FUZZY SUPER IRRESOLUTE FUNCTIONS

S. E. ABBAS

Received 26 December 2002

The concept of fuzzy super irresolute function was considered and studied by Šostak's (1985). A comparison between this type and other existing ones is established. Several characterizations, properties, and their effect on some fuzzy topological spaces are studied. Also, a new class of fuzzy topological spaces under the terminology fuzzy S^* -closed spaces is introduced and investigated.

2000 Mathematics Subject Classification: 54A40.

1. Introduction and preliminaries. Šostak [10], introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and Chang fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [11, 12], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [2, 3] have redefined the same concept. In [8], Ramadan gave a similar definition, namely "smooth topological space." It has been developed in many directions [4, 5, 6, 7, 13].

In the present note, some counterexamples and characterizations of fuzzy super irresolute functions are examined. It is seen that fuzzy super irresolute function implies each of fuzzy irresolute [9] and fuzzy continuity [10], but not conversely. Also, properties preserved by fuzzy super irresolute functions are examined. Finally, we define a fuzzy S^* -closed space in fuzzy topological spaces in Šostak sense and characterize such a space from different angles. Our aim is to compare the introduced type of fuzzy covering property with the existing ones.

Throughout this note, let *X* be a nonempty set, I = [0, 1], and $I_{\circ} = (0, 1]$. For $\alpha \in I$, $\underline{\alpha}(x) = \alpha$ for all $x \in X$. The following definition and results which will be needed.

DEFINITION 1.1 [10]. A function $\tau : I^X \to I$ is called a *fuzzy topology* on *X* if it satisfies the following conditions:

- (1) $\tau(\underline{0}) = \tau(\underline{1}) = 1$,
- (2) $\tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$,
- (3) $\tau(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}\tau(\mu_i)$ for any $\{\mu\}_{i\in\Gamma} \subset I^X$.

The pair (X, τ) is called a *fuzzy topological space* (FTS).

S. E. ABBAS

REMARK 1.2. Let (X, τ) be an FTS. Then, for each $\alpha \in I$, $\tau_{\alpha} = \{\mu \in I^X : \tau(\mu) \ge r\}$ is a Chang's fuzzy topology on *X*.

THEOREM 1.3 [3]. Let (X, τ) be an FTS. Then, for each $r \in I_{\circ}$ and $\lambda \in I^{X}$, an operator $C_{\tau} : I^{X} \times I_{\circ} \to I^{X}$ is defined as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \lambda \le \mu, \ \tau(\underline{1} - \mu) \ge r \}.$$
(1.1)

For $\lambda, \mu \in I^X$ and $r, s \in I_\circ$, the operator C_τ satisfies the following conditions:

- (1) $C_{\tau}(\underline{0}, r) = \underline{0}, \lambda \leq C_{\tau}(\lambda, r),$
- (2) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r),$
- (3) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$,
- (4) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$

THEOREM 1.4 [9]. Let (X, τ) be an FTS. Then, for each $r \in I_{\circ}$ and $\lambda \in I^X$, an operator $I_{\tau} : I^X \times I_{\circ} \to I^X$ is defined as follows:

$$I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \lambda \ge \mu, \ \tau(\mu) \ge r \}.$$
(1.2)

For $\lambda, \mu \in I^X$ and $r, s \in I_\circ$, the operator I_τ satisfies the following conditions:

- (1) $I_{\tau}(\underline{1}-\lambda, r) = \underline{1} C_{\tau}(\lambda, r),$
- (2) $I_{\tau}(\underline{1}, r) = \underline{1}, \lambda \ge I_{\tau}(\lambda, r),$
- (3) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r) = I_{\tau}(\lambda \wedge \mu, r),$
- (4) $I_{\tau}(\lambda, r) \ge I_{\tau}(\lambda, s)$ if $r \le s$,
- (5) $I_{\tau}(I_{\tau}(\lambda, \gamma), \gamma) = I_{\tau}(\lambda, \gamma).$

DEFINITION 1.5 [9]. Let (X, τ) be an FTS. Then, for each $r \in I_{\circ}$ and $\lambda \in I^X$, the following statements hold:

- (1) λ is called *r*-fuzzy semi-open (*r*-FSO) if there exists $v \in I^X$ with $\tau(v) \ge r$ such that $v \le \lambda \le C_{\tau}(v, r)$; equivalently, $\lambda \le C_{\tau}(I_{\tau}(\lambda, r), r)$;
- (2) λ is called *r*-fuzzy semiclosed (*r*-FSC) if there exists $\nu \in I^X$ with $\tau(\underline{1} \nu) \ge r$ such that $I_{\tau}(\nu, r) \le \lambda \le \nu$; equivalently, $I_{\tau}(C_{\tau}(\lambda, r), r) \le \lambda$;
- (3) λ is called *r*-fuzzy semiclopen (*r*-FSCO) if λ is *r*-FSO and *r*-FSC;
- (4) λ is called *r*-fuzzy regular open (*r*-FRO) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$;
- (5) the *r*-fuzzy semi-interior of λ , denoted SI_{τ} (λ , r), is defined by SI_{τ} (λ , r) = $\bigvee \{ \nu \in I^X : \nu \leq \lambda, \nu \text{ is } r\text{-FSO} \};$
- (6) the *r*-fuzzy semiclosure of λ , denoted SC_{τ} (λ , r), is defined by SC_{τ} (λ , r) = $\wedge \{ \nu \in I^X : \nu \ge \lambda, \nu \text{ is } r\text{-FSC} \}.$

