T-FUZZY MULTIPLY POSITIVE IMPLICATIVE BCC-IDEALS OF BCC-ALGEBRAS

JIANMING ZHAN and ZHISONG TAN

Received 22 October 2002

The concept of fuzzy multiply positive BCC-ideals of BCC-algebras is introduced, and then some related results are obtained. Moreover, we introduce the concept of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras and investigate T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras, examining its properties. Using a t-norm T, the direct product and T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras, examining its properties. Using a t-norm T, the direct product and T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed and their properties are investigated.

2000 Mathematics Subject Classification: 06F35, 03G25, 03B52.

1. Introduction and preliminaries. A BCK-algebra is an important class of logical algebras introduced by K. Iséki in 1966. After that, Iséki posed an interesting problem (solved by Wroński [8]) of whether the class of BCK-algebra is a variety. In connection with this problem, Komori [6] introduced a notion of BCC-algebras and Dudek [5] redefined it by using a dual form of the ordinary definition in the sense of Komori. In 1965, Zadeh introduced the notion of fuzzy sets [9]. At present, this concept has been applied to many mathematical branches such as group, functional analysis, probality theory and topology, and so on. In 1991, Ougen applied this concept to BCK-algebras [7], and also many fuzzy structures in BCC-algebras are considered. In this paper, the concept of fuzzy multiply positive implicative BCC-ideals of BCC-algebras is introduced, and some related results are obtained. Moreover, we introduce the concept of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras, investigating its properties. Using a *t*-norm *T*, the direct product and *T*-product of *T*-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed, and their properties are investigated.

By a BCC-algebra, we mean a nonempty set G with a constant 0 and a binary operation * satisfying the following conditions:

- (I) ((x * y) * (z * y)) * (x * z) = 0,
- (II) x * x = 0,
- (III) 0 * x = 0,
- (IV) x * 0 = x,
- (V) x * y = 0 and y * x = 0 imply x = y for all $x, y, z \in G$.

On any BCC-algebra, one can define the partial ordering " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCK-algebra is a BCC-algebra, but there are not BCC-algebra which are not BCK-algebras (cf. [5]). Note that a BCC-algebra *X* is a BCK-algebra if and only if it satisfies (x * y) * z = (x * z) * y for all $x, y, z \in X$.

A nonempty subset *A* of a BCC-algebra *G* is called a BCC-ideal if (i) $0 \in A$ and (ii) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A$. For any elements *x* and *y* of a BCC-algebra, $x * y^n$ denotes $(\cdots ((x * y) * y) * \cdots) * y$ in which *y* occurs *n* times. A nonempty subset *A* of a BCC-algebra *G* is called an *n*-fold BCC-ideal of *G* if (i) $0 \in A$ and (ii) for every $x, y, z \in G$, there exists a natural number *n* such that $x * z^n \in A$ whenever $(x * y) * z^n \in A$ and $y \in A$.

We now review some fuzzy logical concepts. A fuzzy set in set *G* is a function $\mu: G \to [0,1]$. For a fuzzy set μ in *G* and $\alpha \in [0,1]$, define $\mu_{\alpha} = \{x \in G \mid \mu(x) \ge \alpha\}$ which is called a level set of *G*. A fuzzy set μ in a BCC-algebra *G* is called a fuzzy BCC-ideal of *G* if (i) $\mu(0) \ge \mu(x)$ and (ii) $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\}$ for all $x, y, z \in G$. A fuzzy set μ in a BCC-algebra *G* is called an *n*-fold fuzzy BCC-ideal of *G* if (i) $\mu(0) \ge \mu(x)$ for all $x \in G$ and (ii) for every $x, y, z \in G$, there exists a natural number *n* such that $\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\}$.

2. Fuzzy multiply positive implicative BCC-ideals

DEFINITION 2.1. A nonempty subset *A* of a BCC-algebra *G* is called a multiply positive implicative BCC-ideal of *G* if

- (i) $0 \in A$,
- (ii) for every $x, y, z \in X$, there exists a natural number k = k(x, y, z) such that $x * z^k \in A$ whenever $(x * y) * z^n \in A$ and $y * z^m \in A$ for any natural numbers *m* and *n*.

EXAMPLE 2.2. (i) Consider a BCC-algebra $G = \{0, 1, 2, 3, 4, 5\}$ with the Cayley table as follows:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Then *G* is a proper BCC-algebra since $(4 * 5) * 2 \neq (4 * 2) * 5$. It is routine to check that *A* = {0,1,2,3,4} is a multiply positive implicative BCC-ideal of *G*.

(ii) Consider a BCC-algebra $G = \{0, a, b, c, d\}$ with the Cayley table as follows:

*	0	а	b	С	d
0	0	0	0	0	0
а	а	0	0	0	0
b	b	b	0	0	0
С	С	b	а	0	а
d	d	d	d	d	0

Then *G* is a proper BCC-algebra since $(c * a) * d \neq (c * d) * a$. It is routine to check that $A = \{0, a, b, c\}$ is a multiply positive implicative BCC-ideal of *G*. (iii) Consider a BCC-algebra $G = \{0, a, b, c, 1\}$ with the Cayley table as follows:

*	0	а	b	С	1
0	0	0	0	0	0
а	а	0	0	0	0
b	b	b	0	0	0
С	С	b	а	0	а
1	1	С	С	С	0

Then *G* is a proper BCC-algebra since $(1 * b) * a \neq (1 * a) * b$. Let $A = \{0, b, c\}$, then *A* is not a multiply positive implicative BCC-ideals of *G* because $(1 * c) * 0^n = c * 0^m = c \in A$ while $1 * 0^k = 1 \notin A$.

