FUZZY SUPER IRRESOLUTE FUNCTIONS

S. E. ABBAS

Received 26 December 2002

Abstract

The concept of fuzzy super irresolute function was considered and studied by Šostak's (1985). A comparison between this type and other existing ones is established. Several characterizations, properties, and their effect on some fuzzy topological spaces are studied. Also, a new class of fuzzy topological spaces under the terminology fuzzy S^{*}-closed spaces is introduced and investigated.

2000 Mathematics Subject Classification: 54A40.

1. Introduction and preliminaries. Šostak [10], introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and Chang fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [11, 12], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [2, 3] have redefined the same concept. In [8], Ramadan gave a similar definition, namely "smooth topological space." It has been developed in many directions [4, 5, 6, 7, 13].

In the present note, some counterexamples and characterizations of fuzzy super irresolute functions are examined. It is seen that fuzzy super irresolute function implies each of fuzzy irresolute [9] and fuzzy continuity [10], but not conversely. Also, properties preserved by fuzzy super irresolute functions are examined. Finally, we define a fuzzy S^{*}-closed space in fuzzy topological spaces in Šostak sense and characterize such a space from different angles. Our aim is to compare the introduced type of fuzzy covering property with the existing ones.

Throughout this note, let X be a nonempty set, $I=[0,1]$, and $I_{\circ}=(0,1]$. For $\alpha \in I, \underline{\alpha}(x)=\alpha$ for all $x \in X$. The following definition and results which will be needed.

Definition 1.1 [10]. A function $\tau: I^{X} \rightarrow I$ is called a fuzzy topology on X if it satisfies the following conditions:
(1) $\tau(\underline{0})=\tau(\underline{1})=1$,
(2) $\tau\left(\mu_{1} \wedge \mu_{2}\right) \geq \tau\left(\mu_{1}\right) \wedge \tau\left(\mu_{2}\right)$ for any $\mu_{1}, \mu_{2} \in I^{X}$,
(3) $\tau\left(\bigvee_{i \in \Gamma} \mu_{i}\right) \geq \bigwedge_{i \in \Gamma} \tau\left(\mu_{i}\right)$ for any $\{\mu\}_{i \in \Gamma} \subset I^{X}$.

The pair (X, τ) is called a fuzzy topological space (FTS).

Remark 1．2．Let（ X, τ ）be an FTS．Then，for each $\alpha \in I, \tau_{\alpha}=\left\{\mu \in I^{X}\right.$ ： $\tau(\mu) \geq r\}$ is a Chang＇s fuzzy topology on X ．

Theorem 1.3 ［3］．Let（ X, τ ）be an FTS．Then，for each $r \in I 。$ and $\lambda \in I^{X}$ ，an operator $C_{\tau}: I^{X} \times I_{\circ} \rightarrow I^{X}$ is defined as follows：

$$
\begin{equation*}
C_{\tau}(\lambda, r)=\bigwedge\left\{\mu \in I^{X}: \lambda \leq \mu, \tau(\underline{1}-\mu) \geq r\right\} . \tag{1.1}
\end{equation*}
$$

For $\lambda, \mu \in I^{X}$ and $r, s \in I_{\circ}$ ，the operator C_{τ} satisfies the following conditions：
（1）$C_{T}(\underline{0}, r)=\underline{0}, \lambda \leq C_{\tau}(\lambda, r)$ ，
（2）$C_{T}(\lambda, r) \vee C_{T}(\mu, r)=C_{\tau}(\lambda \vee \mu, r)$ ，
（3）$C_{T}(\lambda, r) \leq C_{T}(\lambda, s)$ if $r \leq s$ ，
（4）$C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$ ．
Theorem 1.4 ［9］．Let（ X, τ ）be an FTS．Then，for each $r \in I 。$ and $\lambda \in I^{X}$ ，an operator $I_{\tau}: I^{X} \times I_{\circ} \rightarrow I^{X}$ is defined as follows：

$$
\begin{equation*}
I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X}: \lambda \geq \mu, \tau(\mu) \geq r\right\} \tag{1.2}
\end{equation*}
$$

For $\lambda, \mu \in I^{X}$ and $r, s \in I_{\circ}$ ，the operator I_{τ} satisfies the following conditions：
（1）$I_{T}(\underline{1}-\lambda, r)=\underline{1}-C_{\tau}(\lambda, r)$ ，
（2）$I_{\tau}(\underline{1}, r)=\underline{1}, \lambda \geq I_{\tau}(\lambda, r)$ ，
（3）$I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r)=I_{\tau}(\lambda \wedge \mu, r)$ ，
（4）$I_{\tau}(\lambda, r) \geq I_{\tau}(\lambda, s)$ if $r \leq s$ ，
（5）$I_{\tau}\left(I_{\tau}(\lambda, r), r\right)=I_{\tau}(\lambda, r)$ ．
Definition 1.5 ［9］．Let（ X, τ ）be an FTS．Then，for each $r \in I$ 。 and $\lambda \in I^{X}$ ， the following statements hold：
（1）λ is called r－fuzzy semi－open（ r－FSO）if there exists $v \in I^{X}$ with $\tau(v) \geq r$ such that $v \leq \lambda \leq C_{\tau}(v, r)$ ；equivalently，$\lambda \leq C_{\tau}\left(I_{\tau}(\lambda, r), r\right)$ ；
（2）λ is called r－fuzzy semiclosed（ r－FSC）if there exists $v \in I^{X}$ with $\tau(\underline{1}-$ $v) \geq r$ such that $I_{\tau}(v, r) \leq \lambda \leq v$ ；equivalently，$I_{\tau}\left(C_{\tau}(\lambda, r), r\right) \leq \lambda$ ；
（3）λ is called r－fuzzy semiclopen（ r－FSCO）if λ is r－FSO and r－FSC；
（4）λ is called r－fuzzy regular open $\left(r\right.$－FRO）if $\lambda=I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$ ；
（5）the r－fuzzy semi－interior of λ ，denoted $\mathrm{SI}_{\tau}(\lambda, r)$ ，is defined by $\mathrm{SI}_{\tau}(\lambda, r)=$ $\bigvee\left\{v \in I^{X}: v \leq \lambda, v\right.$ is r－FSO $\} ;$
（6）the r－fuzzy semiclosure of λ ，denoted $\mathrm{SC}_{\tau}(\lambda, r)$ ，is defined by $\mathrm{SC}_{\tau}(\lambda, r)=$ $\Lambda\left\{v \in I^{X}: v \geq \lambda, v\right.$ is r－FSC $\}$ ．

