ΨΞu1

)]= a[(Ξu1 ,ΨΞu1

)]+b[(Ξu1 ,ΨΞu1

)]
, a,b ∈R.

(2.22)

We can simplify the notation by recalling that every u ∈ � determines, of

course, a unique spin frame Ξu. Taking this into account, we consider the set

of all pairs (u,ΨΞu)∈�×sec��+(M,g).
We define an equivalence relation � in �× sec��+(M,g) as follows. Two

pairs (u,ΨΞu), (u′,ΨΞu′ )∈ sec�×sec��+(M,g) are equivalent if and only if

ΨΞu′u
′ = ΨΞuu. (2.23)

Of course, s′(Ξu′) = vs′(Ξu)v−1 with v = (u′)−1u ∈ �. Note that the pairs

(u,ΨΞu) and (−u,−ΨΞu) are equivalent but the pairs (u,ΨΞu) and (−u,ΨΞu) are

not.
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Denote by �×sec��+(M,g)/� the quotient set of the equivalence classes

generated by �. Their elements are called Dirac-Hestenes spinors. Of course

this is the same definition as above.

From now on, we simplify even more our notation. In this way, if we take

two orthonormal spin frames s′(Ξ) = {γµ} and s′(Ξ̇) = {γ̇µ = RγµR̃ = Λµνγν}
with Λµν ∈ SOe(1,3) and R(x)∈ Spine(1,3) for all x ∈M , RR̃ = R̃R = 1, then we

simply write the relation (2.23) between representatives of a Dirac-Hestenes

spinor field in the two spin frames as the sections ψΞ and ψΞ̇ of ��+(M,g)
related by

ψΞ̇ =ψΞR. (2.24)

Recall that since ψΞ ∈ sec
+∧
M ⊂ sec��+(M,g), we have

ψΞ = s+ 1
2!
bµνγµγν+pγ5. (2.25)

Note that ψΞ has the correct number of degrees of freedom in order to rep-

resent a Dirac spinor field and recall that the specification of ψΞ depends on

the spin frame Ξ. To simplify even more our notation, when it is clear which

is the spin frame Ξ, and no possibility of confusion arises, we simply write ψ
instead of ψΞ.

When ψψ̃ ≠ 0, where ∼ is the reversion operator, we can show that ψ has

the following canonical decomposition:

ψ=√ρeβγ5/2R, (2.26)

where ρ,β ∈ sec
∧0(M) ⊂ sec��(M,g) and R(x) ∈ Spine(1,3) ⊂ ��+1,3, for all

x ∈ M . The function β is called the Takabayasi angle. If we want to work in

terms of the usual Dirac spinor field formalism, we can translate our results

by choosing, for example, the standard matrix representation of the 1-form

{γµ} in C(4) (the algebra of the complex 4×4 matrices), and for ψΣ given by

(2.14), we have the following (standard) matrix representation [26, 30]:

Ψ =


ψ1 −ψ∗2 ψ3 ψ∗4
ψ2 ψ∗1 ψ4 −ψ∗3
ψ3 ψ∗4 ψ1 −ψ
2
ψ4 −ψ∗3 ψ2 ψ
1

 , (2.27)

where ψk(x)∈ C, k= 1,2,3,4, and for all x ∈M .

We recall that a standard Dirac spinor field is a section ΨD of the vector

bundle PSpine(1,3)×λC(4), where λ is the D(1/2,0)⊕D(0,1/2) representation

of SL(2,C) ∼ Spine(1,3). For details see, for example, [22, 26]. The relation
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between ΨD and ψ is given by

ΨD =


ψ1

ψ2

ψ3

ψ4

=

s−ib12

−b13−ib23

−b03+ip
−b01−ib02

 , (2.28)

where s, b12, . . . are the real functions in (2.25) and ∗ denotes the complex

conjugation.

We recall that the even subbundle ��+(M,g) of ��(M,g) is such that its

typical fiber is the Pauli algebra ��3,0 ≡��+1,3 (which is isomorphic to C(2), the

algebra of 2×2 complex matrices). Elements of ��+1,3 are called biquaternions

in the old literature. The isomorphism ��3,0 ≡ ��+1,3 is exhibited by putting

�σi = γiγ0, whence �σi �σj+ �σj �σi = 2δij . We recall also that the Dirac algebra is

��4,1 ≡ C(4) and ��4,1 ≡ C⊗��1,3.