DEFINITION 2.3. A fuzzy set μ in a BCC-algebra *G* is called a fuzzy multiply positive implicative BCC-ideal of *G* if

- (i) $\mu(0) \ge \mu(x)$ for all $x \in G$,
- (ii) for any $n, m \in \mathbb{N}$, there exists a natural number k = k(x, y, z) such that $\mu(x * z^k) \ge \min\{\mu((x * y) * z^n), \mu(y * z^m)\}$ for all $x, y, z \in G$.

EXAMPLE 2.4. (i) Consider a BCC-algebra $G = \{0, 1, 2, 3, 4\}$ with the Cayley table as follows:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

It is a proper BCC-algebra since $(3 * 1) * 2 \neq (3 * 2) * 1$. Define a fuzzy set μ in *G* by $\mu(4) = 0.3$ and $\mu(x) = 0.8$ for all $x \neq 4$. Then μ is a fuzzy multiply positive implicative BCC-ideal of *G*.

(ii) Let *G* be a proper BCC-algebra as (i) and let μ be a fuzzy set in *G* defined by

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x \in \{0, 2, 3\}, \\ \alpha_2 & \text{otherwise,} \end{cases}$$
(2.1)

where $\alpha_1 > \alpha_2$ in [0,1]. It is easy to check that μ is not a fuzzy multiply positive implicative BCC-ideal of *G* because $\mu(4 * 0^k) = \mu(4) = \alpha_2 \le \min\{\mu((4 * 3) * 0^n), \mu(3 * 0^m)\}$ for any positive integer numbers *m*, *n*, and *k*.

THEOREM 2.5. Let μ be a fuzzy set in a BCC-algebra G, then μ is a fuzzy multiply positive implicative BCC-ideal of G if and only if the nonempty level set $\mu_{\alpha} = \{x \in G \mid \mu(x) \ge \alpha\}$ of μ is a multiply positive implicative BCC-ideal of G.

PROOF. Suppose that μ is a fuzzy multiply positive implicative BCC-ideal of *G* and $\mu_{\alpha} \neq \emptyset$ for any $\alpha \in [0,1]$. Then there exists $x \in \mu_{\alpha}$ and so $\mu(x) \ge \alpha$. It follows that $\mu(0) \ge \mu(x) \ge \alpha$ so that $0 \in \mu_{\alpha}$. Let $x, y, z \in G$ be such that $(x * y) * z^n \in \mu_{\alpha}$ and $y * z^m \in \mu_{\alpha}$. By Definition 2.3, there exists a natural number k such that $\mu(x * z^k) \ge \min\{\mu((x * y) * z^n), \mu(y * z^m)\} \ge \min\{\alpha, \alpha\} =$ α and that $x * z^k \in \mu_{\alpha}$. Hence μ_{α} is a multiply positive implicative BCC-ideal of *G*. Conversely, assume that μ_{α} is a multiply positive implicative BCC-ideal of *G* for every $\alpha \in [0,1]$. For any $x \in G$, let $\mu(x) = \alpha$. Then $x \in \mu_{\alpha}$. Since $0 \in \mu_{\alpha}$, it follows that $\mu(0) \ge \alpha = \mu(x)$ so that $\mu(0) \ge \mu(x)$ for all $x \in G$. Now suppose that there exist $x_0, y_0, z_0 \in G$ such that $\mu(x_0 * z_0^k) < \min\{\mu((x_0 * y_0) * k_0) < \mu(x_0 * y_0) \}$ z_0 , $\mu(y_0 * z_0^m)$ }. Let $\lambda_0 = (\mu(x_0 * z_0^k) + \min\{\mu((x_0 * y_0) * z_0), \mu(y_0 * z_0^m)\})/2$, then $\lambda_0 > \mu(x_0 * z_0^k)$ and $0 \le \lambda_0 < \min\{\mu((x_0 * y_0) * z_k^n), \mu(y_0 * z_0^m)\} \le 1$, so we have $\mu((x_0 * y_0) * z_0^n) \ge \lambda_0$ and $\mu(y_0 * z_0^m) \ge \lambda_0$, then $(x_0 * y_0) * z_0^n \in \mu_{\lambda_0}$ and $y_0 * z_0^n \in \mu_{\lambda_0}$. As μ_{λ_0} is a multiply positive BCC-ideal of *G*, it implies $x_0 * z_0^k \in \mu_{\lambda_0}$ and $\mu(x_0 * z_0^k) \ge \lambda_0$. This is a contradiction. Hence μ is a fuzzy multiply positive implicative BCC-ideal of *G*.

THEOREM 2.6. Let A be a nonempty subset of a BCC-algebra G, and μ a fuzzy set in G defined by

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x \in A, \\ \alpha_2 & \text{otherwise,} \end{cases}$$
(2.2)

where $\alpha_1 > \alpha_2$ in [0,1]. Then μ is a fuzzy multiply positive implicative BCC-ideal of *G* if and only if *A* is a multiply positive implicative BCC-ideal of *G*.