Theorem 1.6 ［9］．Let (X, τ) be an FTS．For $\lambda \in I^{X}$ and $r \in I_{\circ}$ ，the following statements are valid：
（1）λ is r－FSO if and only if $\lambda=\mathrm{SI}_{\tau}(\lambda, r)$ ，and λ is r－FSC if and only if $\lambda=$ $\mathrm{SC}_{T}(\lambda, r)$ ；
（2）$I_{\tau}(\lambda, r) \leq \mathrm{SI}_{\tau}(\lambda, r) \leq \lambda \leq \mathrm{SC}_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$ ；
(3) $\mathrm{SC}_{\tau}\left(\mathrm{SC}_{\tau}(\lambda, r), r\right)=\mathrm{SC}_{\tau}(\lambda, r)$;
(4) $C_{\tau}\left(\mathrm{SC}_{\tau}(\lambda, r), r\right)=\mathrm{SC}_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$;
(5) $\mathrm{SI}_{\tau}(\underline{1}-\lambda, r)=\underline{1}-\mathrm{SC}_{\tau}(\lambda, r)$.

Lemma 1.7. For any fuzzy set λ in an $\operatorname{FTS}(X, \tau)$ and $r \in I_{0}$, if $\tau(\lambda) \geq r$, then $I_{\tau}\left(C_{\tau}(\lambda, r), r\right)=\mathrm{SC}_{\tau}(\lambda, r)$.

Proof. Since $\mathrm{SC}_{\tau}(\lambda, r)$ is r - $\mathrm{FSC}, I_{\tau}\left(C_{\tau}\left(\mathrm{SC}_{\tau}(\lambda, r), r\right), r\right) \leq \mathrm{SC}_{\tau}(\lambda, r)$ and hence, by Theorem 1.6(4), $I_{\tau}\left(C_{\tau}(\lambda, r), r\right) \leq \mathrm{SC}_{\tau}(\lambda, r)$. To prove the opposite inclusion, since $\tau(\lambda) \geq r, r \in I_{0}$, we have $\lambda \leq I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$ so that $\underline{1}-\lambda \geq$ $\underline{1}-I_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}\left(I_{\tau}(\underline{1}-\lambda, r), r\right)$. But $C_{\tau}\left(I_{\tau}(\underline{1}-\lambda, r), r\right)$ is r-FSO. Hence $C_{\tau}\left(I_{\tau}(\underline{1}-\lambda, r), r\right) \leq \mathrm{SI}_{\tau}(\underline{1}-\lambda, r)$ and $\operatorname{so~}_{\mathrm{SC}_{\tau}}(\lambda, r) \leq I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$.

DEFINITION 1.8. Let (X, τ) and (Y, η) be FTSs and let $f: X \rightarrow Y$ be a function which is called
(1) fuzzy continuous (FC) if and only if $\eta(\mu) \leq \tau\left(f^{-1}(\mu)\right)$ for each $\mu \in I^{Y}$ [10],
(2) fuzzy open if and only if $\tau(\lambda) \leq \eta(f(\lambda))$ for each $\lambda \in I^{X}$ [10],
(3) fuzzy semicontinuous (FSC) if and only if $f^{-1}(\mu)$ is r-FSO set of X for each $\eta(\mu) \geq r, r \in I_{\circ}$ [9],
(4) fuzzy irresolute (FI) if and only if $f^{-1}(\mu)$ is r-FSO set of X for each μ is r-FSO set of $Y, r \in I_{\circ}[9]$.

2. Fuzzy super irresolute functions

Definition 2.1. Let (X, τ) and (Y, η) be FTSs and let $f: X \rightarrow Y$ be a function which is called
(1) fuzzy super irresolute (F-super I) if and only if $\tau\left(f^{-1}(\mu)\right) \geq r$ for each μ is r-FSO set of $Y, r \in I_{\circ}$,
(2) fuzzy completely continuous (FCC) if and only if $f^{-1}(\mu)$ is r-FRO set of X for each $\mu \in I^{Y}$ and $\eta(\mu) \geq r, r \in I_{o}$,
(3) fuzzy completely irresolute (FCI) if and only if $f^{-1}(\mu)$ is r-FRO set of X for each r-FSO set $\mu \in I^{Y}$ and $r \in I_{0}$.

Remark 2.2. One can show the connection between these types and other existing ones by the following diagram:

The converse of the previous implications need not be true in general as shown in the following counterexample.