THEOREM 1.6 [9]. Let (X, τ) be an FTS. For $\lambda \in I^X$ and $r \in I_\circ$, the following statements are valid:

- (1) λ is *r*-FSO if and only if $\lambda = SI_{\tau}(\lambda, r)$, and λ is *r*-FSC if and only if $\lambda = SC_{\tau}(\lambda, r)$;
- (2) $I_{\tau}(\lambda, r) \leq \mathrm{SI}_{\tau}(\lambda, r) \leq \lambda \leq \mathrm{SC}_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r);$

- (3) $SC_{\tau}(SC_{\tau}(\lambda, r), r) = SC_{\tau}(\lambda, r);$
- (4) $C_{\tau}(SC_{\tau}(\lambda,r),r) = SC_{\tau}(C_{\tau}(\lambda,r),r) = C_{\tau}(\lambda,r);$
- (5) $SI_{\tau}(\underline{1} \lambda, \gamma) = \underline{1} SC_{\tau}(\lambda, \gamma).$

LEMMA 1.7. For any fuzzy set λ in an FTS (X, τ) and $r \in I_{\circ}$, if $\tau(\lambda) \ge r$, then $I_{\tau}(C_{\tau}(\lambda, r), r) = SC_{\tau}(\lambda, r)$.

PROOF. Since $SC_{\tau}(\lambda, r)$ is r-FSC, $I_{\tau}(C_{\tau}(SC_{\tau}(\lambda, r), r), r) \leq SC_{\tau}(\lambda, r)$ and hence, by Theorem 1.6(4), $I_{\tau}(C_{\tau}(\lambda, r), r) \leq SC_{\tau}(\lambda, r)$. To prove the opposite inclusion, since $\tau(\lambda) \geq r$, $r \in I_{\circ}$, we have $\lambda \leq I_{\tau}(C_{\tau}(\lambda, r), r)$ so that $\underline{1} - \lambda \geq \underline{1} - I_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r)$. But $C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r)$ is r-FSO. Hence $C_{\tau}(I_{\tau}(\underline{1} - \lambda, r), r) \leq SI_{\tau}(\underline{1} - \lambda, r)$ and so $SC_{\tau}(\lambda, r) \leq I_{\tau}(C_{\tau}(\lambda, r), r)$.

DEFINITION 1.8. Let (X, τ) and (Y, η) be FTSs and let $f : X \to Y$ be a function which is called

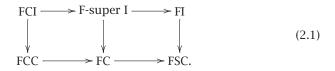
- (1) fuzzy continuous (FC) if and only if $\eta(\mu) \le \tau(f^{-1}(\mu))$ for each $\mu \in I^Y$ [10],
- (2) fuzzy open if and only if $\tau(\lambda) \leq \eta(f(\lambda))$ for each $\lambda \in I^X$ [10],
- (3) fuzzy semicontinuous (FSC) if and only if $f^{-1}(\mu)$ is r-FSO set of X for each $\eta(\mu) \ge r$, $r \in I_{\circ}$ [9],
- (4) fuzzy irresolute (FI) if and only if $f^{-1}(\mu)$ is *r*-FSO set of *X* for each μ is *r*-FSO set of *Y*, $r \in I_{\circ}$ [9].

2. Fuzzy super irresolute functions

DEFINITION 2.1. Let (X, τ) and (Y, η) be FTSs and let $f : X \to Y$ be a function which is called

- (1) fuzzy super irresolute (F-super I) if and only if $\tau(f^{-1}(\mu)) \ge r$ for each μ is r-FSO set of $Y, r \in I_{\circ}$,
- (2) fuzzy completely continuous (FCC) if and only if $f^{-1}(\mu)$ is *r*-FRO set of *X* for each $\mu \in I^Y$ and $\eta(\mu) \ge r, r \in I_\circ$,
- (3) fuzzy completely irresolute (FCI) if and only if $f^{-1}(\mu)$ is r-FRO set of X for each r-FSO set $\mu \in I^Y$ and $r \in I_\circ$.

REMARK 2.2. One can show the connection between these types and other existing ones by the following diagram:



The converse of the previous implications need not be true in general as shown in the following counterexample. **COUNTEREXAMPLE 2.3.** Let μ_1 , μ_2 , and μ_3 be fuzzy subsets of $X = \{a, b, c\}$ defined as follows:

$$\mu_1(a) = 0.9, \qquad \mu_1(b) = 0.0, \qquad \mu_1(c) = 0.1,$$

$$\mu_2(a) = 0.9, \qquad \mu_2(b) = 0.7, \qquad \mu_2(c) = 0.2,$$

$$\mu_3(a) = 0.9, \qquad \mu_3(b) = 0.3, \qquad \mu_3(c) = 0.2.$$
(2.2)

Then τ , η : $I^X \rightarrow I$, defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu_1, \\ \frac{1}{3}, & \text{if } \lambda = \mu_2, \\ 0, & \text{otherwise,} \end{cases} \qquad \eta(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{3}, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{3}, & \text{if } \lambda = \mu_1, \mu_2, \\ \frac{1}{2}, & \text{if } \lambda = \mu_3, \\ 0, & \text{otherwise,} \end{cases}$$
(2.3)

are fuzzy topologies on X. Then,

- (1) the identity function $id_X : (X, \tau) \to (X, \eta)$ is FI but not F-super I because μ_3 is 1/3-FSO in (X, η) and $\tau(f^{-1}(\mu_3)) = \tau(\mu_3) = 0$;
- (2) the identity function $id_X : (X, \tau) \to (X, \tau)$ is FC but not F-super I function.