Consider the complexification ��C(M,g) of ��(g) called the complex Clifford

bundle. Then ��C(M,g)= C⊗��(M,g), and we can verify that the typical fiber

of ��C(M,g) is ��4,1 = C⊗��1,3, the Dirac algebra. Now let {∆0,∆1,∆2,∆3,∆4}
⊂ sec��C(M,g) be, for all x ∈M , an orthonormal basis of ��4,1. We have

∆a∆b+∆b∆a = 2gab, gab = diag(+1,+1,+1,+1,−1). (2.29)

We identify γµ = ∆µ∆4 and call I = ∆0∆1∆2∆3∆4. Since I2 = −1 and I com-

mutes with all elements of ��4,1, we identify I with i = √−1 and γµ with

a fundamental set generating the local Clifford algebra of ��(M,g). Then if

�∈ sec��C(M,g), we have

�= Φs+AµCγµ+
1
2
BµνC γµγν+

1
3!
τµνρC γµγνγν+Φpγ5, (2.30)

where Φs ,Φp,A
µ
C,B

µν
C ,τ

µνρ
C ∈ secC⊗∧0(M)⊂ sec��C(M,g), that is, for all x ∈

M , Φs(x), Φp(x), A
µ
C(x), B

µν
C (x), and τµνρC (x) are complex numbers.

Now, it can be verified that

f = 1
2

(
1+γ0

)1
2

(
1+iγ1γ2

)
, f 2 = f , (2.31)

is a primitive idempotent field of ��C(M,g). We can also verify without diffi-

culty that if = γ2γ1f .

Appropriate equivalence classes (see [22, 26]) of ��C(M,g)f are represen-

tatives of the standard Dirac spinor fields in ��C(M,g). We can easily show

that the representation of ΨD in ��C(M,g) is given by

ΨD =ψf, (2.32)

where ψ is the Dirac-Hestenes spinor field given by (2.25).
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2.3. Weyl spinors and parity operator. By definition, ψ ∈ sec��+(M,g) is

a representative of a Weyl spinor field [17, 18] if, besides being a representative

of a Dirac-Hestenes spinor field, it satisfies γ5ψ=±ψγ, where

γ21 = γ2γ1. (2.33)

The positive (negative) “eigenstates” of γ5 will be denoted by ψ+ (ψ−). For a

general ψ∈ sec��+(M,g), we can write

ψ± = 1
2

[
ψ∓γ5ψγ21

]
. (2.34)

Then

ψ=ψ++ψ−. (2.35)

The parity operator P in our formalism is represented in such a way that for

ψ∈ sec��+(M,g),

Pψ=−γ0ψγ0. (2.36)

The following Dirac-Hestenes spinor fields are eigenstates of the parity op-

erator with eigenvalues ±1:

Pψ↑ = +ψ↑, ψ↑ = γ0ψ−γ0−ψ−,
Pψ↓ = −ψ↓, ψ↓ = γ0ψ+γ0+ψ+.

(2.37)

2.4. The spin-Dirac operator. Associated with the covariant derivative op-

erator Dea (see (2.13)) acting on sections of the Clifford bundle, there is a spin-

covariant derivative operator Dsea acting on sections of a right spin-Clifford

bundle such that they are Dirac-Hestenes spinor fields. Hopefully, it will not

be necessary to present the details concerning this concept here (see [22]). It is

enough to say that Dsea has a representative on the Clifford bundle, called D(s)ea ,

such that if ψΞ is a representative of a Dirac-Hestenes spinor field, we have

D(s)ea ψΞ = ea
(
ψΞ

)+ 1
2
ωaψΞ, (2.38)

where ωa has been defined by (2.14). The representative of the spin-Dirac op-

erator acting on representatives of Dirac-Hestenes spinor fields is the invariant

first-order operator given by

∂(s) = γaD(s)ea . (2.39)

From the definition of the spin Dirac operator, we see that if we restrict

our considerations to orthonormal coordinate basis {γµ = dxµ}, where {xµ}
are global Lorentz coordinates, then ωµ = 0 and the action of ∂(s) on Dirac-

Hestenes spinor fields is the same as the action of ∂ on these fields.
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2.5. Maxwell and Dirac-Hestenes equations. With the mathematical tools

presented above, we have the Maxwell equation

∂F = Je (2.40)

satisfied by an electromagnetic field F ∈ sec
∧2(M)⊂ sec��(M,g), and gener-

ated by a current Je ∈ sec
∧1(M)⊂ sec��(M,g).

The Dirac-Hestenes equation in a spin frame Ξ satisfied by a Dirac-Hestenes

spinor field ψ∈ sec[
∧0(M)+∧2(M)+∧4(M)]⊂ sec��(M,g) is

∂ψγ2γ1−mψγ0+ 1
2
γaψωaγ2γ1 = 0. (2.41)

For what follows, we restrict our considerations only to the case of orthonor-

mal coordinate basis, in which case the Dirac-Hestenes equation reads

∂ψγ2γ1−mψγ0 = 0. (2.42)

3. Solution of ψγ21ψ̃ = F . We now want to solve (1.1) for ψ. Before pro-

ceeding, we observe that on Euclidean spacetime this equation has been solved

using Clifford algebra methods in [15]. Also, on Minkowski spacetime, a par-

ticular solution of an equivalent equation (written in terms of biquaternions)

appears in [7]. We are going to show that, contrary to the claims of [14], a gen-

eral solution forψ has indeed eight degrees of freedom, although two of them

are arbitrary, that is, not fixed by F alone. Once we give a solution of (1.1)

for ψ, the reason for the indetermination of two of the degrees of freedom

will become clear. This involves the Fierz identities, boomerangs [17, 27, 30],

and the general theorem permitting the reconstruction of spinors from their

bilinear covariants.