Counterexample 2.3. Let μ_{1}, μ_{2}, and μ_{3} be fuzzy subsets of $X=\{a, b, c\}$ defined as follows:

$$
\begin{array}{lll}
\mu_{1}(a)=0.9, & \mu_{1}(b)=0.0, & \mu_{1}(c)=0.1, \\
\mu_{2}(a)=0.9, & \mu_{2}(b)=0.7, & \mu_{2}(c)=0.2, \tag{2.2}\\
\mu_{3}(a)=0.9, & \mu_{3}(b)=0.3, & \mu_{3}(c)=0.2 .
\end{array}
$$

Then $\tau, \eta: I^{X} \rightarrow I$, defined as

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \text { if } \lambda=\underline{0}, \underline{1}, \tag{2.3}\\
\frac{1}{2}, & \text { if } \lambda=\mu_{1}, \\
\frac{1}{3}, & \text { if } \lambda=\mu_{2}, \\
0, & \text { otherwise, }
\end{array} \quad \eta(\lambda)= \begin{cases}1, & \text { if } \lambda=\underline{0}, \underline{1}, \\
\frac{1}{3}, & \text { if } \lambda=\mu_{1}, \mu_{2} \\
\frac{1}{2}, & \text { if } \lambda=\mu_{3}, \\
0, & \text { otherwise }\end{cases}\right.
$$

are fuzzy topologies on X. Then,
(1) the identity function $\operatorname{id}_{X}:(X, \tau) \rightarrow(X, \eta)$ is FI but not F-super I because μ_{3} is $1 / 3$-FSO in (X, η) and $\tau\left(f^{-1}\left(\mu_{3}\right)\right)=\tau\left(\mu_{3}\right)=0$;
(2) the identity function $\operatorname{id}_{X}:(X, \tau) \rightarrow(X, \tau)$ is FC but not F -super I function.

DEFINITION 2.4. An FTS (X, τ) is said to be fuzzy extremally disconnected if and only if $\tau\left(C_{\tau}(\lambda, r)\right) \geq r$ for every $\tau(\lambda) \geq r$ for each $\lambda \in I^{X}$ and $r \in I_{\circ}$.

Theorem 2.5. For a function $f: X \rightarrow Y$, the following statements are true:
(1) if X is fuzzy extremally disconnected and f is FI, then f is F-super I;
(2) if Y is fuzzy extremally disconnected and f is FCI (resp., FC), then f is F-super I;
(3) if both X and Y are fuzzy extremally disconnected, then the concepts F-super I, FCI, FI, FCC, FSC, and FC are equivalent.

Proof. The proof is obvious.
Theorem 2.6. Let $\left(X, \tau_{1}\right)$ and $\left(Y, \tau_{2}\right)$ be FTSs. Let $f: X \rightarrow Y$ be a function. The following statements are equivalent:
(1) a map f is F-super I;
(2) for each $r-F S C ~ \mu \in I^{Y}, \tau\left(\underline{1}-f^{-1}(\mu)\right) \geq r, r \in I_{0}$;
(3) for each $\lambda \in I^{X}$ and $r \in I_{\circ}, f\left(C_{T_{1}}(\lambda, r)\right) \leq \mathrm{SC}_{\tau_{2}}(f(\lambda), r)$;
(4) for each $\mu \in I^{Y}$ and $r \in I_{0}, C_{\tau_{1}}\left(f^{-1}(\mu), r\right) \leq f^{-1}\left(\mathrm{SC}_{\tau_{2}}(\mu, r)\right)$;
(5) for each $\mu \in I^{Y}$ and $r \in I_{\circ}, f^{-1}\left(\mathrm{SI}_{\tau_{2}}(\mu, r)\right) \leq I_{\tau_{1}}\left(f^{-1}(\mu), r\right)$.

Proof. (1) $\Leftrightarrow(2)$. It is easily proved from Theorem 1.4 and from $f^{-1}(\underline{1}-\mu)=$ $\underline{1}-f^{-1}(\mu)$.
(2) \Rightarrow (3). Suppose there exist $\lambda \in I^{X}$ and $r \in I 。$ such that

$$
\begin{equation*}
f\left(C_{\tau_{1}}(\lambda, r)\right) \notin \mathrm{SC}_{\tau_{2}}(f(\lambda), r) . \tag{2.4}
\end{equation*}
$$

There exist $y \in Y$ and $t \in I$ 。 such that

$$
\begin{equation*}
f\left(C_{\tau_{1}}(\lambda, r)\right)(y)>t>\mathrm{SC}_{\tau_{2}}(f(\lambda), r)(y) \tag{2.5}
\end{equation*}
$$

If $f^{-1}(\{y\})=\varnothing$, it is a contradiction because $f\left(C_{\tau_{1}}(\lambda, r)\right)(y)=0$.
If $f^{-1}(\{y\}) \neq \varnothing$, there exists $x \in f^{-1}(\{y\})$ such that

$$
\begin{equation*}
f\left(C_{\tau_{1}}(\lambda, r)\right)(y) \geq C_{\tau_{1}}(\lambda, r)(x)>t>\mathrm{SC}_{\tau_{2}}(f(\lambda), r)(f(x)) . \tag{2.6}
\end{equation*}
$$

Since $\mathrm{SC}_{\tau_{2}}(f(\lambda), r)(f(x))<t$, there exists r-FSC $\mu \in I^{Y}$ with $f(\lambda) \leq \mu$ such that

$$
\begin{equation*}
\mathrm{SC}_{T_{2}}(f(\lambda), r)(f(x)) \leq \mu(f(x))<t . \tag{2.7}
\end{equation*}
$$