DEFINITION 2.4. An FTS (X, τ) is said to be fuzzy extremally disconnected if and only if $\tau(C_{\tau}(\lambda, r)) \ge r$ for every $\tau(\lambda) \ge r$ for each $\lambda \in I^X$ and $r \in I_{\circ}$.

THEOREM 2.5. For a function $f : X \rightarrow Y$, the following statements are true:

- (1) if X is fuzzy extremally disconnected and f is FI, then f is F-super I;
- (2) *if Y is fuzzy extremally disconnected and f is FCI (resp., FC), then f is F-super I;*
- (3) *if both X and Y are fuzzy extremally disconnected, then the concepts F-super I, FCI, FI, FCC, FSC, and FC are equivalent.*

PROOF. The proof is obvious.

THEOREM 2.6. Let (X, τ_1) and (Y, τ_2) be FTSs. Let $f : X \to Y$ be a function. *The following statements are equivalent:*

- (1) a map f is F-super I;
- (2) for each r-FSC $\mu \in I^{Y}$, $\tau(\underline{1} f^{-1}(\mu)) \ge r, r \in I_{\circ}$;
- (3) for each $\lambda \in I^X$ and $r \in I_\circ$, $f(C_{\tau_1}(\lambda, r)) \leq SC_{\tau_2}(f(\lambda), r)$;
- (4) for each $\mu \in I^{Y}$ and $r \in I_{\circ}$, $C_{\tau_{1}}(f^{-1}(\mu), r) \leq f^{-1}(SC_{\tau_{2}}(\mu, r));$
- (5) for each $\mu \in I^Y$ and $r \in I_{\circ}$, $f^{-1}(SI_{\tau_2}(\mu, r)) \le I_{\tau_1}(f^{-1}(\mu), r)$.

PROOF. (1) \Leftrightarrow (2). It is easily proved from Theorem 1.4 and from $f^{-1}(\underline{1}-\mu) = \underline{1} - f^{-1}(\mu)$.

(2) \Rightarrow (3). Suppose there exist $\lambda \in I^X$ and $r \in I_\circ$ such that

$$f(C_{\tau_1}(\lambda, r)) \nleq \mathrm{SC}_{\tau_2}(f(\lambda), r).$$
(2.4)

There exist $y \in Y$ and $t \in I_{\circ}$ such that

$$f(C_{\tau_1}(\lambda, r))(y) > t > \mathrm{SC}_{\tau_2}(f(\lambda), r)(y).$$
(2.5)

If $f^{-1}(\{y\}) = \emptyset$, it is a contradiction because $f(C_{\tau_1}(\lambda, r))(y) = 0$. If $f^{-1}(\{y\}) \neq \emptyset$, there exists $x \in f^{-1}(\{y\})$ such that

$$f(\mathcal{C}_{\tau_1}(\lambda, r))(y) \ge \mathcal{C}_{\tau_1}(\lambda, r)(x) > t > \mathrm{SC}_{\tau_2}(f(\lambda), r)(f(x)).$$
(2.6)

Since $SC_{\tau_2}(f(\lambda), r)(f(x)) < t$, there exists r-FSC $\mu \in I^Y$ with $f(\lambda) \le \mu$ such that

$$SC_{\tau_2}(f(\lambda), r)(f(x)) \le \mu(f(x)) < t.$$
(2.7)

Moreover, $f(\lambda) \le \mu$ implies $\lambda \le f^{-1}(\mu)$. From (2), $\tau(\underline{1} - f^{-1}(\mu)) \ge r$. Thus, $C_{\tau_1}(\lambda, r)(x) \le f^{-1}(\mu)(x) = \mu(f(x)) < t$, which is a contradiction to (2.6).

(3) \Rightarrow (4). For all $\mu \in I^Y$, $r \in I_\circ$, put $\lambda = f^{-1}(\mu)$. From (3), we have

$$f(C_{\tau_1}(f^{-1}(\mu), r)) \le SC_{\tau_2}(f(f^{-1}(\mu)), r) \le SC_{\tau_2}(\mu, r),$$
(2.8)

which implies that

$$C_{\tau_1}(f^{-1}(\mu), r) \le f^{-1}(f(C_{\tau_1}(f^{-1}(\mu), r))) \le f^{-1}(SC_{\tau_2}(\mu, r)).$$
(2.9)

 $(4) \Rightarrow (5)$. It is easily proved from Theorem 1.4(1).

