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The concept of fuzzy super irresolute function was considered and studied by
Šostak’s (1985). A comparison between this type and other existing ones is estab-
lished. Several characterizations, properties, and their effect on some fuzzy topo-
logical spaces are studied. Also, a new class of fuzzy topological spaces under the
terminology fuzzy S∗-closed spaces is introduced and investigated.
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1. Introduction and preliminaries. Šostak [10], introduced the fundamen-

tal concept of a fuzzy topological structure, as an extension of both crisp

topology and Chang fuzzy topology [1], in the sense that not only the objects

are fuzzified, but also the axiomatics. In [11, 12], Šostak gave some rules and

showed how such an extension can be realized. Chattopadhyay et al. [2, 3]

have redefined the same concept. In [8], Ramadan gave a similar definition,

namely “smooth topological space.” It has been developed in many directions

[4, 5, 6, 7, 13].

In the present note, some counterexamples and characterizations of fuzzy

super irresolute functions are examined. It is seen that fuzzy super irresolute

function implies each of fuzzy irresolute [9] and fuzzy continuity [10], but

not conversely. Also, properties preserved by fuzzy super irresolute functions

are examined. Finally, we define a fuzzy S∗-closed space in fuzzy topological

spaces in Šostak sense and characterize such a space from different angles.

Our aim is to compare the introduced type of fuzzy covering property with

the existing ones.

Throughout this note, let X be a nonempty set, I = [0,1], and I◦ = (0,1]. For

α ∈ I, α(x) = α for all x ∈ X. The following definition and results which will

be needed.

Definition 1.1 [10]. A function τ : IX → I is called a fuzzy topology on X
if it satisfies the following conditions:

(1) τ(0)= τ(1)= 1,

(2) τ(µ1∧µ2)≥ τ(µ1)∧τ(µ2) for any µ1,µ2 ∈ IX ,

(3) τ(
∨
i∈Γ µi)≥

∧
i∈Γ τ(µi) for any {µ}i∈Γ ⊂ IX .

The pair (X,τ) is called a fuzzy topological space (FTS).
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Remark 1.2. Let (X,τ) be an FTS. Then, for each α ∈ I, τα = {µ ∈ IX :

τ(µ)≥ r} is a Chang’s fuzzy topology on X.

Theorem 1.3 [3]. Let (X,τ) be an FTS. Then, for each r ∈ I◦ and λ∈ IX , an

operator Cτ : IX×I◦ → IX is defined as follows:

Cτ(λ,r)=
∧{

µ ∈ IX : λ≤ µ, τ(1−µ)≥ r}. (1.1)

For λ,µ ∈ IX and r ,s ∈ I◦, the operator Cτ satisfies the following conditions:

(1) Cτ(0,r )= 0, λ≤ Cτ(λ,r),
(2) Cτ(λ,r)∨Cτ(µ,r)= Cτ(λ∨µ,r),
(3) Cτ(λ,r)≤ Cτ(λ,s) if r ≤ s,
(4) Cτ(Cτ(λ,r),r)= Cτ(λ,r).

Theorem 1.4 [9]. Let (X,τ) be an FTS. Then, for each r ∈ I◦ and λ∈ IX , an

operator Iτ : IX×I◦ → IX is defined as follows:

Iτ(λ,r)=
∨{

µ ∈ IX : λ≥ µ, τ(µ)≥ r}. (1.2)

For λ,µ ∈ IX and r ,s ∈ I◦, the operator Iτ satisfies the following conditions:

(1) Iτ(1−λ,r)= 1−Cτ(λ,r),
(2) Iτ(1,r )= 1, λ≥ Iτ(λ,r),
(3) Iτ(λ,r)∧Iτ(µ,r)= Iτ(λ∧µ,r),
(4) Iτ(λ,r)≥ Iτ(λ,s) if r ≤ s,
(5) Iτ(Iτ(λ,r),r)= Iτ(λ,r).