Moreover, $f(\lambda) \leq \mu$ implies $\lambda \leq f^{-1}(\mu)$. From (2), $\tau\left(\underline{1}-f^{-1}(\mu)\right) \geq r$. Thus, $C_{\tau_{1}}(\lambda, r)(x) \leq f^{-1}(\mu)(x)=\mu(f(x))<t$, which is a contradiction to (2.6).
(3) \Rightarrow (4). For all $\mu \in I^{Y}, r \in I_{\circ}$, put $\lambda=f^{-1}(\mu)$. From (3), we have

$$
\begin{equation*}
f\left(C_{\tau_{1}}\left(f^{-1}(\mu), r\right)\right) \leq \mathrm{SC}_{\tau_{2}}\left(f\left(f^{-1}(\mu)\right), r\right) \leq \mathrm{SC}_{\tau_{2}}(\mu, r), \tag{2.8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
C_{\tau_{1}}\left(f^{-1}(\mu), r\right) \leq f^{-1}\left(f\left(C_{\tau_{1}}\left(f^{-1}(\mu), r\right)\right)\right) \leq f^{-1}\left(\mathrm{SC}_{\tau_{2}}(\mu, r)\right) \tag{2.9}
\end{equation*}
$$

$(4) \Rightarrow(5)$. It is easily proved from Theorem 1.4(1).
(5) \Rightarrow (1). Let μ be r-FSO set of Y. From Theorem 1.6(1), $\mu=\mathrm{SI}_{\tau_{2}}(\mu, r)$. By (5),

$$
\begin{equation*}
f^{-1}(\mu) \leq I_{\tau_{1}}\left(f^{-1}(\mu), r\right) \tag{2.10}
\end{equation*}
$$

On the other hand, by Theorem 1.4(2),

$$
\begin{equation*}
f^{-1}(\mu) \geq I_{\tau_{1}}\left(f^{-1}(\mu), r\right) \tag{2.11}
\end{equation*}
$$

Thus, $f^{-1}(\mu)=I_{\tau_{1}}\left(f^{-1}(\mu), r\right)$, that is, $\tau\left(f^{-1}(\mu)\right) \geq r$.

3. Properties preserved by F-super I functions

Definition 3.1. Let (X, τ) be an FTS and $r \in I_{\circ}$. Then
(1) X is called r-fuzzy compact (resp., r-fuzzy almost compact and r-fuzzy nearly compact) if and only if for each family $\left\{\lambda_{i} \in I^{X}: \tau\left(\lambda_{i}\right) \geq r, i \in \Gamma\right\}$ such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{0}} \lambda_{i}=\underline{1}$ (resp., $\bigvee_{i \in \Gamma_{0}} C_{\tau}\left(\lambda_{i}, r\right)=\underline{1}$ and $\bigvee_{i \in \Gamma_{0}} I_{\tau}\left(C_{\mathcal{T}}\left(\lambda_{i}, r\right), r\right)=\underline{1}$);
(2) X is called r-fuzzy semicompact (resp., r-fuzzy S-closed) if and only if for each family $\left\{\lambda_{i} \in I^{X}: \lambda_{i} \leq C_{\tau}\left(I_{\tau}\left(\lambda_{i}, r\right), r\right), i \in \Gamma\right\}$ such that $\bigvee_{i \in \Gamma} \lambda_{i}=$ $\underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{0}} \lambda_{i}=\underline{1}$ (resp., $\left.\bigvee_{i \in \Gamma_{0}} C_{\tau}\left(\lambda_{i}, r\right)=\underline{1}\right)$.

THEOREM 3.2. Every surjective F-super I image of r-fuzzy compact space is r-fuzzy semicompact, $r \in I_{\circ}$.

Proof. Let (X, τ) be r-fuzzy compact, $r \in I_{0}$, and let $f:(X, \tau) \rightarrow(Y, \eta)$ be F-super I surjective function. If $\left\{\lambda_{i} \in I^{Y}: \lambda_{i} \leq C_{\eta}\left(I_{\eta}\left(\lambda_{i}, r\right), r\right), i \in \Gamma\right\}$ with $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}\left(\lambda_{i}\right)=\underline{1}$. Since f is F-super $\mathrm{I}, \tau\left(f^{-1}\left(\lambda_{i}\right)\right) \geq r$. Since X is r-fuzzy compact, there exists a finite subset $\Gamma_{0} \subset \Gamma$ with $\bigvee_{i \in \Gamma_{0}} f^{-1}\left(\lambda_{i}\right)=\underline{1}$. From the surjectivity of f, we deduce

$$
\begin{equation*}
\underline{1}=f(\underline{1})=f\left(\bigvee_{i \in \Gamma_{o}} f^{-1}\left(\lambda_{i}\right)\right)=\bigvee_{i \in \Gamma_{o}} f f^{-1}\left(\lambda_{i}\right)=\bigvee_{i \in \Gamma_{\circ}} \lambda_{i} \tag{3.1}
\end{equation*}
$$

So, Y is r-fuzzy semicompact.
Corollary 3.3. Every surjective F-super I image of r-fuzzy compact space is r-fuzzy S-closed, $r \in I_{\circ}$.

Theorem 3.4. Every surjective F-super I image of r-fuzzy almost compact space is r-fuzzy S-closed, $r \in I_{\circ}$.

Proof. The proof is similar to that of Theorem 3.2.
COROLLARY 3.5. r-fuzzy semicompactness and r-fuzzy S-closedness are preserved under an F-super I surjection function, $r \in I_{0}$.

Proof. The Corollary is a direct consequence of Theorems 3.2 and 3.4.

Theorem 3.6. Let $f: X \rightarrow Y$ be FSC and F-super I surjective function. If X is r-fuzzy nearly compact, then Y is r-fuzzy S-closed, $r \in I_{0}$.