(5)⇒(1). Let μ be r-FSO set of Y. From Theorem 1.6(1), $\mu = SI_{\tau_2}(\mu, r)$. By (5),

$$f^{-1}(\mu) \le I_{\tau_1}(f^{-1}(\mu), r).$$
(2.10)

On the other hand, by Theorem 1.4(2),

$$f^{-1}(\mu) \ge I_{\tau_1}(f^{-1}(\mu), \gamma).$$
 (2.11)

Thus, $f^{-1}(\mu) = I_{\tau_1}(f^{-1}(\mu), r)$, that is, $\tau(f^{-1}(\mu)) \ge r$.

3. Properties preserved by F-super I functions

DEFINITION 3.1. Let (X, τ) be an FTS and $\tau \in I_{\circ}$. Then

- (1) *X* is called *r*-fuzzy compact (resp., *r*-fuzzy almost compact and *r*-fuzzy nearly compact) if and only if for each family $\{\lambda_i \in I^X : \tau(\lambda_i) \ge r, i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_\circ \subset \Gamma$ such that $\bigvee_{i \in \Gamma_\circ} \lambda_i = \underline{1}$ (resp., $\bigvee_{i \in \Gamma_\circ} C_\tau(\lambda_i, r) = \underline{1}$ and $\bigvee_{i \in \Gamma_\circ} I_\tau(C_\tau(\lambda_i, r), r) = \underline{1}$);
- (2) *X* is called *r*-fuzzy semicompact (resp., *r*-fuzzy *S*-closed) if and only if for each family $\{\lambda_i \in I^X : \lambda_i \leq C_{\tau}(I_{\tau}(\lambda_i, r), r), i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{\circ}} \lambda_i = \underline{1}$ (resp., $\bigvee_{i \in \Gamma_{\circ}} C_{\tau}(\lambda_i, r) = \underline{1}$).

2693

THEOREM 3.2. Every surjective F-super I image of r-fuzzy compact space is r-fuzzy semicompact, $r \in I_{\circ}$.

PROOF. Let (X, τ) be *r*-fuzzy compact, $r \in I_{\circ}$, and let $f : (X, \tau) \to (Y, \eta)$ be F-super I surjective function. If $\{\lambda_i \in I^Y : \lambda_i \leq C_{\eta}(I_{\eta}(\lambda_i, r), r), i \in \Gamma\}$ with $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since *f* is F-super I, $\tau(f^{-1}(\lambda_i)) \geq r$. Since *X* is *r*-fuzzy compact, there exists a finite subset $\Gamma_{\circ} \subset \Gamma$ with $\bigvee_{i \in \Gamma_{\circ}} f^{-1}(\lambda_i) = \underline{1}$. From the surjectivity of *f*, we deduce

$$\underline{1} = f(\underline{1}) = f\left(\bigvee_{i\in\Gamma_{\circ}} f^{-1}(\lambda_{i})\right) = \bigvee_{i\in\Gamma_{\circ}} ff^{-1}(\lambda_{i}) = \bigvee_{i\in\Gamma_{\circ}} \lambda_{i}.$$
(3.1)

So, *Y* is *r*-fuzzy semicompact.

COROLLARY 3.3. Every surjective F-super I image of r-fuzzy compact space is r-fuzzy S-closed, $r \in I_{\circ}$.

THEOREM 3.4. Every surjective F-super I image of r-fuzzy almost compact space is r-fuzzy S-closed, $r \in I_{\circ}$.

PROOF. The proof is similar to that of Theorem 3.2.

COROLLARY 3.5. *r*-fuzzy semicompactness and *r*-fuzzy *S*-closedness are preserved under an *F*-super *I* surjection function, $r \in I_{\circ}$.

PROOF. The Corollary is a direct consequence of Theorems 3.2 and 3.4. \Box

THEOREM 3.6. Let $f : X \to Y$ be FSC and F-super I surjective function. If X is *r*-fuzzy nearly compact, then Y is *r*-fuzzy S-closed, $r \in I_{\circ}$.

PROOF. Let (X, τ) be *r*-fuzzy nearly compact, and let $r \in I_{\circ}$, $f : (X, \tau) \rightarrow (Y, \eta)$ be FSC and F-super I surjective function. If $\{\lambda_i \in I^Y : \lambda_i \leq C_{\eta}(I_{\eta}(\lambda_i, r), r), i \in \Gamma\}$ with $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since *f* is F-super I, $\tau(f^{-1}(\lambda_i)) \geq r$. Since *X* is *r*-fuzzy nearly compact, there exists a finite subset $\Gamma_{\circ} \subset \Gamma$ with $\bigvee_{i \in \Gamma_{\circ}} I_{\tau}(C_{\tau}(f^{-1}(\lambda_i), r), r) = \underline{1}$. From the surjectivity of *f*, we deduce

$$\underline{1} = f(\underline{1}) = f\left(\bigvee_{i\in\Gamma_{\circ}} I_{\tau}(C_{\tau}(f^{-1}(\lambda_{i}), r), r)\right)$$
$$= \bigvee_{i\in\Gamma_{\circ}} f\left(I_{\tau}(C_{\tau}(f^{-1}(\lambda_{i}), r), r)\right)$$
$$\leq \bigvee_{i\in\Gamma_{\circ}} f\left(f^{-1}(C_{\eta}(\lambda_{i}, r))\right) \quad (\text{since } f \text{ is FSC [9]}).$$
(3.2)

Thus $\bigvee_{i \in \Gamma_{\circ}} C_{\eta}(\lambda_i, r) = \underline{1}$. Hence *Y* is *r*-fuzzy *S*-closed.