We start by observing that from (1.1) and (2.26), we can write

F = ρeβγ5Rγ21R̃. (3.1)

Then, defining f = F/ρeβγ5 , it follows that

f = Rγ21R̃, (3.2)

f 2 =−1. (3.3)

Now, since all objects in (3.1) and (3.2) are even, we can take the advantage

of the isomorphism ��3,0 ≡ ��+1,3 and make the calculations when convenient

in the Pauli algebra. To this end, we first write

F = 1
2
Fµνγµγν, Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (3.4)
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where (E1,E2,E3) and (B1,B2,B3) are, respectively, the Cartesian components

of the electric and magnetic fields.

We now write F in ��+(M,g), the even subalgebra of ��(M,g). The typical

fiber of ��+(M,g) (which is also a vector bundle) is isomorphic to the Pauli

algebra. We put

�σi = γiγ0, i = �σ1�σ2�σ3 = γ0γ1γ2γ3 = γ5. (3.5)

Recall that i commutes with bivectors and, since i2 = −1, it acts like the

imaginary unit i=√−1 in ��+(M,g). From (3.4) and (3.5) (taking into account

our previous discussion), we can write

F = �E+ i�B, (3.6)

with �E = Ei �σi, �B = Bj �σj , i,j = 1,2,3. We can write an analogous equation for

f :

f = �e+ i�b. (3.7)

Now, since F2 ≠ 0 and

F2 = F ·F+F∧F =−(�E2− �B2)+2i
(�E · �B), (3.8)

the above equations give (in the more general case where both I1 = (�E2−�B2)≠ 0

and I2 = (�E · �B)≠ 0)

ρ =
√
�E2− �B2

cos[arctg2β]
, β= 1

2
arctan

(
2
(�E · �B)
�E2− �B2

)
. (3.9)

Also,

�e= 1
ρ
[(�E cosβ+ �B sinβ

)]
, �b = 1

ρ
[(�B cosβ− �E sinβ

)]
. (3.10)

3.1. A particular solution. Now, we can verify that

L= γ21+f√
2
(
1−γ5I

) = �σ3− i �f

i
√

2
(
1− i

( �f · �σ3
)) ,

I= f 03−γ5f 12 ≡ �f · �σ3,

(3.11)

is a Lorentz transformation, that is, LL̃ = L̃L = 1. Moreover, L is a particular

solution of (3.2). Indeed,

γ21+f√
2
(
1−γ5I

)γ21
γ12−f√

2
(
1−γ5I

) = f [2(1−γ5I
)]

2
(
1−γ5I

) = f . (3.12)
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Of course, since f 2 = −1, �e2 = �b2−1, and �e ·�b = 0, there are only four real

degrees of freedom in the Lorentz transformation L. From this result in [14],

it is concluded that the solution of (1.1) is the Dirac-Hestenes spinor field

φ=√ρeγ5βL, (3.13)

which has only six degrees of freedom and thus is not equivalent to a general

Dirac-Hestenes spinor field (the spinor field that must appear in the Dirac-

Hestenes equation), which has eight degrees of freedom. In this way, it is stated

in [14] that the MDE of first kind proposed in [35, 39] cannot hold. Although

it is true that (3.13) is a solution of (1.1), it is not a general solution, but only

a particular one.

Before leaving this section, we mention that there are many other Dirac-like

forms of the Maxwell equations published in the literature. All are trivially

related in a very simple way and in principle have nothing to do with the two

kinds of MDE discussed in the present paper, see [27].

3.2. The general solution. The general solution R of (1.1) is trivially found.

It is

R = LS, (3.14)

where L is the particular solution just found and S is any member of the sta-

bility group of γ21, that is,

Sγ21S̃ = γ21, SS̃ = S̃S = 1. (3.15)

It is trivial to find that we can parametrize the elements of the stability group

as

S = exp
(
γ03ν

)
exp

(
γ21ϕ

)
, (3.16)

with 0 ≤ ν < ∞ and 0 ≤ ϕ < ∞. This shows that the most general Dirac-

Hestenes spinor field that solves (1.1) has indeed eight degrees of freedom

(as it must be the case, if the claims of [35, 39] are to make sense), although

two degrees of freedom are arbitrary, that is, they are like hidden variables!

Now, the reason for the indetermination of two degrees of freedom has to

do with a fundamental mathematical result: the fact that a spinor can only be

reconstructed through the knowledge of its bilinear covariants and the Fierz

identities. Explicitly, to reconstruct a Dirac-Hestenes spinor field ψ, it is nec-

essary to know also, besides the bilinear covariant given by (1.1), the following

bilinear covariants:

J =ψγ0ψ̃, K =ψγ3ψ̃. (3.17)
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Now, J, K, and F are related through the so-called Fierz identities:

J2 =−K2 =−σ 2−ω2,

J ·K = 0, J∧K =−(ω+γ5
)
F,

σ = ρcosβ, ω= ρ sinβ.