PROOF. Assume that μ is a fuzzy multiply positive implicative BCC-ideal of *G*. Since $\mu(0) \ge \mu(x)$ for all $x \in G$, we have $\mu(0) = \alpha_1$ and so $0 \in A$. Let $x, y, z \in G$ be such that $(x * y) * z^n \in A$ and $y * z^m \in A$. By Definition 2.3, there exists a natural number k = k(x, y, z) such that $\mu(x * z^k) \ge \min{\{\mu((x * y) * z^n), \mu(y * z^m)\}} = \alpha_1$ and that $x * z^k \in A$. Hence *A* is a multiply positive implicative BCC-ideal of *G*.

Conversely, suppose that *A* is a multiply positive implicative BCC-ideal of *G*. Since $0 \in A$, it follows that $\mu(0) = \alpha_1 \ge \mu(x)$ for all $x \in G$. Let $x, y, z \in G$. If $y * z^m \notin A$ and $(x * y) * z^n \in A$, then clearly $\mu(x * z^k) \ge \min{\{\mu((x * y) * z^n), \mu(y * z^m)\}}$. Assume that $y * z^m \in A$ and $(x * y) * z^n \notin A$, we have $(x * y) * z^k \notin A$. Therefore $\mu(x * z^k) = \alpha_2 = \min{\{\mu((x * y) * z^n), \mu(y * z^m)\}}$. Hence, μ is a fuzzy multiply positive implicative BCC-ideal of *G*.

A fuzzy relation on any set *S* is a fuzzy subset $\mu : S \times S \to [0,1]$. If μ is a fuzzy relation on a set *S* and ν is a fuzzy subset of *S*, then μ is a fuzzy relation on ν if $\mu(x, y) \leq \min\{\nu(x), \nu(y)\}$ for all $x, y \in S$. Let μ and ν on *S* be defined as $(\mu \times \nu)(x, y) = \min\{\mu(x), \nu(y)\}$. One can prove that $\mu \times \nu$ is a fuzzy relation on *S* and $(\mu \times \nu)_t = \mu_t \times \nu_t$ for all $t \in [0,1]$. If μ is a fuzzy subset of a set *S*, the strongest fuzzy relation on *S* that is a fuzzy relation on ν is μ_{ν} , given by $\mu_{\nu}(x, y) = \min\{\mu(x), \nu(y)\}$ for all $x, y \in S$. In this case we have $(\mu_{\nu})_t = \nu_t \times \nu_t$ for all $t \in [0,1]$ (see [2]).

THEOREM 2.7. For a given fuzzy subset v of a BCC-algebra G, let μ_v be the strongest fuzzy relation on G. If μ_v is a fuzzy multiply positive implicative BCC-ideal of $G \times G$, then $v(0) \ge v(x)$ for all $x \in G$.

PROOF. Since μ_{ν} is a fuzzy multiply positive implicative BCC-ideal of $G \times G$, it follows that $\mu_{\nu}(0,0) \ge \mu_{\nu}(x,x)$ for all $x \in G$. This means that $\min\{\nu(0), \nu(0)\} \ge \min\{\nu(x), \nu(x)\}$, which implies that $\nu(0) \ge \nu(x)$.

THEOREM 2.8. If v is a fuzzy multiply positive implicative BCC-ideal of a BCC-algebra G, then the level multiply positive implicative BCC-ideals of $(\mu_v)_t$ are given by

$$(\mu_{\nu})_t = \mu_t \times \nu_t \quad \forall t \in [0, 1].$$

$$(2.3)$$

The proof is obvious.

THEOREM 2.9. If μ and ν are fuzzy multiply positive implicative BCC-ideals of a BCC-algebra G, then $\mu \times \nu$ is a fuzzy multiply positive implicative BCC-ideal of $G \times G$.

PROOF. For any $(x, y) \in G \times G$,

$$(\mu \times \nu)(0,0) = \min\{\mu(0), \nu(0)\} \ge \min\{\mu(x), \nu(x)\}$$

= $(\mu \times \nu)(x, \nu).$ (2.4)

Now, let $x = (x_1, x_2)$, $y = (y_1, y_2)$, and $z = (z_1, z_2) \in G \times G$. For any $n, m \in \mathbb{N}$, there exists a natural number k such that

$$(\mu \times \nu)(x * z^{k}) = (\mu \times \nu)((x_{1}, x_{2}) * (z_{1}, z_{2})^{k})$$
$$= (\mu \times \nu)(x_{1} * z_{1}^{k}, x_{2} * z_{2}^{k})$$
$$= \min\{\mu(x_{1} * z_{1}^{k}), \nu(x_{2} * z_{2}^{k})\}$$

$$\geq \min \{ \min \{ \mu((x_{1} * y_{1}) * z_{1}^{n}), \mu(y_{1} * z_{1}^{m}) \}, \\ \min \{ \nu((x_{1} * y_{2}) * z_{2}^{n}), \nu(y_{2} * z_{2}^{m}) \} \} \\ = \min \{ \min \{ \mu((x_{1} * y_{1}) * z_{1}^{n}), \nu((x_{2} * y_{2}) * z_{2}^{n}) \}, \\ \min \{ \mu(y_{1} * z_{1}^{m}), \nu(y_{2} * z_{2}^{m}) \} \} \\ = \min \{ (\mu \times \nu) (((x_{1}, x_{2}) * (y_{1}, y_{2})) * (z_{1}, z_{2})^{n}), \\ (\mu \times \nu) ((y_{1}, y_{2}) * (z_{1}, z_{2})^{m}) \} \\ = \min \{ (\mu \times \nu) ((x * y) * z^{n}), (\mu \times \nu) (y * z^{m}) \}.$$
(2.5)

Hence $\mu \times \nu$ is a fuzzy multiply positive implicative BCC-ideals of $G \times G$.