4. Fuzzy S*-closed spaces: characterizations and comparisons

DEFINITION 4.1. Let (X, τ) be an FTS and $r \in I_{\circ}$. Then X is called r-fuzzy S^* -closed if and only if for each family $\{\lambda_i \in I^X : \lambda_i \leq C_{\tau}(I_{\tau}(\lambda_i, r), r), i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_{\circ} \subset \Gamma$ such that

$$\bigvee_{i\in\Gamma_{\circ}} SC_{\tau}(\lambda_{i}, r) = \underline{1}.$$
(4.1)

THEOREM 4.2. For an FTS (X, τ) , $r \in I_{\circ}$, the following statements are equivalent:

- (1) X is r-fuzzy S^* -closed;
- (2) for every family $\{\lambda_i \in I^X : \lambda_i \text{ is } r\text{-}FSCO, i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, there exists a finite index set $\Gamma_\circ \subset \Gamma$ such that $\bigvee_{i \in \Gamma_\circ} \lambda_i = \underline{1}$;
- (3) every family of *r*-FSCO sets having the finite intersection property has nonnull intersection;
- (4) for every family {λ_i ∈ I^X : λ_i is r-FSC, i ∈ Γ} such that Λ_{i∈Γ} λ_i = 1, there exists a finite index set Γ_° ⊂ Γ such that Λ_{i∈Γ} SI_τ(λ_i, r) = 1.

PROOF. $(1)\Rightarrow(2)$. The proof is obvious.

 $(2)\Rightarrow(3)$. Let $\{\lambda_i\}_{i\in\Gamma}$ be a family of *r*-FSCO sets having the finite intersection property. If possible, let $\bigwedge_{i\in\Gamma}\lambda_i = \underline{0}$. Then $\bigvee_{i\in\Gamma}(\underline{1}-\lambda_i) = \underline{1}$, where each $(\underline{1}-\lambda_i)$ is *r*-FSCO. By (2), there exists a finite subset Γ_\circ of Γ such that $\bigvee_{i\in\Gamma_\circ}\underline{1}-\lambda_i = \underline{1}$, that is, $\bigwedge_{i\in\Gamma_\circ}\lambda_i = \underline{0}$, which is a contradiction.

 $(3)\Rightarrow(1)$. Suppose that $\{\lambda_i: i \in \Gamma\}$ is a family of r-FSO sets of X with $\bigvee_{i\in\Gamma}\lambda_i = \underline{1}$, and it has no finite subfamily $\{\lambda_{i_1}, \dots, \lambda_{i_n}\}$ such that $\bigvee_{j=1}^n \operatorname{SC}_{\tau}(\lambda_{i_j}, r) = \underline{1}$. Then $\bigwedge_{i=1}^n (\underline{1} - \operatorname{SC}_{\tau}(\lambda_{i_j}, r)) \neq \underline{0}$. Thus, $\{\underline{1} - \operatorname{SC}_{\tau}(\lambda_i, r) : i \in \Gamma\}$ is a family of r-FSCO sets having the finite intersection property. By $(3), \bigwedge_{i\in\Gamma} (\underline{1} - \operatorname{SC}_{\tau}(\lambda_i, r)) \neq \underline{0}$, and hence, $\bigvee_{i\in\Gamma}\lambda_i \neq \underline{1}$, which is a contradiction.

 $(1)\Rightarrow(4)$. If $\{\lambda_i : i \in \Gamma\}$ is a family of nonnull *r*-FSC sets in *X*, $r \in I_\circ$ with $\bigwedge_{i\in\Gamma}\lambda_i = \underline{0}$, then $\{\underline{1} - \lambda_i : i \in \Gamma\}$ is *r*-FSO sets in *X* with $\bigvee_{i\in\Gamma}\underline{1} - \lambda_i = \underline{1}$. By (1), there is a finite subset $\Gamma_\circ \subset \Gamma$ such that

$$\underline{1} = \bigvee_{i \in \Gamma_{\circ}} \operatorname{SC}_{\tau} \left(\underline{1} - \lambda_{i}, r \right) = \underline{1} - \bigwedge_{i \in \Gamma_{\circ}} \operatorname{SI}_{\tau} \left(\lambda_{i}, r \right), \tag{4.2}$$

that is, $\bigwedge_{i \in \Gamma_{\circ}} SI_{\tau}(\lambda_i, r) = \underline{0}$.

 $(4)\Rightarrow(1)$. For any $\{\lambda_i \in I^X : \lambda_i \text{ is } r\text{-FSO}, i \in \Gamma\}$ such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}, \{\underline{1} - \lambda_i, i \in \Gamma\}$ is a family of *r*-FSC sets such that $\bigwedge_{i \in \Gamma} \underline{1} - \lambda_i = \underline{0}$. We can assume, without loss of generality, that each $\underline{1} - \lambda_i \neq \underline{0}$. By (4), there is a finite subset $\Gamma_\circ \subset \Gamma$ such that $\bigwedge_{i \in \Gamma_\circ} SI_\tau(\underline{1} - \lambda_i, r) = \underline{0}$, that is, $\bigvee_{i \in \Gamma_\circ} SC_\tau(\lambda_i, r) = \underline{1}$, which proves the *r*-fuzzy *S**-closedness of *X*.