Proof. Let (X, τ) be r-fuzzy nearly compact, and let $r \in I_{\circ}, f:(X, \tau) \rightarrow$ (Y, η) be FSC and F-super I surjective function. If $\left\{\lambda_{i} \in I^{Y}: \lambda_{i} \leq C_{\eta}\left(I_{\eta}\left(\lambda_{i}, r\right), r\right)\right.$, $i \in \Gamma\}$ with $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}\left(\lambda_{i}\right)=\underline{1}$. Since f is F-super $\mathrm{I}, \tau\left(f^{-1}\left(\lambda_{i}\right)\right) \geq$ r. Since X is r-fuzzy nearly compact, there exists a finite subset $\Gamma_{\circ} \subset \Gamma$ with $\bigvee_{i \in \Gamma_{0}} I_{\tau}\left(C_{\tau}\left(f^{-1}\left(\lambda_{i}\right), r\right), r\right)=\underline{1}$. From the surjectivity of f, we deduce

$$
\begin{align*}
\underline{1} & =f(\underline{1})=f\left(\bigvee_{i \in \Gamma_{\circ}} I_{\tau}\left(C_{\tau}\left(f^{-1}\left(\lambda_{i}\right), r\right), r\right)\right) \\
& =\bigvee_{i \in \Gamma_{\circ}} f\left(I_{\tau}\left(C_{\tau}\left(f^{-1}\left(\lambda_{i}\right), r\right), r\right)\right) \tag{3.2}\\
& \leq \bigvee_{i \in \Gamma_{0}} f\left(f^{-1}\left(C_{\eta}\left(\lambda_{i}, r\right)\right)\right) \quad \text { (since } f \text { is FSC [9]). }
\end{align*}
$$

Thus $\bigvee_{i \in \Gamma_{0}} C_{\eta}\left(\lambda_{i}, r\right)=\underline{1}$. Hence Y is r-fuzzy S-closed.

4. Fuzzy S^{*}-closed spaces: characterizations and comparisons

Definition 4.1. Let (X, τ) be an FTS and $r \in I_{\circ}$. Then X is called r-fuzzy S^{*}-closed if and only if for each family $\left\{\lambda_{i} \in I^{X}: \lambda_{i} \leq C_{\tau}\left(I_{\tau}\left(\lambda_{i}, r\right), r\right), i \in \Gamma\right\}$ such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that

$$
\begin{equation*}
\bigvee_{i \in \Gamma_{0}} \mathrm{SC}_{\tau}\left(\lambda_{i}, r\right)=\underline{1} . \tag{4.1}
\end{equation*}
$$

THEOREM 4.2. For an FTS $(X, \tau), r \in I_{o}$, the following statements are equivalent:
(1) X is r-fuzzy S^{*}-closed;
(2) for every family $\left\{\lambda_{i} \in I^{X}: \lambda_{i}\right.$ is r-FSCO, $\left.i \in \Gamma\right\}$ such that $\bigvee_{i \in \Gamma} \lambda_{i}=1$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{0}} \lambda_{i}=\underline{1}$;
(3) every family of r-FSCO sets having the finite intersection property has nonnull intersection;
(4) for every family $\left\{\lambda_{i} \in I^{X}: \lambda_{i}\right.$ is $\left.r-F S C, i \in \Gamma\right\}$ such that $\bigwedge_{i \in \Gamma} \lambda_{i}=\underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that $\bigwedge_{i \in \Gamma_{0}} \mathrm{SI}_{\tau}\left(\lambda_{i}, r\right)=\underline{1}$.

Proof. (1) \Rightarrow (2). The proof is obvious.
(2) \Rightarrow (3). Let $\left\{\lambda_{i}\right\}_{i \in \Gamma}$ be a family of r-FSCO sets having the finite intersection property. If possible, let $\bigwedge_{i \in \Gamma} \lambda_{i}=\underline{0}$. Then $\bigvee_{i \in \Gamma}\left(\underline{1}-\lambda_{i}\right)=\underline{1}$, where each $\left(\underline{1}-\lambda_{i}\right)$ is r-FSCO. By (2), there exists a finite subset Γ_{\circ} of Γ such that $\bigvee_{i \in \Gamma_{o}} \underline{1}-\lambda_{i}=\underline{1}$, that is, $\bigwedge_{i \in \Gamma_{0}} \lambda_{i}=\underline{0}$, which is a contradiction.
(3) $\Rightarrow(1)$. Suppose that $\left\{\lambda_{i}: i \in \Gamma\right\}$ is a family of r-FSO sets of X with $\bigvee_{i \in \Gamma} \lambda_{i}=$ $\underline{1}$, and it has no finite subfamily $\left\{\lambda_{i_{1}}, \ldots, \lambda_{i_{n}}\right\}$ such that $\bigvee_{j=1}^{n} \operatorname{SC}_{\tau}\left(\lambda_{i_{j}}, r\right)=\underline{1}$. Then $\bigwedge_{i=1}^{n}\left(\underline{1}-\mathrm{SC}_{\tau}\left(\lambda_{i_{j}}, r\right)\right) \neq \underline{0}$. Thus, $\left\{\underline{1}-\mathrm{SC}_{\tau}\left(\lambda_{i}, r\right): i \in \Gamma\right\}$ is a family of $r-$ FSCO sets having the finite intersection property. By (3), $\Lambda_{i \in \Gamma}\left(\underline{1}-\mathrm{SC}_{\tau}\left(\lambda_{i}, r\right)\right) \neq$ $\underline{0}$, and hence, $\bigvee_{i \in \Gamma} \lambda_{i} \neq \underline{1}$, which is a contradiction.
(1) \Rightarrow (4). If $\left\{\lambda_{i}: i \in \Gamma\right\}$ is a family of nonnull r-FSC sets in $X, r \in I$ 。 with $\wedge_{i \in \Gamma} \lambda_{i}=\underline{0}$, then $\left\{\underline{1}-\lambda_{i}: i \in \Gamma\right\}$ is r-FSO sets in X with $\bigvee_{i \in \Gamma} \underline{1}-\lambda_{i}=\underline{1}$. By (1), there is a finite subset $\Gamma_{\circ} \subset \Gamma$ such that