(3.18)

In the most general case, when both σ and ω are not 0, we also have the

notable identities first found by Crawford [7] (and which can be derived almost

trivially using the Clifford bundle formalism):

F�J =ωK, F�K =ωJ,(
γ5F

)
�J = σK, (

γ5F
)
�K = σJ,

F ·F =ω2−σ 2,
(
γ5F

)·F = 2σω,

JF =−(ω+γ5σ
)
K, KF =−(ω+γ5σ

)
J,

F2 =ω2−σ 2−2γ5σω, F−1 =KFK/(ω2+σ 2).
(3.19)

Once we know ω, σ , J, K, and F , we can recover the Dirac-Hestenes spinor

field as follows. First, introduce a boomerang [17, 18, 30] Z ∈��C(M,g) given

by

Z = σ +J+iF−iKω. (3.20)

Then, we can constructΨ = Zf ∈��C(M,g)f which has the following matrix

representation (once the standard representation of the Dirac gamma matrices

are used):

Ψ̂ =


ψ1 0 0 0

ψ2 0 0 0

ψ3 0 0 0

ψ4 0 0 0

 . (3.21)

Now, it can easily be verified that Ψ = Zf determines the same bilinear

covariants as the ones determined by ψ. Note, however, that this spinor is not

unique. In fact, Z determines a class of elements Zη, where η is an arbitrary

element of ��C(M,g)f which differs one from the other by a complex phase

factor [17, 18, 30].

Recalling that a representative of a Dirac-Hestenes spinor field determines

a unique element of Φ ∈��C(M)f by Φ =ψf , then it follows (from (3.21) and

(2.27) that gives the matrix representation of ψ) that we can trivially recon-

struct an ψ that solves our problem.

4. The generalized Maxwell equation. To comment on the basic error in

[14] concerning the Clifford bundle formulation of the generalized Maxwell

equation, we recall the following.
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The generalized Maxwell equation [19, 27] which describes the electromag-

netic field generated by charges and monopoles can be written in the Cartan

bundle as

dF =Km, dG =Ke, (4.1)

where F,G ∈∧2(M) and Km,Ke ∈
∧3(M).

These equations are independent of any metric structure defined on the

world manifold. When a metric is given and the Hodge dual operator 
 is

introduced, it is supposed that in vacuum we haveG =
F . In this case, putting

Ke =−
Je and Km =
Jm, with Je,Jm ∈ sec
∧1(M), we can write the following

equivalent set of equations:

dF =−
Jm, d
F =−
Je, (4.2)

δ(
F)= Jm, δF =−Je, (4.3)

δ(
F)= Jm, δF =−Je, (4.4)

dF =−
Jm, δF =−Je. (4.5)

Now, supposing that any sec
∧j(M) ⊂ sec��(M,g) (j = 0,1,2,3,4) and taking

into account (2.12), (2.13), (2.14), (2.15), and (2.16), we get (1.2) by summing

the two equations in (4.5), that is,

(d−δ)F = Je+Km or (d−δ)
F =−Jm+Ke, (4.6)

or equivalently

∂F = Je+γ5Jm or ∂
(−γ5F

)=−Jm+γ5Je. (4.7)

Now, writing with the conventions of Section 2,

F = 1
2
Fµνγµγν, 
F = 1

2

(
Fµν)γµγν, (4.8)

then generalized Maxwell equations in the form given by (4.3) can be written

in components (in a Lorentz coordinate chart) as

∂µFµν = Jµe , ∂µ
(
Fµν)=−Jµm. (4.9)

Now, assuming as in (1.1) that F =ψγ21ψ̃ and taking into account the relation

between ψ and the representation of the standard Dirac spinor ΨD given by

(2.28), we can write (4.9) as

∂µΨ̄D
[
γ̂µ, γ̂ν

]
ΨD = 2Jµe , ∂µΨ̄Dγ̂5

[
γ̂µ, γ̂ν

]
ΨD =−2Jµm,

Fµν = 1
2
Ψ̄D

[
γ̂µ, γ̂ν

]
Ψ ,

(
Fµν)= 1
2
Ψ̄Dγ̂5

[
γ̂µ, γ̂ν

]
ΨD.

(4.10)
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The reverse of the first equation of (4.7) reads

∼
(∂F)= Je−Km. (4.11)

First summing, and then subtracting (1.2) from (4.1) we get the following

equations for F =ψγ21ψ̃:

∂ψγ21ψ̃+ ˜(
∂ψγ21ψ̃

)= 2Je, ∂ψγ21ψ̃− ˜(
∂ψγ21ψ̃

)= 2Km, (4.12)

which is equivalent to (2.12) in [14] (where � is used for the three form of

monopolar current). There, it is observed that Je is even under reversion and

Km is odd. Then, it is claimed that “since reversion is a purely algebraic oper-

ation without any particular physical meaning, the monopolar current Km is

necessarily zero if the Clifford formalism is assumed to provide a representa-

tion of Maxwell’s equations where the source currents Je and Km correspond

to fundamental physical fields.” It is also stated that (4.10) and (4.12) impose

different constrains on the monopolar currents Je and Km.