THEOREM 2.10. Let μ and ν be fuzzy subsets of a BCC-algebra G such that $\mu \times \nu$ is a fuzzy multiply positive implicative BCC-ideal of $G \times G$. Then

- (i) either $\mu(x) \le \mu(0)$ or $\nu(x) \le \nu(0)$ for all $x \in G$,
- (ii) if $\mu(x) \le \mu(0)$ for all $x \in G$, then either $\mu(x) \le \nu(0)$ or $\nu(x) \le \nu(0)$,
- (iii) if $v(x) \le v(0)$ for all $x \in G$, then either $\mu(x) \le \mu(0)$ or $v(x) \le \mu(0)$,
- (iv) either μ or ν is a fuzzy multiply positive implicative BCC-ideal of *G*.

PROOF. (i) Suppose that $\mu(x) > \mu(0)$ and $\nu(x) > \nu(0)$ for some $x, y \in G$. Then $(\mu \times \nu)(x, y) = \min{\{\mu(x), \nu(y)\}} > \min{\{\mu(0), \nu(0)\}} = (\mu \times \nu)(0, 0)$. This is a contradiction and we obtain (i).

(ii) Assume that there exist $x, y \in G$ such that $\mu(x) > \nu(0)$ and $\nu(y) > \nu(0)$. Then $(\mu \times \nu)(0,0) = \min\{\mu(0),\nu(0)\} = \nu(0)$. It follows that $(\mu \times \nu)(x,y) = \min\{\mu(x),\nu(y)\} > \nu(0) = (\mu \times \nu)(0,0)$. This is a contradiction. Hence (ii) holds.

(iii) Item (iii) is proved by similar method to part (ii).

(iv) Since by (i), either $\mu(x) \le \mu(0)$ or $\nu(x) \le \nu(0)$ for all $x \in G$, without loss of generality, we may assume that $\nu(x) \le \nu(0)$ for all $x \in G$. Form (iii), it follows that either $\mu(x) \le \mu(0)$ or $\nu(x) \le \mu(0)$. If $\nu(x) \le \mu(0)$ for all $x \in G$, then $(\mu \times \nu)(0, x) = \min\{\mu(0), \nu(x)\} = \nu(x)$. Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in$ $G \times G$. Since $\mu \times \nu$ is a fuzzy multiply positive implicative BCC-ideal of $G \times G$, then for any $n, m \in \mathbb{N}$, there exists a natural number k such that

$$(\mu \times \nu) \left((x_1, x_2) * (z_1, z_2)^k \right)$$

$$\geq \min \left\{ (\mu \times \nu) \left(((x_1, x_2) * (y_1, y_2)) * (z_1, z_2)^n \right), (\mu \times \nu) \left((y_1, y_2) * (z_1, z_2)^m \right) \right\}$$

$$= \min \left\{ (\mu \times \nu) \left(((x_1 * y_1) * z_1^n), ((x_2 * y_2) * z_2^n) \right), (\mu \times \nu) (y_1 * z_1^m, y_2 * z_2^m) \right\}.$$
(2.6)

If we take
$$x_1 = y_1 = z_1 = 0$$
, then

$$\begin{aligned}
\nu(x_2 * z_2^k) &= (\mu \times \nu) (0, x_2 * z_2^k) \\
&= (\mu \times \nu) ((0, x_2) * (0, z_2)^k) \\
&\geq \min \{ (\mu \times \nu) (0, (x_2 * y_2) * z_2^n), (\mu \times \nu) (0, y_2 * z_2^m) \} \\
&= \min \{ \min \{ \mu(0), \nu((x_2 * y_2) * z_2^n) \}, \min \{ \nu(0), \nu(y_2 * z_2^m) \} \} \\
&= \min \{ \nu((x_2 * y_2) * z_2^n), \nu(y_2 * z_2^m) \}.
\end{aligned}$$
(2.7)

This proves that v is a fuzzy multiply positive BCC-ideal of *G*. Now we consider the case $\mu(x) \le \mu(0)$ for all $x \in G$. Suppose that $v(y) > \mu(0)$ for some $y \in G$. Then $v(0) \ge v(y) > \mu(0)$. Since $\mu(0) \ge \mu(x)$ for all $x \in G$, it follows that $v(0) > \mu(x)$ for any $x \in G$. Hence $(\mu \times v)(x,0) = \min\{\mu(x), v(0)\} = \mu(x)$. Taking $x_2 = y_2 = z_2 = 0$ in (2.6), then

$$\mu(x_{1} * z_{1}^{k}) = (\mu \times \nu)(x_{1} * z_{1}^{k}, 0)$$

$$= (\mu \times \nu)((x_{1}, 0) * (z_{1}, 0)^{k})$$

$$\geq \min\{(\mu \times \nu)((x_{1} * y_{1}) * z_{1}^{n}, 0), (\mu \times \nu)(y_{1} * z_{1}^{m}, 0)\}$$

$$= \min\{\min\{\mu((x_{1} * y_{1}) * z_{1}^{n}), \nu(0)\}, \min\{\mu(y_{1} * z_{1}^{m}), \nu(0)\}\}$$

$$= \min\{\mu((x_{1} * y_{1}) * z_{1}^{n}), \mu(y_{1} * z_{1}^{m})\}$$
(2.8)

which proves that μ is a fuzzy multiply positive implicative BCC-ideal of *G*.

