PROPERTIES OF CERTAIN p-VALENTLY CONVEX FUNCTIONS

DINGGONG YANG and SHIGEYOSHI OWA

Received 10 September 2002

A subclass $\mathscr{C}_{p}(\lambda, \mu)(p \in \mathbb{N}, 0<\lambda<1,-\lambda \leqq \mu<1)$ of p-valently convex functions in the open unit disk \mathbb{U} is introduced. The object of the present paper is to discuss some interesting properties of functions belonging to the class $\mathscr{C}_{p}(\lambda, \mu)$.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let \mathscr{A}_{p} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. A function $f(z)$ in \mathscr{A}_{p} is said to be p-valently convex of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>p \alpha \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$. We denote by $\mathscr{K}_{p}(\alpha)$ the subclass of \mathscr{A}_{p} consisting of functions which are p-valently convex of order α in \mathbb{U}. In particular, we denote $\mathscr{K}_{1}(0)=\mathscr{K}$.

A function $f(z) \in \mathscr{A}_{1}$ is said to be uniformly convex in \mathbb{U} if $f(z)$ is in the class \mathscr{H} and has the property that the image arc $f(\gamma)$ is convex for every circular arc γ contained in \mathbb{U} with center at $t \in \mathbb{U}$. We also denote by $\because \mathscr{K}$ the subclass of \mathscr{A}_{1} consisting of all uniformly convex functions in \mathbb{U}. Goodman [2] has introduced the class $\because \mathscr{K}$ and given that $f(z) \in \mathscr{A}_{1}$ belongs to the class $\because \mathscr{K}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+(z-t) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geqq 0 \quad((z, t) \in \mathbb{U} \times \mathbb{U}) . \tag{1.3}
\end{equation*}
$$

Ma and Minda [3] and Rønning [5] have showed a more applicable characterization for $\because \mathscr{K}$. We state this as the following theorem.

THEOREM 1.1. Let $f(z) \in \mathscr{A}_{1}$. Then $f(z) \in \cup \mathscr{K}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

In view of Theorem 1.1, Owa [4] considered a subclass $\because \mathscr{K}(\mu)(-1<\mu<1)$ of \mathscr{A}_{1}. A function $f(z) \in \mathscr{A}_{1}$ is said to be a member of the class $\because \mathscr{K}(\mu)(-1<$ $\mu<1$) if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}-\mu>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

In this paper, we investigate the following subclass of \mathscr{A}_{p}.
Definition 1.2. A function $f(z) \in \mathscr{A}_{p}$ is said to be a member of the class $\mathscr{C}_{p}(\lambda, \mu)$ if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}-p \mu>\lambda\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

for some $\lambda(0<\lambda<1)$ and $\mu(-\lambda \leqq \mu<1)$.
Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then we say that $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, written $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ in \mathbb{U} such that $|w(z)| \leqq|z|$ and $f(z)=g(w(z))$. If $g(z)$ is univalent in \mathbb{U}, then the subordination $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.
2. Subordination properties. Our first result for properties of functions $f(z) \in A_{p}$ is contained in the following theorem.

Theorem 2.1. A function $f(z) \in \mathscr{C}_{p}(\lambda, \mu)$ if and only if

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h(z) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
h(z)=p+\frac{p(1-\mu)}{2 \sin ^{2} \beta}\left\{\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2 \beta / \pi}+\left(\frac{1-\sqrt{z}}{1+\sqrt{z}}\right)^{2 \beta / \pi}-2\right\} \quad(\beta=\arccos \lambda) . \tag{2.2}
\end{equation*}
$$

Proof. Let $1+z f^{\prime \prime}(z) / f^{\prime}(z)=w$ and $w=u+i v$. Then inequality (1.6) can be written as

$$
\begin{equation*}
u-p \mu>\lambda \sqrt{(u-p)^{2}+v^{2}} . \tag{2.3}
\end{equation*}
$$

By computing, we find that inequality (2.3) is equivalent to

$$
\begin{gather*}
\left(u+\frac{p\left(\lambda^{2}-\mu\right)}{1-\lambda^{2}}\right)^{2}-\frac{\lambda^{2}}{1-\lambda^{2}} v^{2}>\left(\frac{p \lambda(1-\mu)}{1-\lambda^{2}}\right)^{2}, \tag{2.4}\\
u>\frac{p(\lambda+\mu)}{1+\lambda} \tag{2.5}
\end{gather*}
$$

Thus the domain of the values of $1+z f^{\prime \prime}(z) / f^{\prime}(z)$ for $z \in \mathbb{U}$ is contained in

$$
\begin{equation*}
\mathbb{D}=\{w=u+i v: u \text { and } v \text { satisfy (2.4) and (2.5) }\} . \tag{2.6}
\end{equation*}
$$

In order to prove our theorem, it suffices to show that the function $h(z)$ given by (2.2) maps \mathbb{U} conformally onto the domain \mathbb{D}.