Definition 1.5 [9]. Let (X,τ) be an FTS. Then, for each r ∈ I◦ and λ ∈ IX ,

the following statements hold:

(1) λ is called r -fuzzy semi-open (r -FSO) if there exists ν ∈ IX with τ(ν)≥ r
such that ν ≤ λ≤ Cτ(ν,r); equivalently, λ≤ Cτ(Iτ(λ,r),r);

(2) λ is called r -fuzzy semiclosed (r -FSC) if there exists ν ∈ IX with τ(1−
ν)≥r such that Iτ(ν,r)≤λ≤ν ; equivalently, Iτ(Cτ(λ,r),r)≤λ;

(3) λ is called r -fuzzy semiclopen (r -FSCO) if λ is r -FSO and r -FSC;

(4) λ is called r -fuzzy regular open (r -FRO) if λ= Iτ(Cτ(λ,r),r);
(5) the r -fuzzy semi-interior of λ, denoted SIτ(λ,r), is defined by SIτ(λ,r)=∨{ν ∈ IX : ν ≤ λ, ν is r -FSO};
(6) the r -fuzzy semiclosure ofλ, denoted SCτ(λ,r), is defined by SCτ(λ,r)=∧{ν ∈ IX : ν ≥ λ, ν is r -FSC}.

Theorem 1.6 [9]. Let (X,τ) be an FTS. For λ∈ IX and r ∈ I◦, the following

statements are valid:

(1) λ is r -FSO if and only if λ = SIτ(λ,r), and λ is r -FSC if and only if λ =
SCτ(λ,r);

(2) Iτ(λ,r)≤ SIτ(λ,r)≤ λ≤ SCτ(λ,r)≤ Cτ(λ,r);
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(3) SCτ(SCτ(λ,r),r)= SCτ(λ,r);
(4) Cτ(SCτ(λ,r),r)= SCτ(Cτ(λ,r),r)= Cτ(λ,r);
(5) SIτ(1−λ,r)= 1−SCτ(λ,r).

Lemma 1.7. For any fuzzy set λ in an FTS (X,τ) and r ∈ I◦, if τ(λ)≥ r , then

Iτ(Cτ(λ,r),r)= SCτ(λ,r).

Proof. Since SCτ(λ,r) is r -FSC, Iτ(Cτ(SCτ(λ,r),r),r) ≤ SCτ(λ,r) and

hence, by Theorem 1.6(4), Iτ(Cτ(λ,r),r) ≤ SCτ(λ,r). To prove the opposite

inclusion, since τ(λ) ≥ r , r ∈ I◦, we have λ ≤ Iτ(Cτ(λ,r),r) so that 1−λ ≥
1− Iτ(Cτ(λ,r),r) = Cτ(Iτ(1−λ,r),r). But Cτ(Iτ(1−λ,r),r) is r -FSO. Hence

Cτ(Iτ(1−λ,r),r)≤ SIτ(1−λ,r) and so SCτ(λ,r)≤ Iτ(Cτ(λ,r),r).
Definition 1.8. Let (X,τ) and (Y ,η) be FTSs and let f :X → Y be a function

which is called

(1) fuzzy continuous (FC) if and only if η(µ)≤ τ(f−1(µ)) for each µ ∈ IY
[10],

(2) fuzzy open if and only if τ(λ)≤ η(f(λ)) for each λ∈ IX [10],

(3) fuzzy semicontinuous (FSC) if and only if f−1(µ) is r -FSO set of X for

each η(µ)≥ r , r ∈ I◦ [9],

(4) fuzzy irresolute (FI) if and only if f−1(µ) is r -FSO set of X for each µ is

r -FSO set of Y , r ∈ I◦ [9].