THEOREM 4.3. Let (X, τ) be an FTS and $r \in I_{\circ}$. If X is r-fuzzy semicompact, then X is r-fuzzy S*-closed as well.

PROOF. Since for every $\lambda \in I^X$ and $r \in I_\circ$ we have $\lambda \leq SC_\tau(\lambda, r)$, this immediately follows from the definitions.

THEOREM 4.4. Let (X, τ) be an FTS and $r \in I_{\circ}$. If X is r-fuzzy S*-closed, then X is r-fuzzy S-closed as well.

PROOF. Since for every $\lambda \in I^X$ and $r \in I_\circ$ we have $SC_\tau(\lambda, r) \leq C_\tau(\lambda, r)$, this immediately follows from the definitions.

That the converse is false is evident from the following counterexample.

COUNTEREXAMPLE 4.5. Let \mathbb{N} denote the set of natural numbers with the fuzzy topology $\tau : I^{\mathbb{N}} \to I$ defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{3}, & \text{if } \lambda = \mu, \nu, \\ \frac{1}{2}, & \text{if } \lambda = \mu \lor \nu, \\ 0, & \text{otherwise,} \end{cases}$$
(4.3)

where $\mu(1) = 1$, $\mu(i) = 0$ (for i = 2, 3, 4, ...), and $\nu(2) = 1$, $\mu(j) = 0$ (for j = 1, 3, 4, ...). Let ρ_i^1 and ρ_i^2 (for i = 3, 4, 5, ...) be the fuzzy sets in $I^{\mathbb{N}}$ given by

$$\rho_i^1(x) = \begin{cases} 1, & \text{for } x = 1 \text{ and } i, \\ 0, & \text{otherwise,} \end{cases}$$

$$\rho_i^2(x) = \begin{cases} 1, & \text{for } x = 2 \text{ and } i, \\ 0, & \text{otherwise.} \end{cases}$$
(4.4)

Then $\mathfrak{U} = \{\rho_i^1, \rho_i^2 : i = 3, 4, 5, ...\}$ are 1/3-FSCO sets with $\bigvee_{\rho \in \mathfrak{U}} \rho = \underline{1}$ having no finite subcover. Hence (\mathbb{N}, τ) is not 1/3-fuzzy *S**-closed, but it is easily seen that (\mathbb{N}, τ) is 1/3-fuzzy *S*-closed.

THEOREM 4.6. For any fuzzy extremally disconnected FTS (X, τ) and $r \in I_{\circ}$, *X* is *r*-fuzzy *S*^{*}-closed if and only if *X* is *r*-fuzzy *S*-closed.

Proof

NECESSITY. It follows from the proof of Theorem 4.4.

SUFFICIENCY. We are going to prove that if (X, τ) is any fuzzy extremally disconnected FTS, then $C_{\tau}(\lambda, r) = SC_{\tau}(\lambda, r)$ for every *r*-FSO set λ in (X, τ) and $r \in I_{\circ}$. Then our result follows from Definitions 3.1(2) and 4.1.

We always have $SC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$ for every $\lambda \in I^X$ and $r \in I_{\circ}$. So, we have to prove that with our hypothesis we have $C_{\tau}(\lambda, r) \leq SC_{\tau}(\lambda, r)$ for every $\lambda \in I^X$ and $r \in I_{\circ}$.

If λ is *r*-FSO in (X, τ) , then there exists $v \in I^X$ with $\tau(v) \ge r$ such that $v \le \lambda \le C_\tau(v, r)$. So, $C_\tau(\lambda, r) = C_\tau(v, r)$, where $\tau(v) \ge r$. Because (X, τ) is

fuzzy extremally disconnected, we have that

$$C_{\tau}(\lambda, r) = C_{\tau}(\nu, r) = I_{\tau}(C_{\tau}(\nu, r), r) = I_{\tau}(C_{\tau}(\lambda, r), r).$$

$$(4.5)$$

By Lemma 1.7, we have $C_{\tau}(\lambda, r) = I_{\tau}(C_{\tau}(\lambda, r), r) \leq SC_{\tau}(\lambda, r)$.

REMARK 4.7. From Theorems 4.3 and 4.4, we have that *r*-fuzzy semicompactness implies *r*-fuzzy *S*-closedness, $r \in I_{\circ}$.

REMARK 4.8. Obviously, for $r \in I_{\circ}$, *r*-fuzzy *S*-closed space is *r*-fuzzy almost compact. Hence *r*-fuzzy compact space need not be *r*-fuzzy *S**-closed. That an *r*-fuzzy *S**-closed space is not necessarily *r*-fuzzy compact is shown by the following counterexample.