$$
\begin{equation*}
\underline{1}=\bigvee_{i \in \Gamma_{0}} \mathrm{SC}_{\tau}\left(\underline{1}-\lambda_{i}, r\right)=\underline{1}-\bigwedge_{i \in \Gamma_{\circ}} \mathrm{SI}_{\tau}\left(\lambda_{i}, r\right), \tag{4.2}
\end{equation*}
$$

that is, $\wedge_{i \in \Gamma_{0}} \mathrm{SI}_{\tau}\left(\lambda_{i}, r\right)=\underline{0}$.
(4) $\Rightarrow(1)$. For any $\left\{\lambda_{i} \in I^{X}: \lambda_{i}\right.$ is r-FSO, $\left.i \in \Gamma\right\}$ such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1},\left\{\underline{1}-\lambda_{i}, i \in\right.$ $\Gamma\}$ is a family of r-FSC sets such that $\Lambda_{i \in \Gamma} \underline{1}-\lambda_{i}=\underline{0}$. We can assume, without loss of generality, that each $\underline{1}-\lambda_{i} \neq \underline{0}$. By (4), there is a finite subset $\Gamma_{\circ} \subset \Gamma$ such that $\bigwedge_{i \in \Gamma_{0}} \mathrm{SI}_{\tau}\left(\underline{1}-\lambda_{i}, r\right)=\underline{0}$, that is, $\bigvee_{i \in \Gamma_{\mathrm{o}}} \mathrm{SC}_{\tau}\left(\lambda_{i}, r\right)=\underline{1}$, which proves the r-fuzzy S^{*}-closedness of X.

ThEOREM 4.3. Let (X, τ) be an FTS and $r \in I_{0}$. If X is r-fuzzy semicompact, then X is r-fuzzy S^{*}-closed as well.

Proof. Since for every $\lambda \in I^{X}$ and $r \in I$ we have $\lambda \leq \operatorname{SC}_{T}(\lambda, r)$, this immediately follows from the definitions.

Theorem 4.4. Let (X, τ) be an FTS and $r \in I_{0}$. If X is r-fuzzy S^{*}-closed, then X is r-fuzzy S-closed as well.

Proof. Since for every $\lambda \in I^{X}$ and $r \in I$ 。 we have $\mathrm{SC}_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$, this immediately follows from the definitions.

That the converse is false is evident from the following counterexample.
Counterexample 4.5. Let \mathbb{N} denote the set of natural numbers with the fuzzy topology $\tau: I^{\mathbb{N}} \rightarrow I$ defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\underline{0}, \underline{1}, \tag{4.3}\\ \frac{1}{3}, & \text { if } \lambda=\mu, v, \\ \frac{1}{2}, & \text { if } \lambda=\mu \vee v, \\ 0, & \text { otherwise },\end{cases}
$$

where $\mu(1)=1, \mu(i)=0$ (for $i=2,3,4, \ldots$), and $v(2)=1, \mu(j)=0$ (for $j=$ $1,3,4, \ldots$). Let ρ_{i}^{1} and ρ_{i}^{2} (for $i=3,4,5, \ldots$) be the fuzzy sets in $I^{\mathbb{N}}$ given by

$$
\begin{align*}
& \rho_{i}^{1}(x)= \begin{cases}1, & \text { for } x=1 \text { and } i, \\
0, & \text { otherwise }\end{cases} \\
& \rho_{i}^{2}(x)= \begin{cases}1, & \text { for } x=2 \text { and } i \\
0, & \text { otherwise }\end{cases} \tag{4.4}
\end{align*}
$$

Then $U=\left\{\rho_{i}^{1}, \rho_{i}^{2}: i=3,4,5, \ldots\right\}$ are $1 / 3$-FSCO sets with $\bigvee_{\rho \in \mathscr{U}} \rho=\underline{1}$ having no finite subcover. Hence (\mathbb{N}, τ) is not $1 / 3$-fuzzy S^{*}-closed, but it is easily seen that $(\mathbb{N}, \boldsymbol{\tau})$ is $1 / 3$-fuzzy S-closed.

Theorem 4.6. For any fuzzy extremally disconnected $F T S(X, \tau)$ and $r \in I_{\circ}$, X is r-fuzzy S^{*}-closed if and only if X is r-fuzzy S-closed.

Proof

Necessity. It follows from the proof of Theorem 4.4.
SUFFiciency. We are going to prove that if ($X, \boldsymbol{\tau}$) is any fuzzy extremally disconnected FTS, then $C_{\tau}(\lambda, r)=\mathrm{SC}_{\tau}(\lambda, r)$ for every r-FSO set λ in (X, τ) and $r \in I_{0}$. Then our result follows from Definitions 3.1(2) and 4.1.

We always have $\mathrm{SC}_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$ for every $\lambda \in I^{X}$ and $r \in I_{0}$. So, we have to prove that with our hypothesis we have $C_{\tau}(\lambda, r) \leq \mathrm{SC}_{\tau}(\lambda, r)$ for every $\lambda \in I^{X}$ and $r \in I_{0}$.

If λ is r-FSO in (X, τ), then there exists $v \in I^{X}$ with $\tau(\nu) \geq r$ such that $v \leq \lambda \leq C_{\tau}(v, r)$. So, $C_{\tau}(\lambda, r)=C_{\tau}(v, r)$, where $\tau(v) \geq r$. Because (X, τ) is
fuzzy extremally disconnected, we have that

$$
\begin{equation*}
C_{\tau}(\lambda, r)=C_{\tau}(v, r)=I_{\tau}\left(C_{\tau}(v, r), r\right)=I_{\tau}\left(C_{\tau}(\lambda, r), r\right) . \tag{4.5}
\end{equation*}
$$

By Lemma 1.7, we have $C_{\tau}(\lambda, r)=I_{\tau}\left(C_{\tau}(\lambda, r), r\right) \leq \mathrm{SC}_{\tau}(\lambda, r)$.
Remark 4.7. From Theorems 4.3 and 4.4, we have that r-fuzzy semicompactness implies r-fuzzy S-closedness, $r \in I_{\circ}$.