2. Fuzzy super irresolute functions

Definition 2.1. Let (X,τ) and (Y ,η) be FTSs and let f :X → Y be a function

which is called

(1) fuzzy super irresolute (F-super I) if and only if τ(f−1(µ)) ≥ r for each

µ is r -FSO set of Y , r ∈ I◦,
(2) fuzzy completely continuous (FCC) if and only if f−1(µ) is r -FRO set of

X for each µ ∈ IY and η(µ)≥ r , r ∈ I◦,
(3) fuzzy completely irresolute (FCI) if and only if f−1(µ) is r -FRO set of X

for each r -FSO set µ ∈ IY and r ∈ I◦.
Remark 2.2. One can show the connection between these types and other

existing ones by the following diagram:

FCI F-super I FI

FCC FC FSC.

(2.1)

The converse of the previous implications need not be true in general as shown

in the following counterexample.
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Counterexample 2.3. Let µ1, µ2, and µ3 be fuzzy subsets of X = {a,b,c}
defined as follows:

µ1(a)= 0.9, µ1(b)= 0.0, µ1(c)= 0.1,

µ2(a)= 0.9, µ2(b)= 0.7, µ2(c)= 0.2,

µ3(a)= 0.9, µ3(b)= 0.3, µ3(c)= 0.2.
(2.2)

Then τ,η : IX → I, defined as

τ(λ)=




1, if λ= 0,1,
1
2
, if λ= µ1,

1
3
, if λ= µ2,

0, otherwise,

η(λ)=




1, if λ= 0,1,
1
3
, if λ= µ1,µ2,

1
2
, if λ= µ3,

0, otherwise,

(2.3)

are fuzzy topologies on X. Then,

(1) the identity function idX : (X,τ)→ (X,η) is FI but not F-super I because

µ3 is 1/3-FSO in (X,η) and τ(f−1(µ3))= τ(µ3)= 0;

(2) the identity function idX : (X,τ)→ (X,τ) is FC but not F-super I function.

Definition 2.4. An FTS (X,τ) is said to be fuzzy extremally disconnected

if and only if τ(Cτ(λ,r))≥ r for every τ(λ)≥ r for each λ∈ IX and r ∈ I◦.
Theorem 2.5. For a function f :X → Y , the following statements are true:

(1) if X is fuzzy extremally disconnected and f is FI, then f is F-super I;

(2) if Y is fuzzy extremally disconnected and f is FCI (resp., FC), then f is

F-super I;

(3) if both X and Y are fuzzy extremally disconnected, then the concepts

F-super I, FCI, FI, FCC, FSC, and FC are equivalent.

Proof. The proof is obvious.

Theorem 2.6. Let (X,τ1) and (Y ,τ2) be FTSs. Let f : X → Y be a function.

The following statements are equivalent:

(1) a map f is F-super I;

(2) for each r -FSC µ ∈ IY , τ(1−f−1(µ))≥ r , r ∈ I◦;
(3) for each λ∈ IX and r ∈ I◦, f(Cτ1(λ,r))≤ SCτ2(f (λ),r);
(4) for each µ ∈ IY and r ∈ I◦, Cτ1(f−1(µ),r)≤ f−1(SCτ2(µ,r));
(5) for each µ ∈ IY and r ∈ I◦, f−1(SIτ2(µ,r))≤ Iτ1(f−1(µ),r).

Proof. (1)�(2). It is easily proved from Theorem 1.4 and from f−1(1−µ)=
1−f−1(µ).

(2)⇒(3). Suppose there exist λ∈ IX and r ∈ I◦ such that

f
(
Cτ1(λ,r)

) �≤ SCτ2

(
f(λ),r

)
. (2.4)
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There exist y ∈ Y and t ∈ I◦ such that

f
(
Cτ1(λ,r)

)
(y) > t > SCτ2

(
f(λ),r

)
(y). (2.5)

If f−1({y})=∅, it is a contradiction because f(Cτ1(λ,r))(y)= 0.