It is clear that these arguments are fallacious. Indeed, it is obvious that if any

comparison is to be made, it must be between Je and Jm or between Ke and Km.

In this case, it is obvious that both pairs of currents have the same behavior

under reversion. This kind of confusion is widespread in the literature, mainly

by people that work with the generalized Maxwell equation(s) in component

form (4.9).

It seems that experimentally Jm = 0 and the following question suggests

itself: is there any real physical field governed by an equation of the type of

the generalized Maxwell equation (1.2)? The answer is yes.

5. The generalized Hertz potential equation. In what follows, we accept

that Jm = 0 and take Maxwell equations for the electromagnetic field F ∈
sec

∧2(M)⊂ sec��(M,g) and a current Je ∈ sec
∧1(M)⊂ sec��(M,g) as

∂F = Je. (5.1)

Let Π = (1/2)Πµνγµγν = �Πe + i�Πm ∈ sec
∧2(M) ⊂ sec��(M,g) be the so-

called Hertz potential [34, 37]. We write

[
Πµν

]=


0 −Π1
e −Π2

e −Π3
e

Π1
e 0 −Π3

m Π2
m

Π2
e Π3

m 0 −Π1
m

Π3
e −Π2

m Π1
m 0

 (5.2)

and define the electromagnetic potential by

A=−δΠ∈ secΛ1(T
M)⊂ sec��(M,g). (5.3)
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Since δ2 = 0, it is clear that A satisfies the Lorenz gauge condition, that is,

δA= 0. (5.4)

Also, let

γ5S = dΠ∈ sec
∧

3(M)⊂ sec��(M,g), (5.5)

and call S the Stratton potential. It follows also that

d
(
γ5S

)= d2Π= 0. (5.6)

But d(γ5S)= γ5δS, from which we get, taking into account (4.10),

δS = 0. (5.7)

We can put (5.3) and (5.5) in the form of a single generalized Maxwell-like

equation, that is,

∂Π= (d−δ)Π=A+γ5S =�. (5.8)

Equation (5.8) is the equation we were looking for. It is a legitimate physical

equation. We also have

�Π= (d−δ)2Π= dA+γ5dS. (5.9)

Next, we define the electromagnetic field by

F = ∂�=�Π= dA+γ5dS = Fe+γ5Fm. (5.10)

We observe that

�Π= 0 �⇒ Fe =−γ5Fm. (5.11)

Now, we calculate ∂F . We have

∂F = (d−δ)F = d2A+d(γ5dS
)−δ(dA)−δ(γ5dS

)
. (5.12)

The first and last terms in the second right member of (5.9) are obviously null.

Writing

Je =−δdA, γ5Jm =−d
(
γ5dS

)
, (5.13)

we get Maxwell equation

∂F = (d−δ)F = Je (5.14)

if and only if the magnetic current γ5Jm = 0, that is,

δdS = 0, (5.15)
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a condition that we suppose to be satisfied in what follows. Then,

�A= Je =−δdA, �S = 0. (5.16)

Now, we define

Fe = dA= �Ee+ i�Be, Fm = dS = �Bm+ i�Em, (5.17)

and also

F = Fe+γ5Fm = �E+ i�B = (�Ee− �Em)+ i
(�Be+ �Bm). (5.18)

Then, we get

��Πe = �E, ��Πm = �B. (5.19)

It is important to keep in mind that

�Π= 0 �⇒ �E = 0, �B = 0. (5.20)

Nevertheless, despite this result, we have the following theorem.

Hertz theorem. The Hertz potential satisfies

�Π= 0 �⇒ ∂Fe = 0. (5.21)

Proof. Immediately from the above equations, we have that

∂Fe =−∂
(
γ5Fm

)=−d(γ5dS
)+δ(γ5dS

)= γ5d2S−γ5δdS = 0. (5.22)

We remark that (5.21) has been called the Hertz theorem in [32, 37] and it has

been used there and also in [8, 9, 10, 16, 20, 31, 33] in order to find nontrivial

superluminal solutions of the free Maxwell equation.

6. Maxwell Dirac equivalence of first kind. We consider a generalized Max-

well equation

∂F = 	, (6.1)

where ∂ = γµ∂µ is the Dirac operator and 	 is the electromagnetic current

(an electric current Je plus a magnetic monopole current −γ5Jm, where Je,
Jm ∈ sec

∧1M ⊂ ��(M,g)). We proved in Section 2 that if F2 ≠ 0, then we can

write

F =ψγ21ψ̃, (6.2)
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whereψ∈ sec��+(M,g) is a representative of a Dirac-Hestenes field. If we use

(6.2) in (6.1), we get

∂
(
ψγ21ψ̃

)= γµ∂µ(ψγ21ψ̃
)= γµ(∂µψγ21ψ̃+ψγ21∂µψ̃

)= 	, (6.3)

from where it follows that

2γµ
〈
∂µψγ21ψ̃

〉
2 = 	. (6.4)