THEOREM 2.11. Let v be a fuzzy subset of a BCC-algebra G and let μ_v be the strongest fuzzy relation on G. Then v is a fuzzy multiply positive implicative BCC-ideal of G if and only if μ_v is a fuzzy multiply positive implicative BCC-ideal of $G \times G$.

PROOF. Assume that v is a fuzzy multiply positive implicative BCC-ideal of *X*, then

$$\mu_{\nu}(0,0) = \min\{\nu(0),\nu(0)\} \ge \min\{\nu(x),\nu(y)\} = \mu_{\nu}(x,y)$$
(2.9)

for any $(x, y) \in G \times G$. Moreover, for any $n, m \in \mathbb{N}$, there exists a natural number *k* such that

$$\begin{aligned} \mu_{\nu} \Big((x_1, x_2) * (z_1, z_2)^k \Big) &= \mu_{\nu} (x_1 * z_1^k, x_2 * z_2^k) \\ &= \min \{ \nu (x_1 * z_1^k), \nu (x_2 * z_2^k) \} \\ &\geq \min \{ \min \{ \nu ((x_1 * y_1) * z_1^n), \nu (y_1 * z_1^m) \}, \\ &\min \{ \nu ((x_2 * y_2) * z_2^n), \nu (y_2 * z_2^m) \} \} \end{aligned}$$

$$= \min \{ \min \{ \nu((x_{1} * y_{1}) * z_{1}^{n}), \nu((x_{2} * y_{2}) * z_{2}^{n}) \}, \\ \min \{ \nu(y_{1} * z_{1}^{m}), \nu(y_{2} * z_{2}^{m}) \} \}$$

$$= \min \{ \mu_{\nu}(((x_{1} * y_{1}) * z_{1}^{n}), (x_{2} * y_{2}) * z_{2}^{n}), \\ \mu_{\nu}(y_{1} * z_{1}^{m}, y_{2} * z_{2}^{m}) \}$$

$$= \min \{ \mu_{\nu}(((x_{1}, x_{2}) * (y_{1}, y_{2})) * (z_{1}, z_{2})^{n}), \\ \mu_{\nu}((y_{1}, y_{2}) * (z_{1}, z_{2})^{m}) \} \}$$

(2.10)

for any $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in G \times G$.

Hence μ_{ν} is a fuzzy multiply positive implicative BCC-ideal of $G \times G$.

Conversely, suppose that μ_{ν} is a fuzzy multiply positive implicative BCCideal of $G \times G$. Then for all $(x_1, x_2) \in G \times G$,

$$\min\{\nu(0),\nu(0)\} = \mu_{\nu}(0,0) \ge \mu_{\nu}(x_1,x_2) = \min\{\nu(x_1),\nu(x_2)\}.$$
 (2.11)

It follows that $v(0) \ge v(x)$ for all $x \in G$. Now, for any $n, m \in \mathbb{N}$, there exists a natural number k such that

$$\min \{ v(x_{1} * z_{1}^{k}), v(x_{2} * z_{2}^{k}) \}$$

$$= \mu_{v}(x_{1} * z_{1}^{k}, x_{2} * z_{2}^{k}) = \mu_{v}((x_{1}, x_{2}) * (z_{1}, z_{2})^{k})$$

$$\geq \min \{ \mu_{v}(((x_{1}, x_{2}) * (y_{1}, y_{2})) * (z_{1}, z_{2})^{n}), \mu_{v}((y_{1}, y_{2}) * (z_{1}, z_{2})^{m}) \}$$

$$= \min \{ \mu_{v}((x_{1} * y_{1}) * z_{1}^{n}, (x_{2} * y_{2}) * z_{2}^{n}), \mu_{v}(y_{1} * z_{1}^{m}, y_{2} * z_{2}^{m}) \}$$

$$= \min \{ \min \{ v((x_{1} * y_{1}) * z_{1}^{n}), v((x_{2} * y_{2}) * z_{2}^{n}) \}, \min \{ v(y_{1} * z_{1}^{m}), v(y_{2} * z_{2}^{m}) \} \}$$

$$= \min \{ \min \{ v((x_{1} * y_{1}) * z_{1}^{n}), v(y_{1} * z_{1}^{m}) \}, \min \{ v((x_{2} * y_{2}) * z_{2}^{n}), v(y_{2} * z_{2}^{m}) \} \}.$$
(2.12)

If we take $x_2 = y_2 = z_2 = 0$ (resp., $x_1 = y_1 = z_1 = 0$), then $v(x_1 * z_1^k) \ge \min\{v((x_1 * y_1) * z_1^n), v(y_2 * z_2^m)\}$. Hence v is a fuzzy multiply positive implicative BCC-ideal of G.