Consider the transformations

$$
\begin{align*}
w_{1} & =\frac{1-\lambda^{2}}{p(1-\mu)} w+\frac{\lambda^{2}-\mu}{1-\mu}, \tag{2.7}\\
t & =\frac{1}{2}\left(w_{2}^{\pi / \beta}+w_{2}^{-\pi / \beta}\right),
\end{align*}
$$

where $\beta=\arccos \lambda$ and $w_{2}=w_{1}+\sqrt{w_{1}^{2}-1}$ is the inverse function of

$$
\begin{equation*}
w_{1}=\frac{w_{2}+1 / w_{2}}{2} \tag{2.8}
\end{equation*}
$$

It is easy to verify that composite function $t=t(w)$ maps \mathbb{D}^{+}defined by

$$
\begin{equation*}
\mathbb{D}^{+}=\{w=u+i v: u \text { and } v \text { satisfy (2.4), (2.5), and } v>0\} \tag{2.9}
\end{equation*}
$$

conformally onto the upper-half plane $\operatorname{Im}(t)>0$ so that $w=p$ corresponds to $t=1$ and $w=p(\lambda+\mu) /(1+\lambda)$ to $t=-1$. With the help of the symmetry principle, this function $t=t(w)$ maps \mathbb{D} conformally onto the domain

$$
\begin{equation*}
\mathbb{G}=\{t:|\arg (t+1)|<\pi\} . \tag{2.10}
\end{equation*}
$$

Since

$$
\begin{equation*}
t=2\left(\frac{1+z}{1-z}\right)^{2}-1 \tag{2.11}
\end{equation*}
$$

maps \mathbb{U} onto \mathbb{G}, we see that

$$
\begin{align*}
w & =p+\frac{p(1-\mu)}{2\left(1-\lambda^{2}\right)}\left\{\left(t+\sqrt{t^{2}-1}\right)^{\beta / \pi}+\left(t+\sqrt{t^{2}-1}\right)^{-\beta / \pi}-2\right\} \\
& =p+\frac{p(1-\mu)}{2 \sin ^{2} \beta}\left\{\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2(\beta / \pi)}+\left(\frac{1-\sqrt{z}}{1+\sqrt{z}}\right)^{2(\beta / \pi)}-2\right\} \tag{2.12}\\
& =h(z)
\end{align*}
$$

maps \mathbb{U} onto \mathbb{D} with $h(0)=p$. Hence the proof of the theorem is completed.

Theorem 2.1 gives the following corollaries.
COROLLARY 2.2. If $f(z) \in \mathscr{C}_{p}(\lambda, \mu)$, then $f(z) \in \mathscr{K}_{p}((\lambda+\mu) /(1+\lambda))$ and the order $(\lambda+\mu) /(1+\lambda)$ is sharp with the extremal function

$$
\begin{equation*}
f_{0}(z)=p \int_{0}^{z}\left(t_{2}^{p-1} \exp \int_{0}^{t_{2}} \frac{h\left(t_{1}\right)-p}{t_{1}} d t_{1}\right) d t_{2} \tag{2.13}
\end{equation*}
$$

where $h(z)$ is given by (2.2).

Proof. Using (2.5) in the proof of Theorem 2.1 and noting that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right)=\operatorname{Re}(h(z)) \longrightarrow p \frac{\lambda+\mu}{1+\lambda} \tag{2.14}
\end{equation*}
$$

as $z=\operatorname{Re}(z) \rightarrow-1$, we have the corollary.
Corollary 2.3. If $f(z) \in \mathbb{C}_{p}(\lambda, \mu)$ and $-\lambda<\mu<\lambda<1$, then

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\arctan \left(\frac{1-\mu}{\sqrt{\lambda^{2}-\mu^{2}}}\right) \quad(z \in \mathbb{U}) \tag{2.15}
\end{equation*}
$$

The bound in (2.15) is sharp with the extremal function $f_{0}(z)$ given by (2.13).
Proof. Let the function $h(z)$ be defined by (2.4). Then $h(\mathbb{U})=\mathbb{D}$ and an easy calculation yields that

$$
\begin{equation*}
\min \{\theta:|\arg (h(z))|<\theta(z \in \mathbb{U})\}=\arctan \left(\frac{1-\mu}{\sqrt{\lambda^{2}-\mu^{2}}}\right) \tag{2.16}
\end{equation*}
$$

for $-\lambda<\mu<\lambda<1$. Therefore, the corollary follows immediately from Theorem 2.1.

Next we derive the following theorem.
Theorem 2.4. Let $f(z) \in \mathscr{C}_{p}(\lambda, \mu)$ and let $h(z)$ be defined by (2.2). Then

$$
\begin{gather*}
\frac{f^{\prime}(z)}{p z^{p-1}} \prec \exp \int_{0}^{z} \frac{h(t)-p}{t} d t \tag{2.17}\\
\left|\frac{f^{\prime}(z)}{p z^{p-1}}\right| \leqq \exp \int_{0}^{1} \frac{h(\rho)-p}{\rho} d \rho \quad(z \in \mathbb{U}) \tag{2.18}
\end{gather*}
$$