If f−1({y})≠∅, there exists x ∈ f−1({y}) such that

f
(
Cτ1(λ,r)

)
(y)≥ Cτ1(λ,r)(x) > t > SCτ2

(
f(λ),r

)(
f(x)

)
. (2.6)

Since SCτ2(f (λ),r)(f (x)) < t, there exists r -FSC µ ∈ IY with f(λ) ≤ µ such

that

SCτ2

(
f(λ),r

)(
f(x)

)≤ µ(f(x))< t. (2.7)

Moreover, f(λ) ≤ µ implies λ ≤ f−1(µ). From (2), τ(1− f−1(µ)) ≥ r . Thus,

Cτ1(λ,r)(x)≤ f−1(µ)(x)= µ(f(x)) < t, which is a contradiction to (2.6).

(3)⇒(4). For all µ ∈ IY , r ∈ I◦, put λ= f−1(µ). From (3), we have

f
(
Cτ1

(
f−1(µ),r

))≤ SCτ2

(
f
(
f−1(µ)

)
,r
)≤ SCτ2(µ,r), (2.8)

which implies that

Cτ1

(
f−1(µ),r

)≤ f−1(f (Cτ1

(
f−1(µ),r

)))≤ f−1(SCτ2(µ,r)
)
. (2.9)

(4)⇒(5). It is easily proved from Theorem 1.4(1).

(5)⇒(1). Let µ be r -FSO set of Y . From Theorem 1.6(1), µ = SIτ2(µ,r). By (5),

f−1(µ)≤ Iτ1

(
f−1(µ),r

)
. (2.10)

On the other hand, by Theorem 1.4(2),

f−1(µ)≥ Iτ1

(
f−1(µ),r

)
. (2.11)

Thus, f−1(µ)= Iτ1(f−1(µ),r), that is, τ(f−1(µ))≥ r .

3. Properties preserved by F-super I functions

Definition 3.1. Let (X,τ) be an FTS and r ∈ I◦. Then

(1) X is called r -fuzzy compact (resp., r -fuzzy almost compact and r -fuzzy

nearly compact) if and only if for each family {λi ∈ IX : τ(λi)≥ r , i∈ Γ}
such that

∨
i∈Γ λi = 1, there exists a finite index set Γ◦ ⊂ Γ such that∨

i∈Γ◦ λi = 1 (resp.,
∨
i∈Γ◦ Cτ(λi,r)= 1 and

∨
i∈Γ◦ Iτ(Cτ(λi,r),r)= 1);

(2) X is called r -fuzzy semicompact (resp., r -fuzzy S-closed) if and only if

for each family {λi ∈ IX : λi ≤ Cτ(Iτ(λi,r),r), i∈ Γ} such that
∨
i∈Γ λi =

1, there exists a finite index set Γ◦ ⊂ Γ such that
∨
i∈Γ◦ λi = 1 (resp.,∨

i∈Γ◦ Cτ(λi,r)= 1).
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Theorem 3.2. Every surjective F-super I image of r -fuzzy compact space is

r -fuzzy semicompact, r ∈ I◦.
Proof. Let (X,τ) be r -fuzzy compact, r ∈ I◦, and let f : (X,τ) → (Y ,η)

be F-super I surjective function. If {λi ∈ IY : λi ≤ Cη(Iη(λi,r),r), i ∈ Γ} with∨
i∈Γ λi = 1, then

∨
i∈Γ f−1(λi)= 1. Since f is F-super I, τ(f−1(λi))≥ r . Since X

is r -fuzzy compact, there exists a finite subset Γ◦ ⊂ Γ with
∨
i∈Γ◦ f

−1(λi) = 1.

From the surjectivity of f , we deduce

1= f(1)= f

 ∨

i∈Γ◦
f−1(λi

)

=

∨

i∈Γ◦
ff−1(λi

)=
∨

i∈Γ◦
λi. (3.1)

So, Y is r -fuzzy semicompact.

Corollary 3.3. Every surjective F-super I image of r -fuzzy compact space

is r -fuzzy S-closed, r ∈ I◦.
Theorem 3.4. Every surjective F-super I image of r -fuzzy almost compact

space is r -fuzzy S-closed, r ∈ I◦.
Proof. The proof is similar to that of Theorem 3.2.