COUNTEREXAMPLE 4.9. Let *X* be any nonempty set and let $\tau : I^X \to I$ be defined as

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0}, \underline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \underline{\alpha}, \text{ for } \frac{1}{2} < \alpha < 1, \\ 0, & \text{otherwise.} \end{cases}$$
(4.6)

Then (X, τ) is an FTS which is not 1/2-fuzzy compact. Now for any $\underline{\alpha} \in I^X$ with $\tau(\underline{\alpha}) \ge 1/2$, $C_{\tau}(\underline{\alpha}, 1/2) = \underline{1}$ and hence $I_{\tau}(C_{\tau}(\underline{\alpha}, 1/2), 1/2) = \underline{1}$, for all $\alpha \in (1/2, 1]$. Since, by Lemma 1.7, $SC_{\tau}(\underline{\alpha}, 1/2) = I_{\tau}(C_{\tau}(\underline{\alpha}, 1/2), 1/2) = \underline{1}$, we have for any *r*-FSO set λ , $SC_{\tau}(\lambda, 1/2) = \underline{1}$. Hence *X* is *r*-fuzzy *S**-closed.

However, we have the following theorem.

THEOREM 4.10. For $r \in I_{\circ}$, every r-fuzzy S^* -closed space is r-fuzzy nearly compact, $r \in I_{\circ}$.

PROOF. If *X* is not *r*-fuzzy nearly compact, then there exists $\{\lambda_i \in I^X, i \in \Gamma\}$ with $\tau(\lambda_i) \ge r$ and $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$ such that for any finite subset $\Gamma_\circ \subset \Gamma$,

$$\bigvee_{i\in\Gamma_{\circ}} I_{\tau}\left(C_{\tau}(\lambda_{i},r),r\right) \neq \underline{1},\tag{4.7}$$

that is,

$$\bigvee_{i\in\Gamma_{\circ}} \mathrm{SC}_{\tau}\left(\lambda_{i}, r\right) \neq \underline{1}$$

$$(4.8)$$

(by Lemma 1.7). Thus, *X* is not r-fuzzy S^* -closed.

In order to investigate for the condition under which r-fuzzy S^* -closed space is r-fuzzy compact, we set the following definition.

DEFINITION 4.11. An FTS (X, τ) is called *r*-fuzzy *S*-regular if and only if for each *r*-FSO set $\mu \in I^X$, $r \in I_\circ$,

$$\mu = \bigvee \{ \rho \in I^X \mid \rho \text{ is } r\text{-FSO, } SC_\tau(\rho, r) \le \mu \}.$$
(4.9)

An FTS (X, τ) is called fuzzy *S*-regular if and only if it is r-fuzzy *S*-regular for each $r \in I_{\circ}$.

THEOREM 4.12. If an FTS (X, τ) is r-fuzzy S-regular and r-fuzzy S^* -closed, $r \in I_\circ$, then it is r-fuzzy compact.

PROOF. Let $\{\lambda_i \in I^X \mid \tau(\lambda_i) \ge r, i \in \Gamma\}$ be a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$. Since (X, τ) is *r*-fuzzy *S*-regular, for each $\tau(\lambda_i) \ge r, \lambda_i$ is *r*-FSO,

$$\lambda_{i} = \bigvee_{i_{k} \in K_{i}} \{\lambda_{i_{k}} \mid \lambda_{i_{k}} \text{ is } r\text{-FSO, } SC_{\tau}(\lambda_{i_{k}}, r) \le \lambda_{i}\}.$$
(4.10)

Hence $\bigvee_{i \in \Gamma} (\bigvee_{i_k \in K_i} \lambda_{i_k}) = \underline{1}$. Since (X, τ) is r-fuzzy S^* -closed, there exists a finite index $J \times K_J$ such that

$$\underline{1} = \bigvee_{j \in J} \left(\bigvee_{j_k \in K_J} \operatorname{SC}_{\tau} \left(\lambda_{j_k}, r \right) \right).$$
(4.11)

For each $j \in J$, since

$$\bigvee_{j_k \in K_J} \operatorname{SC}_{\tau} \left(\lambda_{j_k}, r \right) \le \lambda_j, \tag{4.12}$$

we have $\bigvee_{i \in J} \lambda_i = \underline{1}$. Hence (X, τ) is *r*-fuzzy compact.

It is evident that every FI function is FSC. That the converse is not always true is shown in [9]. Again, it is proved in [9] that $f : X \to Y$ is FI if and only if $f^{-1}(\mu)$ is *r*-FSC for every *r*-FSC set μ in *Y* and $r \in I_{\circ}$. Now we have the following theorem.

THEOREM 4.13. The FI image of r-fuzzy S^* -closed space is r-fuzzy S^* -closed, $r \in I_\circ$.

THEOREM 4.14. If $f : (X, \tau) \rightarrow (Y, \eta)$ is FI surjective and X is r-fuzzy S^{*}closed, then Y is r-fuzzy S-closed, $r \in I_{\circ}$.