3. *T*-fuzzy multiply positive implicative BCC-ideals

DEFINITION 3.1 [1]. By a *t*-norm *T*, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(I) T(x,1) = x,

- (II) $T(x, y) \leq T(x, z)$ if $y \leq z$,
- (III) T(x, y) = T(y, x),

(IV) T(x,T(y,z)) = T(T(x,y),z) for all $x, y, z \in [0,1]$.

Every *t*-norm *T* has a useful property $T(\alpha, \beta) \le \min{\{\alpha, \beta\}}$ for all $\alpha, \beta \in [0, 1]$.

LEMMA 3.2 [1]. Let T be a t-norm. Then $T(T(\alpha,\beta),T(\nu,\delta)) = T(T(\alpha,\nu), T(\beta,\delta))$ for all $\alpha,\beta,\nu,\delta \in [0,1]$.

DEFINITION 3.3. A fuzzy subset μ : $G \rightarrow [0,1]$ in a BCC-algebra G is called a fuzzy multiply positive implicative BCC-ideal of G with respect to a t-norm T (briefly, T-fuzzy multiply positive implicative BCC-ideal of G) if

- (i) $\mu(0) \ge \mu(x)$ for all $x \in G$,
- (ii) for any $n, m \in \mathbb{N}$, there exists a natural number k = k(x, y, z) such that $\mu(x * z^k) \ge T(\mu((x * y) * z^n), \mu(y * z^m))$ for any $x, y, z \in G$.

EXAMPLE 3.4. Consider a BCC-algebra $G = \{0, 1, 2, 3, 4\}$ with the Cayley table as follows:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	3	4	4	3	0

By routine calculation, *G* is a proper BCC-algebra (cf. [5]). Define a fuzzy set μ by $\mu(0) = \mu(1) = \mu(2) = \mu(3) = 0.8$ and $\mu(4) = 0.3$. Let $T(\alpha, \beta) = \max\{\alpha + \beta - 1, 0\}$ for all $\alpha, \beta \in [0, 1]$. Then *T* is a *t*-norm. It is easy to check that μ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

THEOREM 3.5. Let μ be a *T*-fuzzy multiply positive implicative BCC-ideal of a BCC-algebra *G* and let $\alpha \in [0,1]$ if $\alpha = 1$, then the nonempty subset μ_{α} is a multiply positive implicative BCC-ideal of *G*.

PROOF. Assume that $\alpha = 1$ and $x \in \mu_{\alpha}$, then $\mu(x) \ge 1$. Thus $\mu(0) \ge \mu(x) \ge 1$ and $0 \in \mu_{\alpha}$.

Moreover, suppose that $(x * y) * z^n \in \mu_{\alpha}$ and $y * z^m \in \mu_{\alpha}$, then $\mu((x * y) * z^n) \ge 1$ and $\mu(y * z^m) \ge 1$. By Definition 3.3, there exists a natural number k such that $\mu(x * z^k) \ge T(\mu((x * y) * z^n), \mu(y * z^m)) \ge T(1,1) = 1$ and that $x * z^k \in \mu_{\alpha}$. Hence μ_{α} is a multiply positive implicative BCC-ideal of G.

For a fuzzy set μ on a BCC-algebra *G* and a map θ : $G \to G$, we define a mapping $\mu[\theta]$: $G \to [0,1]$ by $\mu[\theta](x) = \mu(\theta(x))$ for all $x \in G$.

THEOREM 3.6. If μ is a *T*-fuzzy multiply positive implicative BCC-ideal of a BCC-algebra *G* and θ is an epimorphism of *G*, then $\mu[\theta]$ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

PROOF. Let $\mu[\theta](0) = \mu(\theta(0)) = \mu(0) \ge \mu(y)$ for any $y \in G$. Since θ is an epimorphism of *G*, then there exists $x \in G$ such that $\theta(x) = y$. Thus $\mu[\theta](0) \ge \mu(\theta(x)) = \mu[\theta](x)$. As y is an arbitrary element of *G*, the above result is true for any $x \in G$.

Moreover, for any $n, m \in \mathbb{N}$, there exists a natural number k such that

$$\mu[\theta](x * z^{k}) = \mu(\theta(x * z^{k})) = \mu(\theta(x) * \theta(z)^{k})$$

$$\geq T(\mu((\theta(x) * \theta(y)) * \theta(z)^{n}), \mu(\theta(y) * \theta(z)^{m}))$$

$$= T(\mu(\theta((x * y) * z^{n})), \mu(\theta(y * z^{m})))$$

$$= T(\mu[\theta]((x * y) * z^{n}), \mu[\theta](y * z^{m})).$$
(3.1)

Hence $\mu[\theta]$ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

Let *f* be a mapping defined on a BCC-algebra *G*. If *v* is a fuzzy set in *f*(*G*), then the fuzzy set μ_v of *G* defined by $\mu(x) = v(f(x))$ is called the preimage of *v* under *f*.

THEOREM 3.7. An onto homomorphic preimage of a *T*-fuzzy multiply positive implicative BCC-ideal is a *T*-fuzzy multiply positive implicative BCC-ideal.