Corollary 3.5. r -fuzzy semicompactness and r -fuzzy S-closedness are pre-

served under an F-super I surjection function, r ∈ I◦.
Proof. The Corollary is a direct consequence of Theorems 3.2 and 3.4.

Theorem 3.6. Let f :X → Y be FSC and F-super I surjective function. If X is

r -fuzzy nearly compact, then Y is r -fuzzy S-closed, r ∈ I◦.
Proof. Let (X,τ) be r -fuzzy nearly compact, and let r ∈ I◦, f : (X,τ) →

(Y ,η) be FSC and F-super I surjective function. If {λi ∈ IY : λi ≤ Cη(Iη(λi,r),r),
i∈ Γ} with

∨
i∈Γ λi = 1, then

∨
i∈Γ f−1(λi)= 1. Since f is F-super I, τ(f−1(λi))≥

r . Since X is r -fuzzy nearly compact, there exists a finite subset Γ◦ ⊂ Γ with∨
i∈Γ◦ Iτ(Cτ(f

−1(λi),r),r)= 1. From the surjectivity of f , we deduce

1= f(1)= f

 ∨

i∈Γ◦
Iτ
(
Cτ
(
f−1(λi

)
,r
)
,r
)



=
∨

i∈Γ◦
f
(
Iτ
(
Cτ
(
f−1(λi

)
,r
)
,r
))

≤
∨

i∈Γ◦
f
(
f−1(Cη

(
λi,r

)))
(since f is FSC [9]).

(3.2)

Thus
∨
i∈Γ◦ Cη(λi,r)= 1. Hence Y is r -fuzzy S-closed.



FUZZY SUPER IRRESOLUTE FUNCTIONS 2695

4. Fuzzy S∗-closed spaces: characterizations and comparisons

Definition 4.1. Let (X,τ) be an FTS and r ∈ I◦. Then X is called r -fuzzy

S∗-closed if and only if for each family {λi ∈ IX : λi ≤ Cτ(Iτ(λi,r),r), i ∈ Γ}
such that

∨
i∈Γ λi = 1, there exists a finite index set Γ◦ ⊂ Γ such that

∨

i∈Γ◦
SCτ

(
λi,r

)= 1. (4.1)

Theorem 4.2. For an FTS (X,τ), r ∈ I◦, the following statements are equiv-

alent:

(1) X is r -fuzzy S∗-closed;

(2) for every family {λi ∈ IX : λi is r -FSCO, i∈ Γ} such that
∨
i∈Γ λi = 1, there

exists a finite index set Γ◦ ⊂ Γ such that
∨
i∈Γ◦ λi = 1;

(3) every family of r -FSCO sets having the finite intersection property has

nonnull intersection;

(4) for every family {λi ∈ IX : λi is r -FSC, i∈ Γ} such that
∧
i∈Γ λi = 1, there

exists a finite index set Γ◦ ⊂ Γ such that
∧
i∈Γ◦ SIτ(λi,r)= 1.

Proof. (1)⇒(2). The proof is obvious.

(2)⇒(3). Let {λi}i∈Γ be a family of r -FSCO sets having the finite intersection

property. If possible, let
∧
i∈Γ λi = 0. Then

∨
i∈Γ (1−λi)= 1, where each (1−λi)

is r -FSCO. By (2), there exists a finite subset Γ◦ of Γ such that
∨
i∈Γ◦ 1−λi = 1,

that is,
∧
i∈Γ◦ λi = 0, which is a contradiction.

(3)⇒(1). Suppose that {λi : i∈ Γ} is a family of r -FSO sets of X with
∨
i∈Γ λi =

1, and it has no finite subfamily {λi1 , . . . ,λin} such that
∨n
j=1 SCτ(λij ,r ) = 1.