The bound in (2.18) is sharp with the extremal function $f_{0}(z)$ given by (2.13).
Proof. Since the function $h(z)-p$ is univalent and starlike (with respect to the origin), by Theorem 2.1 and the result due to Suffridge [6, Theorem 3], we have

$$
\begin{equation*}
\log \left(\frac{f^{\prime}(z)}{p z^{p-1}}\right)=\int_{0}^{z}\left(\frac{f^{\prime \prime}(t)}{f^{\prime}(t)}-\frac{p-1}{t}\right) d t \prec \int_{0}^{z} \frac{h(t)-p}{t} d t \tag{2.19}
\end{equation*}
$$

which implies the subordination (2.17).
Furthermore, noting that the univalent function $h(z)$ maps the disk $|z|<\rho$ $(0<\rho \leqq 1)$ onto the domain which is convex and symmetric with respect to the real axis, we deduce that

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{z} \frac{h(t)-p}{t} d t=\int_{0}^{1} \frac{\operatorname{Re}\{h(\rho z)-p\}}{\rho} d \rho \leqq \int_{0}^{1} \frac{h(\rho)-p}{\rho} d \rho \tag{2.20}
\end{equation*}
$$

for $z \in \mathbb{U}$. Thus inequality (2.18) follows from (2.19) and (2.20).

REMARK 2.5. If we let $\beta=\pi / 4$ and $x=((1+\sqrt{\rho}) /(1-\sqrt{\rho}))^{1 / 2}(0 \leqq \rho<1)$, then

$$
\begin{align*}
& \int_{0}^{1}\left\{\left(\frac{1+\sqrt{\rho}}{1-\sqrt{\rho}}\right)^{2(\beta / \pi)}+\left(\frac{1-\sqrt{\rho}}{1+\sqrt{\rho}}\right)^{2(\beta / \pi)}-2\right\} \frac{d \rho}{\rho} \tag{2.21}\\
& =8 \int_{1}^{+\infty}\left(\frac{x}{x^{2}+1}-\frac{1}{x+1}\right) d x=4 \log 2
\end{align*}
$$

Thus, as the special case of Theorem 2.4, we have that if $f(z) \in \mathscr{C}_{p}(1 / \sqrt{2}, \mu)$ $(-1 / \sqrt{2} \leqq \mu<1)$, then

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{p z^{p-1}}\right| \leqq 16^{p(1-\mu)} \quad(z \in \mathbb{U}) \tag{2.22}
\end{equation*}
$$

and the result is sharp.

3. Coefficient inequalities

Theorem 3.1. If

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \tag{3.1}
\end{equation*}
$$

belongs to $\mathscr{C}_{p}(\lambda, \mu)$, then

$$
\begin{equation*}
\left|a_{p+1}\right| \leqq \frac{8 p^{2}(1-\mu)}{p+1}\left(\frac{\beta}{\pi \sin \beta}\right)^{2} \quad(\beta=\arccos \lambda) \tag{3.2}
\end{equation*}
$$

Proof. It can be easily verified that

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & =p+\left(1+\frac{1}{p}\right) a_{p+1} z+\cdots \\
h(z) & =p+\frac{p(1-\mu)}{2 \sin ^{2} \beta}\left(\frac{8 \beta}{\pi}+\frac{8 \beta}{\pi}\left(\frac{2 \beta}{\pi}-1\right)\right) z+\cdots \tag{3.3}\\
& =p+8 p(1-\mu)\left(\frac{\beta}{\pi \sin \beta}\right)^{2} z+\cdots
\end{align*}
$$

where $h(z)$ is given by (2.2). Since

$$
\begin{equation*}
f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots \in \mathscr{C}_{p}(\lambda, \mu) \tag{3.4}
\end{equation*}
$$

it follows from (3.3) and Theorem 2.1 that

$$
\begin{align*}
\frac{\pi^{2}}{8 p(1-\mu)} & \left(\frac{\sin \beta}{\beta}\right)^{2}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right) \\
& =\frac{p+1}{8 p^{2}(1-\mu)}\left(\frac{\pi \sin \beta}{\beta}\right)^{2} a_{p+1} z+\cdots \tag{3.5}\\
& \prec \frac{\pi^{2}}{8 p(1-\mu)}\left(\frac{\sin \beta}{\beta}\right)^{2}(h(z)-p)
\end{align*}
$$

It is well known that if

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \prec g(z) \tag{3.6}
\end{equation*}
$$

for $g(z) \in \mathscr{K}$, then (cf. Duren [1])

$$
\begin{equation*}
\left|a_{n}\right| \leqq 1 \quad(n=1,2,3, \ldots) . \tag{3.7}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{\pi^{2}}{8 p(1-\mu)}\left(\frac{\sin \beta}{\beta}\right)^{2}(h(z)-p) \in \mathscr{K} \tag{3.8}
\end{equation*}
$$

we get (3.2). Also the bound in (3.2) is sharp for the function $f_{0}(z)$ given by (2.13).

References

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, 1983.
[2] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
[3] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2, 165-175.
[4] S. Owa, On uniformly convex functions, Math. Japon. 48 (1998), no. 3, 377-384.
[5] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196.
[6] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.

Dinggong Yang: Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China

Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

E-mail address: owa@math.kindai.ac.jp