Consider the identity

γµ
〈
∂µψγ21ψ̃

〉
2 = ∂ψγ21ψ̃−γµ

〈
∂µψγ21ψ̃

〉
0−γµ

〈
∂µψγ21ψ̃

〉
4, (6.5)

and define, moreover, the vectors

j = γµ〈∂µψγ21ψ̃
〉

0, g = γµ〈∂µψγ5γ21ψ̃
〉

0. (6.6)

Taking into account (6.3), (6.4), (6.5), and (6.6), we can rewrite (6.3) as

∂ψγ21ψ̃=
[

1
2

	+(j+γ5g
)]
. (6.7)

Equation (6.7) is a spinorial representation of Maxwell equation. In the case

whereψ is nonsingular (which corresponds to nonnull electromagnetic fields),

we have

∂ψγ21 = e
γ5β

ρ

[
1
2

	+(j+γ5g
)]
ψ. (6.8)

Equation (6.8) representing Maxwell equation, written in that form, does not

appear to have any relationship with the Dirac-Hestenes equation (2.42). How-

ever, we will make some algebraic modifications on it in such a way as to put it

in a form that suggests a very interesting and intriguing relationship between

them, and consequently a possible connection between electromagnetism and

quantum mechanics.

Since ψ is supposed to be nonsingular (F ≠ 0), we can use the canonical de-

composition of ψ and write ψ= ρeβγ5 /2R, with ρ,β ∈ sec
∧0M ⊂ sec��(M,g)

and R ∈ Spin+(1,3), for all x ∈M . Then

∂µψ= 1
2

(
∂µ lnρ+γ5∂µβ+Ωµ

)
ψ, (6.9)

where we define the 2-form

Ωµ = 2
(
∂µR

)
R̃. (6.10)

Using this expression for ∂µψ into the definitions of the vectors j and g
(6.6), we obtain that

j = γµ(Ωµ ·S)ρcosβ+γµ
[
Ωµ ·

(
γ5S

)]
ρ sinβ,

g = [
Ωµ ·

(
γ5S

)]
ρcosβ−γµ

(
Ωµ ·S

)
ρ sinβ,

(6.11)
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where we define the spin 2-form S by

S = 1
2
ψγ21ψ−1 = 1

2
Rγ21R̃. (6.12)

We now define

J =ψγ0ψ̃= ρv = ρRγ0R−1, (6.13)

where v is the velocity field of the system. To continue, we define the 2-form

Ω = vµΩµ and the scalars Λ and K by

Λ=Ω·S, K =Ω·(γ5S
)
. (6.14)

Using these definition, we have that

Ωµ ·S =Λvµ, Ωµ ·
(
γ5S

)=Kvµ, (6.15)

and the vectors j and g can be written as

j =Λvρcosβ+Kvρ sinβ= λρv,
g =Kvρcosβ−Λvρ sinβ= κρv, (6.16)

where we defined

λ=Λcosβ+K sinβ, κ =K cosβ−Λsinβ. (6.17)

The spinorial representation of Maxwell equation is written now as

∂ψγ21 = e
γ5β

2ρ
	ψ+λψγ0+γ5κψγ0. (6.18)

Observe that there are [8, 9, 10, 20, 31, 32, 33, 34, 37] infinite families of

nontrivial solutions of Maxwell equations such that F2 ≠ 0 (which correspond

to subluminal and superluminal solutions of Maxwell equation). Then, it is licit

to consider the case 	= 0. We have

∂ψγ21 = λψγ0+γ5κψγ0, (6.19)

which is very similar to the Dirac-Hestenes equation.

In order to go a step further into the relationship between those equations,

we remember that the electromagnetic field has six degrees of freedom while a

Dirac-Hestenes spinor field has eight degrees of freedom, and that we proved

in Section 2 that two of these degrees of freedom are hidden variables. We are

free therefore to impose two constraints on ψ if it is to represent an electro-

magnetic field. We choose these two constraints as

∂ ·j = 0, ∂ ·g = 0. (6.20)
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Using (6.16), these two constraints become

∂ ·j = ρλ̇+λ∂ ·J = 0, ∂ ·g = ρκ̇+k∂ ·J = 0, (6.21)

where J = ρv , λ̇= (v ·∂)λ, and k̇= (v ·∂)k. These conditions imply that

κλ= λκ (λ≠ 0), (6.22)

which gives

κ
λ
= const.=−tanβ0, (6.23)

or, from (6.17),

K
Λ
= tan

(
β−β0

)
. (6.24)

Now we observe that β is the angle of the duality rotation from F to F ′ =
eγ5βF . If we perform another duality rotation by β0, we have F � eγ5(β+β0)F ,

and, for the Takabayasi angle, β� β+β0. If we work therefore with an electro-

magnetic field duality rotated by an additional angle β0, the above relationship

becomes

K
Λ
= tanβ. (6.25)