Then
∧n
i=1(1−SCτ(λij ,r )) �= 0. Thus, {1−SCτ(λi,r) : i ∈ Γ} is a family of r -

FSCO sets having the finite intersection property. By (3),
∧
i∈Γ (1−SCτ(λi,r)) �=

0, and hence,
∨
i∈Γ λi �= 1, which is a contradiction.

(1)⇒(4). If {λi : i ∈ Γ} is a family of nonnull r -FSC sets in X, r ∈ I◦ with∧
i∈Γ λi = 0, then {1−λi : i ∈ Γ} is r -FSO sets in X with

∨
i∈Γ 1−λi = 1. By (1),

there is a finite subset Γ◦ ⊂ Γ such that

1=
∨

i∈Γ◦
SCτ

(
1−λi,r

)= 1−
∧

i∈Γ◦
SIτ
(
λi,r

)
, (4.2)

that is,
∧
i∈Γ◦ SIτ(λi,r)= 0.

(4)⇒(1). For any {λi ∈ IX : λi is r -FSO, i∈ Γ} such that
∨
i∈Γ λi = 1, {1−λi, i∈

Γ} is a family of r -FSC sets such that
∧
i∈Γ 1−λi = 0. We can assume, without

loss of generality, that each 1−λi �= 0. By (4), there is a finite subset Γ◦ ⊂ Γ
such that

∧
i∈Γ◦ SIτ(1−λi,r)= 0, that is,

∨
i∈Γ◦ SCτ(λi,r)= 1, which proves the

r -fuzzy S∗-closedness of X.

Theorem 4.3. Let (X,τ) be an FTS and r ∈ I◦. If X is r -fuzzy semicompact,

then X is r -fuzzy S∗-closed as well.
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Proof. Since for every λ∈ IX and r ∈ I◦ we have λ≤ SCτ(λ,r), this imme-

diately follows from the definitions.

Theorem 4.4. Let (X,τ) be an FTS and r ∈ I◦. If X is r -fuzzy S∗-closed, then

X is r -fuzzy S-closed as well.

Proof. Since for every λ∈ IX and r ∈ I◦ we have SCτ(λ,r)≤ Cτ(λ,r), this

immediately follows from the definitions.

That the converse is false is evident from the following counterexample.

Counterexample 4.5. Let N denote the set of natural numbers with the

fuzzy topology τ : IN→ I defined as

τ(λ)=




1, if λ= 0,1,
1
3
, if λ= µ,ν,

1
2
, if λ= µ∨ν,

0, otherwise,

(4.3)

where µ(1) = 1, µ(i) = 0 (for i = 2,3,4, . . .), and ν(2) = 1, µ(j) = 0 (for j =
1,3,4, . . .). Let ρ1

i and ρ2
i (for i= 3,4,5, . . .) be the fuzzy sets in IN given by

ρ1
i (x)=




1, for x = 1 and i,

0, otherwise,

ρ2
i (x)=




1, for x = 2 and i,

0, otherwise.

(4.4)

Then �= {ρ1
i , ρ

2
i : i= 3,4,5, . . .} are 1/3-FSCO sets with

∨
ρ∈�ρ = 1 having no

finite subcover. Hence (N,τ) is not 1/3-fuzzy S∗-closed, but it is easily seen

that (N,τ) is 1/3-fuzzy S-closed.

Theorem 4.6. For any fuzzy extremally disconnected FTS (X,τ) and r ∈ I◦,
X is r -fuzzy S∗-closed if and only if X is r -fuzzy S-closed.

Proof

Necessity. It follows from the proof of Theorem 4.4.

Sufficiency. We are going to prove that if (X,τ) is any fuzzy extremally

disconnected FTS, then Cτ(λ,r)= SCτ(λ,r) for every r -FSO set λ in (X,τ) and

r ∈ I◦. Then our result follows from Definitions 3.1(2) and 4.1.