Remark 4.8. Obviously, for $r \in I_{\circ}, r$-fuzzy S-closed space is r-fuzzy almost compact. Hence r-fuzzy compact space need not be r-fuzzy S^{*}-closed. That an r-fuzzy S^{*}-closed space is not necessarily r-fuzzy compact is shown by the following counterexample.

Counterexample 4.9. Let X be any nonempty set and let $\tau: I^{X} \rightarrow I$ be defined as

$$
\tau(\lambda)= \begin{cases}1, & \text { if } \lambda=\underline{0}, \underline{1}, \tag{4.6}\\ \frac{1}{2}, & \text { if } \lambda=\underline{\alpha}, \text { for } \frac{1}{2}<\alpha<1, \\ 0, & \text { otherwise. }\end{cases}
$$

Then (X, τ) is an FTS which is not $1 / 2$-fuzzy compact. Now for any $\underline{\alpha} \in I^{X}$ with $\tau(\underline{\alpha}) \geq 1 / 2, C_{\tau}(\underline{\alpha}, 1 / 2)=\underline{1}$ and hence $I_{\tau}\left(C_{\tau}(\underline{\alpha}, 1 / 2), 1 / 2\right)=\underline{1}$, for all $\alpha \in$ $(1 / 2,1]$. Since, by Lemma 1.7, $\mathrm{SC}_{\tau}(\underline{\alpha}, 1 / 2)=I_{\tau}\left(C_{\tau}(\underline{\alpha}, 1 / 2), 1 / 2\right)=\underline{1}$, we have for any r-FSO set $\lambda, \operatorname{SC}_{\tau}(\lambda, 1 / 2)=\underline{1}$. Hence X is r-fuzzy S^{*}-closed.

However, we have the following theorem.
Theorem 4.10. For $r \in I_{\circ}$, every r-fuzzy S^{*}-closed space is r-fuzzy nearly compact, $r \in I_{0}$.

Proof. If X is not r-fuzzy nearly compact, then there exists $\left\{\lambda_{i} \in I^{X}, i \in \Gamma\right\}$ with $\tau\left(\lambda_{i}\right) \geq r$ and $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$ such that for any finite subset $\Gamma_{\circ} \subset \Gamma$,

$$
\begin{equation*}
\bigvee_{i \in \Gamma_{0}} I_{\tau}\left(C_{\tau}\left(\lambda_{i}, r\right), r\right) \neq \underline{1}, \tag{4.7}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\bigvee_{i \in \Gamma_{0}} \mathrm{SC}_{\tau}\left(\lambda_{i}, r\right) \neq \underline{1} \tag{4.8}
\end{equation*}
$$

(by Lemma 1.7). Thus, X is not r-fuzzy S^{*}-closed.
In order to investigate for the condition under which r-fuzzy S^{*}-closed space is r-fuzzy compact, we set the following definition.

Definition 4.11. An FTS (X, τ) is called r-fuzzy S-regular if and only if for each r-FSO set $\mu \in I^{X}, r \in I_{\circ}$,

$$
\begin{equation*}
\mu=\bigvee\left\{\rho \in I^{X} \mid \rho \text { is } r-\mathrm{FSO}, \mathrm{SC}_{\tau}(\rho, r) \leq \mu\right\} \tag{4.9}
\end{equation*}
$$

An FTS (X, τ) is called fuzzy S-regular if and only if it is r-fuzzy S-regular for each $r \in I_{0}$.

Theorem 4.12. If an $F T S(X, \tau)$ is r-fuzzy S-regular and r-fuzzy S^{*}-closed, $r \in I_{\circ}$, then it is r-fuzzy compact.

Proof. Let $\left\{\lambda_{i} \in I^{X} \mid \tau\left(\lambda_{i}\right) \geq r, i \in \Gamma\right\}$ be a family such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$. Since (X, τ) is r-fuzzy S-regular, for each $\tau\left(\lambda_{i}\right) \geq r, \lambda_{i}$ is r-FSO,

$$
\begin{equation*}
\lambda_{i}=\bigvee_{i_{k} \in K_{i}}\left\{\lambda_{i_{k}} \mid \lambda_{i_{k}} \text { is } r \text {-FSO, } \mathrm{SC}_{\tau}\left(\lambda_{i_{k}}, r\right) \leq \lambda_{i}\right\} \tag{4.10}
\end{equation*}
$$

Hence $\bigvee_{i \in \Gamma}\left(\bigvee_{i_{k} \in K_{i}} \lambda_{i_{k}}\right)=\underline{1}$. Since (X, τ) is r-fuzzy S^{*}-closed, there exists a finite index $J \times K_{J}$ such that

$$
\begin{equation*}
\underline{1}=\bigvee_{j \in J}\left(\bigvee_{j_{k} \in K_{J}} \operatorname{SC}_{\tau}\left(\lambda_{j_{k}}, r\right)\right) \tag{4.11}
\end{equation*}
$$

For each $j \in J$, since

$$
\begin{equation*}
\bigvee_{j_{k} \in K_{J}} \mathrm{SC}_{\tau}\left(\lambda_{j_{k}}, r\right) \leq \lambda_{j} \tag{4.12}
\end{equation*}
$$

we have $\bigvee_{j \in J} \lambda_{j}=\underline{1}$. Hence (X, τ) is r-fuzzy compact.
It is evident that every FI function is FSC. That the converse is not always true is shown in [9]. Again, it is proved in [9] that $f: X \rightarrow Y$ is FI if and only if $f^{-1}(\mu)$ is r-FSC for every r-FSC set μ in Y and $r \in I_{o}$. Now we have the following theorem.