This is, of course, just a way to say that we can choose the constant β0 in (6.23)

to be zero. Now, this expression gives

λ=Λcosβ+Λtanβsinβ= Λ
cosβ

,

κ =Λtanβcosβ−Λsinβ= 0,
(6.26)

and the spinorial representation of the Maxwell equation (6.19) becomes

∂ψγ21−λψγ0 = 0. (6.27)

Note that λ is such that

ρλ̇=−λ∂ ·J. (6.28)

The current J =ψγ0ψ̃ is not conserved unless λ is constant. If we suppose

also that

∂ ·J = 0, (6.29)

we must have

λ= const. (6.30)
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Now, throughout these calculations, we have assumed that � = c = 1. We

observe that, in (6.27), λ has the units of (length)−1, and if we introduce the

constants � and c, we have to introduce another constant with a unit of mass.

If we denote this constant by m such that

λ= mc
�
, (6.31)

then (6.27) assumes a form which is identical to Dirac-Hestenes equation:

∂ψγ21−mc� ψγ0 = 0. (6.32)

It is true that we did not prove that (6.32) is really Dirac equation since

the constant m has to be identified in this case with the electron’s mass, and

we do not have any good physical argument to make that identification, until

now. In resume, (6.32) has been obtained from Maxwell equation by imposing

some gauge conditions allowed by the hidden parameters in the solution of

(1.1) for ψ in terms of F . In view of that, it seems more appropriate instead of

using the term mathematical MDE of first kind to talk about a correspondence

between those equations under which the two extra degrees of freedom of the

Dirac-Hestenes spinor field are treated as hidden variables.

To end this section we observe that it is too early to know if the above results

are of some physical value or only a mathematical curiosity.

7. Maxwell-Dirac equivalence of second kind. We now look for a Hertz

potential field Π∈ sec
∧2(M) satisfying the following (nonlinear ) equation:

∂Π=
(
∂G+mPγ3+m

〈
Πγ012

〉
1

)
+γ5

(
∂P+mGγ3−γ5

〈
mΠγ012

〉
3

)
, (7.1)

where G,P∈ sec
∧0(M) and m is a constant. According to Section 5, the elec-

tromagnetic and Stratton potentials are

A= ∂G+mPγ3+m
〈
Πγ012

〉
1,

γ5S = γ5

(
∂P+mGγ3−γ5

〈
mΠγ012

〉
3

)
,

(7.2)

and must satisfy the following subsidiary conditions:

�
(
∂G+mPγ3+m

〈
Πγ012

〉
1

)
= Je,

�
(
γ5

(
∂P+mGγ3−γ5

〈
mΠγ012

〉
3

))
= 0,

�G+m∂ ·〈Πγ012
〉

1 = 0,

�P−m∂ ·
(
γ5
〈
Πγ012

〉
3

)
= 0.

(7.3)
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Now, in the Clifford bundle formalism, as we have already explained above,

the following sum is a legitimate operation:

ψ=−G+Π+γ5P, (7.4)

and, according to the results of Section 2, definesψ as a representative of some

Dirac-Hestenes spinor field. Now, we can verify that ψ satisfies the equation

∂ψγ21−mψγ0 = 0 (7.5)

which is, as we already know, a representative of the standard Dirac equation

(for a free electron) in the Clifford bundle, which is a Dirac-Hestenes equation

(2.42), written in an orthonormal coordinate spin frame.

The above developments suggest (consistently with the spirit of the gener-

alized Hertz potential theory developed in Section 5) the following interpreta-

tion. The Hertz potential field Π generates the real electromagnetic field of the

electron. (The question of the physical dimensions of the Dirac-Hestenes and

Maxwell fields is discussed in [35].) Moreover, the above developments suggest

that the electron is composed of two fundamental currents, one of electric type

and the other of magnetic type circulating at the ultra microscopic level, which

generate the observed electric charge and magnetic moment of the electron.

Then, it may be the case, as speculated by Maris [21], that the electromagnetic

field of the electron can be split into two parts, each corresponding to a new

kind of subelectron-type particle, the electrino. Of course, the above develop-

ments leave open the possibility to generate electrinos of fractional charges.

We still study more properties of the above system in another paper.

8. Seiberg-Witten equations. As it is well known, the original Seiberg-Witten

(monopole) equations have been written in Euclidean spacetime and for the

self-dual part of the field F . However, on Minkowski spacetime, of course, there

are no self-dual electromagnetic fields. Indeed, (2.11) implies that the unique

solution (on Minkowski spacetime) of the equation 
F = F is F = 0. This is

the main reason for the difficulties in interpreting that equations in this case,

and, indeed, in [38], an interpretation of that equations was attempted only for

the case of Euclidean manifolds. Here we want to derive and give a possible

interpretation to those equations based on a reasonable assumption.