PROOF. If $\{\lambda_i \in I^Y : \lambda_i \text{ is } r\text{-FSO}, i \in \Gamma\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$, then $\bigvee_{i \in \Gamma} f^{-1}(\lambda_i) = \underline{1}$. Since f is FI, then, for each $i \in \Gamma$, $f^{-1}(\lambda_i)$ is r-FSO set of X. By r-fuzzy S^* -closedness of X, there is a finite subset $\Gamma_{\circ} \subset \Gamma$ such that

2698

 $\bigvee_{i\in\Gamma_{\circ}} SC_{\tau}(f^{-1}(\lambda_i, r)) = \underline{1}.$ Now,

$$\underline{1} = f(\underline{1}) = f\left(\bigvee_{i\in\Gamma_{\circ}} SC_{\tau} (f^{-1}(\lambda_{i}), r)\right)$$

$$\leq f\left(\bigvee_{i\in\Gamma_{\circ}} C_{\tau} (f^{-1}(\lambda_{i}), r)\right)$$

$$\leq \bigvee_{i\in\Gamma_{\circ}} C_{\eta}(\lambda_{i}, r),$$
(4.13)

which implies that *Y* is r-fuzzy *S*-closed.

THEOREM 4.15. If $f : (X, \tau) \to (Y, \eta)$ is CI surjective and X is r-fuzzy nearly compact, then Y is r-fuzzy semicompact, $r \in I_{\circ}$.

PROOF. The proof is similar to that of Theorem 4.14. \Box

DEFINITION 4.16. Let (X, τ) and (Y, η) be FTSs. A function $f : (X, \tau) \rightarrow (Y, \eta)$ is called semiweakly continuous if and only if

$$f^{-1}(\lambda) \le \operatorname{SI}_{\tau} \left(f^{-1} \left(\operatorname{SC}_{\eta}(\lambda, r) \right), r \right), \tag{4.14}$$

for each *r*-FSO set λ in $(Y, \eta), r \in I_{\circ}$.

THEOREM 4.17. Let (X, τ) and (Y, η) be FTSs and let $f : (X, \tau) \to (Y, \eta)$ be a semiweakly continuous function. If X is r-fuzzy semicompact, then Y is r-fuzzy S^* -closed, $r \in I_\circ$.

PROOF. If $\{\lambda_i \in I^Y : \lambda_i \text{ is } r\text{-FSO}, i \in \Gamma\}$ is a family such that $\bigvee_{i \in \Gamma} \lambda_i = \underline{1}$. From the semiweak continuity of f, we have $f^{-1}(\lambda_i) \leq \operatorname{SI}_{\tau}(f^{-1}(\operatorname{SC}_{\eta}(\lambda_i, r)), r)$. So, $\operatorname{SI}_{\tau}(f^{-1}(\operatorname{SC}_{\eta}(\lambda_i, r)), r)$ is a family of r-FSO sets in (X, τ) with

$$\bigvee_{i\in\Gamma} \operatorname{SL}_{\tau} \left(f^{-1} \left(\operatorname{SC}_{\eta} \left(\lambda_{i}, r \right) \right), r \right) = \underline{1}.$$
(4.15)

By the semicompactness of *X*, there exists a finite subset $\Gamma_{\circ} \subset \Gamma$ such that $\bigvee_{i \in \Gamma_{\circ}} SI_{\tau}(f^{-1}(SC_{\eta}(\lambda_{i}, r)), r) = \underline{1}$. So,

$$\underline{1} = f(\underline{1}) = f\left(\bigvee_{i\in\Gamma_{\circ}} \operatorname{SI}_{\tau} (f^{-1}(\operatorname{SC}_{\eta}(\lambda_{i}), r), r)\right)$$

$$\leq \bigvee_{i\in\Gamma_{\circ}} ff^{-1}(\operatorname{SC}_{\eta}(\lambda_{i}), r) \qquad (4.16)$$

$$\leq \bigvee_{i\in\Gamma_{\circ}} \operatorname{SC}_{\eta}(\lambda_{i}, r).$$

Hence, $\bigvee_{i \in \Gamma_{\circ}} SC_{\eta}(\lambda_i, r) = \underline{1}$ and *Y* is *r*-fuzzy *S**-closed.

ACKNOWLEDGMENT. The author is very grateful to the referees.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems 49 (1992), no. 2, 237–242.
- [3] K. C. Chattopadhyay and S. K. Samanta, *Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness*, Fuzzy Sets and Systems 54 (1993), no. 2, 207-212.
- [4] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980), no. 2, 659–673.
- [5] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), no. 1, 131–149.
- [6] _____, Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of Fuzzy Sets, Handb. Fuzzy Sets Ser., vol. 3, Kluwer Academic Publishers, Massachusetts, 1999, pp. 123–272.
- T. Kubiak and A. P. Šostak, *Lower set-valued fuzzy topologies*, Quaestiones Math. 20 (1997), no. 3, 423-429.
- [8] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371-375.
- [9] A. A. Ramadan, S. E. Abbas, and Y. C. Kim, Fuzzy irresolute mappings in smooth fuzzy topological spaces, J. Fuzzy Math. 9 (2001), no. 4, 865-877.
- [10] A. P. Šostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo (2) Suppl. (1985), no. 11, 89–103.
- [11] _____, On the neighborhood structure of fuzzy topological spaces, Zb. Rad. (1990), no. 4, 7-14.
- [12] _____, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), no. 6, 662–701.
- [13] D. Zhang, On the relationship between several basic categories in fuzzy topology, Quaestiones Math. **25** (2002), no. 3, 289–301.

S. E. Abbas: Department of Mathematics, Faculty of Science, South Valley University, Sohag 82524, Egypt

E-mail address: sabbas73@yahoo.com