We always have SCτ(λ,r)≤ Cτ(λ,r) for every λ∈ IX and r ∈ I◦. So, we have

to prove that with our hypothesis we have Cτ(λ,r)≤ SCτ(λ,r) for every λ∈ IX
and r ∈ I◦.

If λ is r -FSO in (X,τ), then there exists ν ∈ IX with τ(ν) ≥ r such that

ν ≤ λ ≤ Cτ(ν,r). So, Cτ(λ,r) = Cτ(ν,r), where τ(ν) ≥ r . Because (X,τ) is
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fuzzy extremally disconnected, we have that

Cτ(λ,r)= Cτ(ν,r)= Iτ
(
Cτ(ν,r),r

)= Iτ
(
Cτ(λ,r),r

)
. (4.5)

By Lemma 1.7, we have Cτ(λ,r)= Iτ(Cτ(λ,r),r)≤ SCτ(λ,r).

Remark 4.7. From Theorems 4.3 and 4.4, we have that r -fuzzy semicom-

pactness implies r -fuzzy S-closedness, r ∈ I◦.
Remark 4.8. Obviously, for r ∈ I◦, r -fuzzy S-closed space is r -fuzzy almost

compact. Hence r -fuzzy compact space need not be r -fuzzy S∗-closed. That

an r -fuzzy S∗-closed space is not necessarily r -fuzzy compact is shown by the

following counterexample.

Counterexample 4.9. Let X be any nonempty set and let τ : IX → I be

defined as

τ(λ)=




1, if λ= 0,1,
1
2
, if λ=α, for

1
2
<α< 1,

0, otherwise.

(4.6)

Then (X,τ) is an FTS which is not 1/2-fuzzy compact. Now for any α ∈ IX
with τ(α)≥ 1/2, Cτ(α,1/2)= 1 and hence Iτ(Cτ(α,1/2),1/2)= 1, for all α ∈
(1/2,1]. Since, by Lemma 1.7, SCτ(α,1/2) = Iτ(Cτ(α,1/2),1/2) = 1, we have

for any r -FSO set λ, SCτ(λ,1/2)= 1. Hence X is r -fuzzy S∗-closed.

However, we have the following theorem.

Theorem 4.10. For r ∈ I◦, every r -fuzzy S∗-closed space is r -fuzzy nearly

compact, r ∈ I◦.
Proof. IfX is not r -fuzzy nearly compact, then there exists {λi ∈ IX, i∈ Γ}

with τ(λi)≥ r and
∨
i∈Γ λi = 1 such that for any finite subset Γ◦ ⊂ Γ ,

∨

i∈Γ◦
Iτ
(
Cτ
(
λi,r

)
,r
) �= 1, (4.7)

that is,

∨

i∈Γ◦
SCτ

(
λi,r

) �= 1 (4.8)

(by Lemma 1.7). Thus, X is not r -fuzzy S∗-closed.

In order to investigate for the condition under which r -fuzzy S∗-closed

space is r -fuzzy compact, we set the following definition.
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Definition 4.11. An FTS (X,τ) is called r -fuzzy S-regular if and only if

for each r -FSO set µ ∈ IX , r ∈ I◦,

µ =
∨{

ρ ∈ IX | ρ is r -FSO, SCτ(ρ,r)≤ µ
}
. (4.9)

An FTS (X,τ) is called fuzzy S-regular if and only if it is r -fuzzy S-regular for

each r ∈ I◦.
Theorem 4.12. If an FTS (X,τ) is r -fuzzy S-regular and r -fuzzy S∗-closed,

r ∈ I◦, then it is r -fuzzy compact.

Proof. Let {λi ∈ IX | τ(λi) ≥ r , i ∈ Γ} be a family such that
∨
i∈Γ λi = 1.