PROOF. Let $f : G \to G'$ be an onto homomorphism of BCC-algebra, v a T-fuzzy multiply positive implicative BCC-ideal of G', and μ the preimage of v under f. Then $\mu(0) = v(f(0)) = v(0') \ge v(f(x)) = \mu(x)$ for all $x \in G$. Moreover, for any $n, m \in \mathbb{N}$, there exists a natural number k such that

$$\mu(x * z^{k}) = \nu(f(x * z^{k})) = \nu(f(x) * f(z)^{k})$$

$$\geq T(\nu((f(x) * f(y)) * f(z)^{n}), \nu(f(y) * f(z)^{m}))$$

$$= T(\nu(f((x * y) * z^{n})), \nu(f(y * z^{m})))$$

$$= T(\mu((x * y) * z^{n}), \mu(y * z^{m}))$$
(3.2)

for any $x, y, z \in G$. Hence μ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

If μ is a fuzzy set in a BCC-algebra *G* and *f* is a mapping defined on *G*, then the fuzzy set μ^f in f(G) defined by $\mu^f(\gamma) = \sup_{x \in f^{-1}(\gamma)} \mu(x)$ for all $\gamma \in G$ is called the image of μ under *f*. A fuzzy set μ in *G* is said to have sup property if, for every subset $T \subseteq G$, there exists $t_0 \in T$ such that $\mu(t_0) = \sup_{t \in T} \mu(t)$.

THEOREM 3.8. An onto homomorphic image of a *T*-fuzzy multiply positive implicative BCC-ideal with sup property is a *T*-fuzzy multiply positive implicative BCC-ideal.

PROOF. Let $f : G \to G'$ be an onto homomorphism of BCC-algebras and let μ be a *T*-fuzzy multiply positive implicative BCC-ideal of *G* with sup property. Then $\mu^f(0) = \sup_{f \in f^{-1}(0)} \mu(t) = \mu(0) \ge \mu(x)$ for any $x \in G$. Furthermore, we

have $\mu^{f}(x_{1}) = \sup_{t \in f^{-1}(x_{1})} \mu(t)$ for any $x_{1} \in G'$. Thus $\mu^{f}(0) \ge \sup_{t \in f^{-1}(x_{1})} \mu(t) = \mu^{f}(x_{1})$ for any $x_{1} \in G'$. Moreover, for any $x_{1}, y_{1}, z_{1} \in G'$, let $x \in f^{-1}(x_{1})$, $y \in f^{-1}(y_{1})$, and $z \in f^{-1}(z_{1})$ such that

$$\mu(x * z^{k}) = \sup_{t \in f^{-1}(x_{1} * z_{1}^{k})} \mu(t),$$

$$\mu((x * y) * z^{n}) = \sup_{t \in f^{-1}((x * y) * z^{n})} \mu(t),$$

$$\mu(y * z^{n}) = \sup_{t \in f^{-1}(y_{1} * z_{1}^{m})} \mu(t).$$
(3.3)

Thus

$$\mu^{f}(x_{1} * z_{1}^{k}) = \sup_{t \in f^{-1}(x_{1} * z_{1}^{k})} \mu(t) = \mu(x * z^{k})$$

$$\geq T(\mu((x * y) * z^{n}), \mu(y * z^{m}))$$

$$= T\left(\sup_{t \in f^{-1}((x_{1} * y_{1}) * z_{1}^{n})} \mu(t), \sup_{t \in f^{-1}(y_{1} * z_{1}^{m})} \mu(t)\right)$$

$$= T(\mu^{f}((x_{1} * y_{1}) * z_{1}^{n}), \mu^{f}(y_{1} * z_{1}^{m})).$$
(3.4)

Therefore, μ^f is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*'. \Box

4. Fuzzy multiply positive implicative BCC-ideals induced by norms

THEOREM 4.1. Let *T* be a *t*-norm and $G = G_1 \times G_2$ the direct product BCCalgebra of BCC-algebras G_1 and G_2 . If μ_1 (resp., μ_2) is a *T*-fuzzy multiply positive implicative BCC-ideal of G_1 (resp., G_2), then $\mu = \mu_1 \times \mu_2$ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G* defined by $\mu(x_1, x_2) = (\mu_1 \times \mu_2)(x_1, x_2) =$ $T(\mu_1(x_1), \mu_2(x_2))$ for all $(x_1, x_2) \in G_1 \times G_2$.

The proof is identical with the corresponding proof from [3].

We will generalize the idea to the product of *n T*-fuzzy multiply positive implicative BCC-ideals. We first need to generalize the domain of *t*-norm *T* to $\prod_{i=1}^{n} [0,1]$ as follows.

The function $T_n : \prod_{i=1}^n [0,1] \to [0,1]$ is defined by

$$T_n(\alpha_1, \alpha_2, \dots, \alpha_n) = T(\alpha_i, T_{n-1}(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n))$$
(4.1)

for all $1 \le i \le n$, where $n \ge 2$, $T_2 = T$, and $T_1 = id$ (identity). For a *t*-norm *T* and every $\alpha_i, \beta_i \in [0, 1]$, where $1 \le i \le n$ and $n \ge 2$, we have

$$T_n(T(\alpha_1,\beta_1),T(\alpha_2,\beta_2),\ldots,T(\alpha_n,\beta_n))$$

= $T(T_n(\alpha_1,\alpha_2,\ldots,\alpha_n),T_n(\beta_1,\beta_2,\ldots,\beta_n)).$ (4.2)

THEOREM 4.2. Let *T* be a *t*-norm, $\{G_i\}_{i=1}^n$ the finite collection of BCC-algebras, and $G = \prod_n^{i=1}G_i$ the direct product BCC-algebra of $\{G_i\}$. Let μ_i be a *T*-fuzzy multiply positive implicative BCC-ideal of $\{G_i\}$, where $1 \le i \le n$. Then $\mu = \prod_{i=1}^n \mu_i$ defined by $\mu(x_1, x_2, ..., x_n) = (\prod_{i=1}^n \mu_i)(x_1, x_2, ..., x_n) = T_n(\mu_1(x_1), \mu_2(x_2), ..., \mu_n(x_n))$ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

The proof is identical with the corresponding proof from [3].