Theorem 4.13. The FI image of r-fuzzy S^{*}-closed space is r-fuzzy S^{*}-closed, $r \in I_{0}$.

Theorem 4.14. If $f:(X, \tau) \rightarrow(Y, \eta)$ is FI surjective and X is r-fuzzy S^{*} closed, then Y is r-fuzzy S-closed, $r \in I_{\circ}$.
Proof. If $\left\{\lambda_{i} \in I^{Y}: \lambda_{i}\right.$ is r-FSO, $\left.i \in \Gamma\right\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}\left(\lambda_{i}\right)=\underline{1}$. Since f is FI , then, for each $i \in \Gamma, f^{-1}\left(\lambda_{i}\right)$ is r-FSO set of X. By r-fuzzy S^{*}-closedness of X, there is a finite subset $\Gamma_{\circ} \subset \Gamma$ such that
$\bigvee_{i \in \Gamma_{0}} \mathrm{SC}_{\tau}\left(f^{-1}\left(\lambda_{i}, r\right)\right)=\underline{1}$. Now,

$$
\begin{align*}
\underline{1} & =f(\underline{1})=f\left(\bigvee_{i \in \Gamma_{0}} \operatorname{SC}_{\tau}\left(f^{-1}\left(\lambda_{i}\right), r\right)\right) \\
& \leq f\left(\bigvee_{i \in \Gamma_{0}} C_{\tau}\left(f^{-1}\left(\lambda_{i}\right), r\right)\right) \tag{4.13}\\
& \leq \bigvee_{i \in \Gamma_{o}} C_{\eta}\left(\lambda_{i}, r\right),
\end{align*}
$$

which implies that Y is r-fuzzy S-closed.
THEOREM 4.15. If $f:(X, \tau) \rightarrow(Y, \eta)$ is CI surjective and X is r-fuzzy nearly compact, then Y is r-fuzzy semicompact, $r \in I_{\circ}$.

Proof. The proof is similar to that of Theorem 4.14.
Definition 4.16. Let (X, τ) and (Y, η) be FTSs. A function $f:(X, \tau) \rightarrow$ (Y, η) is called semiweakly continuous if and only if

$$
\begin{equation*}
f^{-1}(\lambda) \leq \mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}(\lambda, r)\right), r\right), \tag{4.14}
\end{equation*}
$$

for each r-FSO set λ in $(Y, \eta), r \in I_{\circ}$.
Theorem 4.17. Let (X, τ) and (Y, η) be FTSs and let $f:(X, \tau) \rightarrow(Y, \eta)$ be a semiweakly continuous function. If X is r-fuzzy semicompact, then Y is r-fuzzy S^{*}-closed, $r \in I_{0}$.

Proof. If $\left\{\lambda_{i} \in I^{Y}: \lambda_{i}\right.$ is r-FSO, $\left.i \in \Gamma\right\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_{i}=\underline{1}$. From the semiweak continuity of f, we have $f^{-1}\left(\lambda_{i}\right) \leq \mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}, r\right)\right), r\right)$. So, $\mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}, r\right)\right), r\right)$ is a family of r-FSO sets in (X, τ) with

$$
\begin{equation*}
\bigvee_{i \in \Gamma} \mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}, r\right)\right), r\right)=\underline{1} . \tag{4.15}
\end{equation*}
$$

By the semicompactness of X, there exists a finite subset $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{0}} \mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}, r\right)\right), r\right)=\underline{1}$. So,

$$
\begin{align*}
\underline{1} & =f(\underline{1})=f\left(\bigvee_{i \in \mathrm{\Gamma}_{\circ}} \mathrm{SI}_{\tau}\left(f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}\right), r\right), r\right)\right) \\
& \leq \bigvee_{i \in \Gamma_{0}} f f^{-1}\left(\mathrm{SC}_{\eta}\left(\lambda_{i}\right), r\right) \tag{4.16}\\
& \leq \bigvee_{i \in \mathrm{\Gamma}_{\circ}} \mathrm{SC}_{\eta}\left(\lambda_{i}, r\right) .
\end{align*}
$$

Hence, $\bigvee_{i \in \Gamma_{0}} \mathrm{SC}_{\eta}\left(\lambda_{i}, r\right)=\underline{1}$ and Y is r-fuzzy S^{*}-closed.

Acknowledgment. The author is very grateful to the referees.

References

[1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
[2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), no. 2, 237-242.
[3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), no. 2, 207-212.
[4] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980), no. 2, 659-673.
[5] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), no. 1, 131-149.
[6] - Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of Fuzzy Sets, Handb. Fuzzy Sets Ser., vol. 3, Kluwer Academic Publishers, Massachusetts, 1999, pp. 123-272.
[7] T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies, Quaestiones Math. 20 (1997), no. 3, 423-429.
[8] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371-375.
[9] A. A. Ramadan, S. E. Abbas, and Y. C. Kim, Fuzzy irresolute mappings in smooth fuzzy topological spaces, J. Fuzzy Math. 9 (2001), no. 4, 865-877.
[10] A. P. Šostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo (2) Suppl. (1985), no. 11, 89-103.
[11] _- On the neighborhood structure of fuzzy topological spaces, Zb. Rad. (1990), no. 4, 7-14.
[12] , Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), no. 6, 662-701.
[13] D. Zhang, On the relationship between several basic categories in fuzzy topology, Quaestiones Math. 25 (2002), no. 3, 289-301.
S. E. Abbas: Department of Mathematics, Faculty of Science, South Valley University, Sohag 82524, Egypt

E-mail address: sabbas73@yahoo.com