Since (X,τ) is r -fuzzy S-regular, for each τ(λi)≥ r , λi is r -FSO,

λi =
∨

ik∈Ki

{
λik | λik is r -FSO, SCτ

(
λik ,r

)≤ λi
}
. (4.10)

Hence
∨
i∈Γ (

∨
ik∈Ki λik) = 1. Since (X,τ) is r -fuzzy S∗-closed, there exists a

finite index J×KJ such that

1=
∨

j∈J


 ∨

jk∈KJ
SCτ

(
λjk ,r

)

. (4.11)

For each j ∈ J, since

∨

jk∈KJ
SCτ

(
λjk ,r

)≤ λj, (4.12)

we have
∨
j∈J λj = 1. Hence (X,τ) is r -fuzzy compact.

It is evident that every FI function is FSC. That the converse is not always

true is shown in [9]. Again, it is proved in [9] that f : X → Y is FI if and only

if f−1(µ) is r -FSC for every r -FSC set µ in Y and r ∈ I◦. Now we have the

following theorem.

Theorem 4.13. The FI image of r -fuzzy S∗-closed space is r -fuzzy S∗-closed,

r ∈ I◦.
Theorem 4.14. If f : (X,τ) → (Y ,η) is FI surjective and X is r -fuzzy S∗-

closed, then Y is r -fuzzy S-closed, r ∈ I◦.
Proof. If {λi ∈ IY : λi is r -FSO, i ∈ Γ} is a family such that

∨
i∈Γ λi = 1,

then
∨
i∈Γ f−1(λi) = 1. Since f is FI, then, for each i ∈ Γ , f−1(λi) is r -FSO set

of X. By r -fuzzy S∗-closedness of X, there is a finite subset Γ◦ ⊂ Γ such that
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∨
i∈Γ◦ SCτ(f−1(λi,r))= 1. Now,

1= f(1)= f

 ∨

i∈Γ◦
SCτ

(
f−1(λi

)
,r
)



≤ f

 ∨

i∈Γ◦
Cτ
(
f−1(λi

)
,r
)



≤
∨

i∈Γ◦
Cη
(
λi,r

)
,

(4.13)

which implies that Y is r -fuzzy S-closed.

Theorem 4.15. If f : (X,τ)→ (Y ,η) is CI surjective and X is r -fuzzy nearly

compact, then Y is r -fuzzy semicompact, r ∈ I◦.
Proof. The proof is similar to that of Theorem 4.14.

Definition 4.16. Let (X,τ) and (Y ,η) be FTSs. A function f : (X,τ) →
(Y ,η) is called semiweakly continuous if and only if

f−1(λ)≤ SIτ
(
f−1(SCη(λ,r)

)
,r
)
, (4.14)

for each r -FSO set λ in (Y ,η), r ∈ I◦.
Theorem 4.17. Let (X,τ) and (Y ,η) be FTSs and let f : (X,τ)→ (Y ,η) be a

semiweakly continuous function. If X is r -fuzzy semicompact, then Y is r -fuzzy

S∗-closed, r ∈ I◦.
Proof. If {λi ∈ IY : λi is r -FSO, i ∈ Γ} is a family such that

∨
i∈Γ λi = 1.

From the semiweak continuity of f , we have f−1(λi)≤ SIτ(f−1(SCη(λi,r)),r).
So, SIτ(f−1(SCη(λi,r)),r) is a family of r -FSO sets in (X,τ) with

∨

i∈Γ
SIτ
(
f−1(SCη

(
λi,r

))
,r
)= 1. (4.15)

By the semicompactness of X, there exists a finite subset Γ◦ ⊂ Γ such that∨
i∈Γ◦ SIτ(f−1(SCη(λi,r)),r)= 1. So,

1= f(1)= f

 ∨

i∈Γ◦
SIτ
(
f−1(SCη

(
λi
)
,r
)
,r
)



≤
∨

i∈Γ◦
ff−1(SCη

(
λi
)
,r
)

≤
∨

i∈Γ◦
SCη

(
λi,r

)
.

(4.16)

Hence,
∨
i∈Γ◦ SCη(λi,r)= 1 and Y is r -fuzzy S∗-closed.
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