DEFINITION 4.3 [4]. Let *T* be a *t*-norm and let μ and ν be fuzzy sets in a BCC-algebra *G*. Then the *T*-product of μ and ν , written as $[\mu \cdot \nu]_T$, is defined by $[\mu \cdot \nu]_T(x) = T(\mu(x), \nu(x))$ for all $x \in G$.

THEOREM 4.4. Let *T* be a *t*-norm and let μ and ν be *T*-fuzzy multiply positive implicative BCC-ideals of a BCC-algebra *G*. If *T*^{*} is a *t*-norm which dominates *T*, that is, $T^*(T(\alpha,\beta),T(\nu,\delta)) \ge T(T^*(\nu,\delta),T^*(\beta,\delta))$ for all $\alpha,\beta,\nu,\delta \in [0,1]$, then the *T*^{*}-product of μ and $\nu, [\mu \cdot \nu]_{T^*}$, is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

PROOF. Let $[\mu \cdot \nu]_{T^*}(0) = T^*(\mu(0), \nu(0)) \ge T^*(\mu(x), \nu(x)) = [\mu \cdot \nu]_{T^*}(x)$ for any $x \in G$. Moreover, for any $n, m \in \mathbb{N}$, there exists a natural number k, such that

$$[\mu \cdot \nu]_{T^*} (x * z^k)$$

= $T^* (\mu(x * z^k), \nu(x * z^k))$
 $\geq T^* (T(\mu((x * y) * z^n), \mu(y * z^m)), T(\nu((x * y) * z^n), \nu(y * z^m)))$
 $\geq T(T^* (\mu((x * y) * z^n), \nu((x * y) * z^n)), T^* (\mu(y * z^m), \nu(y * z^m)))$
= $T([\mu \cdot \nu]_{T^*} ((x * y) * z^n), [\mu \cdot \nu]_{T^*} (y * z^m)).$
(4.3)

Hence $[\mu \cdot \nu]_{T^*}$ is a *T*-fuzzy multiply positive implicative BCC-ideal of *G*.

Let $f: G \to G'$ be an onto homomorphism of BCC-algebras. Let T and T^* be t-norms such that T^* dominates T. If μ and ν are T-fuzzy multiply positive implicative BCC-ideals of G', then the T^* -product of μ and ν , $[\mu \cdot \nu]_{T^*}$, is a T-fuzzy multiply positive implicative BCC-ideal of G'. Since every onto homomorphism preimage of a T-fuzzy multiply positive implicative BCC-ideal is a T-fuzzy multiply positive implicative BCC-ideal, the preimages $f^{-1}(\mu), f^{-1}(\nu)$, and $f^{-1}([\mu \cdot \nu]_{T^*})$ are T-fuzzy multiply positive implicative BCC-ideals of G. The next theorem provides the relation between $f^{-1}([\mu \cdot \nu]_{T^*})$ and T^* -product $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$ of $f^{-1}(\mu)$ and $f^{-1}(\nu)$.

THEOREM 4.5. Let $f : G \to G'$ be an onto homomorphism of BCC-algebras. Let T and T^* be t-norms such that T^* dominates T. Let μ and ν be T-fuzzy multiply positive implicative BCC-ideals of G'. If $[\mu \cdot \nu]_{T^*}$ is the T^* -product of μ and ν , and $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$ is the T^* -product of $f^{-1}(\mu)$ and $f^{-1}(\nu)$, then $f^{-1}([\mu \cdot \nu]_{T^*}) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$.

ACKNOWLEDGMENT. The authors would like to thank the referees for their valuable suggestions.

REFERENCES

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), no. 1, 79-86.
- P. Bhattacharya and N. P. Mukherjee, *Fuzzy relations and fuzzy groups*, Inform. Sci. 36 (1985), no. 3, 267–282.
- [3] W. A. Dudek and Y. B. Jun, On fuzzy BCC-ideals over a t-norm, Math. Commun. 5 (2000), no. 2, 149–155.
- [4] W. A. Dudek, K. H. Kim, and Y. B. Jun, *Fuzzy BCC-subalgebras of BCC-algebras with respect to a t-norm*, Sci. Math. Japon. 3 (2000), no. 1, 99–106.
- [5] W. A. Dudek and X. H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), no. 1, 21–29.
- [6] Y. Komori, *The class of BCC-algebras is not a variety*, Math. Japon. **29** (1984), no. 3, 391–394.
- [7] X. Ougen, *Fuzzy BCK-algebra*, Math. Japon. **36** (1991), no. 5, 935–942.
- [8] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), no. 2, 211-213.
- [9] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338–353.

Jianming Zhan: Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province 445000, China

E-mail address: zhanjianming@hotmail.com

Zhisong Tan: Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province 445000, China

E-mail address: es-tzs@263.net