Now, the analogous of Seiberg-Witten monopole equations reads in the Clif-

ford bundle formalism and on Minkowski spacetime as

∂ψγ21−Aψ= 0, F = 1
2
ψγ21ψ̃, F = dA, (8.1)

where ψ ∈ sec��+(M,g) is a Dirac-Hestenes spinor field, A ∈ sec
∧1(M) ⊂

sec��(M,g) is an electromagnetic vector potential, and F ∈ sec
∧2(M) ⊂

sec��(M,g) is an electromagnetic field.
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Our intention in this section is

(a) to use the MDE of the first kind (proved in Section 6) and an additional

hypothesis to be discussed below to derive the Seiberg-Witten equations

on Minkowski spacetime;

(b) to give a (possible) physical interpretation for those equations.

8.1. Derivation of Seiberg-Witten equations

Step 1. We assume that the electromagnetic field F appearing in the second

of the Seiberg-Witten equations satisfies the free Maxwell equation, that is,

∂F = 0.

Step 2. We use the MDE of the first kind proved in Section 6 to obtain (6.27).

Step 3. We introduce the ansatz

A= λψγ0ψ−1. (8.2)

This means that the electromagnetic potential (in our geometrical units) is

identified with a multiply of the velocity field defined through (6.13). Under

this condition, (6.27) becomes

∂ψγ21−Aψ= 0, (8.3)

which is the first Seiberg-Witten equation!

8.2. A possible interpretation of the Seiberg-Witten equations. It is time

to find an interpretation for (8.3). In order to do that, we recall from Section 2.5

that if ψ± are Weyl spinor fields (as defined through (2.33)), then ψ± satisfy a

Weyl equation, that is,

∂ψ± = 0. (8.4)

Now consider the equation for ψ+ coupled with an electromagnetic field

A= gB ∈ sec
∧1(M)⊂ sec��(M,g), that is,

∂ψ+γ21+gBψ+ = 0. (8.5)

This equation is invariant under the gauge transformations

ψ+ � �→ψ+egγ5θ, B � �→ B+∂θ. (8.6)

Also, the equation for ψ− coupled with an electromagnetic field gB ∈
sec

∧1(M) is

∂ψ−γ21+gBψ− = 0, (8.7)

which is invariant under the gauge transformations

ψ− � �→ψ−egγ5θ ; B � �→ B+∂θ, (8.8)
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showing clearly that the fields ψ+ and ψ− carry opposite “charges.” Now con-

sider the Dirac-Hestenes spinor fields ψ↑, ψ↓ given by (2.37) which are eigen-

vectors of the parity operator and look for solutions of (8.3) such thatψ=ψ↑.
We have

∂ψ↑γ21+gBψ↑ = 0 (8.9)

which separates into two equations:

∂ψ↑+γ21+gγ5Bψ↑+ = 0, ∂ψ↑−γ21+gγ5Bψ↑− = 0. (8.10)

These results show that when a Dirac-Hestenes spinor field associated with

the first of the Seiberg-Witten equations is in an eigenstate of the parity oper-

ator, that spinor field describes a pair of particles with opposite charges. We

interpret these particles (following Lochak [16] who suggested that an equa-

tion equivalent to (8.10) describes massless monopoles of opposite charges)

as being massless monopoles in auto-interaction. Observe that our proposed

interaction is also consistent with the third of Seiberg-Witten equations, for

F = dA implying a null magnetic current.

It is now well known that Seiberg-Witten equations have nontrivial solutions

on Minkowski manifolds (see [23]). From the above results, in particular, taking

into account the inversion formula (3.12), it seems to be possible to find a

whole family of solutions for the Seiberg-Witten equations, which has been

here derived from an MDE of first kind (proved in Section 6) with the additional

hypothesis that electromagnetic potential A is parallel to the velocity field v
(8.2) of the system described by (6.13). We conclude that a consistent set of

Seiberg-Witten equations on Minkowski spacetime must be

∂ψγ21−Aψ= 0,

F = 1
2
ψγ21ψ̃, F = dA,
A= λψγ0ψ−1.

(8.11)

9. Conclusions. In this paper, we exhibited two different kinds of possible

MDE. Although many will find the ideas presented above speculative from the

physical point of view, we hope that they may become important, at least from

a mathematical point of view. Indeed, not so long ago, researching solutions of

the free Maxwell equation (∂F = 0) satisfying the constraint F2 ≠ 0 (a necessary

condition for derivation of an MDE of the first kind) conduced to the discovery

of families of superluminal solutions of Maxwell equations and also of all the

main linear relativistic equations of theoretical Physics [16, 34]. The study of

the MDE of the second kind reveals an unsuspected interpretation of the Dirac

equation, namely, that the electron seems to be a composed system built up

from the self interaction of two currents of “electrical” and “magnetic” types.
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Of course it is too early to say if this discovery has any physical significance.

We also showed that by using the MDE of the first kind together with a reason-

able hypothesis, we can shed light on the meaning of Seiberg-Witten monopole

equations on Minkowski spacetime. We hope that the results just found may

be an indication that Seiberg-Witten equations (which are a fundamental key in

the study of the topology of four manifolds equipped with an Euclidean metric

tensor) may play an important role in Physics, whose arena, where phenomena

occur, is a Lorentzian manifold.
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