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1. Introduction. Let Ω be a bounded domain of Rn with smooth boundary

Γ = ∂Ω. We consider the variational inequality problem—called obstacle prob-

lem: find

u∈H1(Ω) (1.1)

such that∫
Ω
∇u∇(v−u)+

∫
Ω
u(v−u)+

∫
Γ
v−−u−+〈f ,v−u〉 ≥ 0 ∀v ∈H1(Ω),

(1.2)

where f ∈ L2(Ω); it is well known that problems (1.1) and (1.2) admit a unique

solution (see [3]).

The aim of this paper is to develop a regularization method for solving a

nondifferentiable minimization problem that is equivalent to problems (1.1)

and (1.2).

The idea of the regularization method is to approximate the nondifferen-

tiable term by a sequence of differentiable ones depending on (ε ≥ 0, ε→ 0).
We give three forms of regularization for which we establish the convergence

result and a priori error estimates.

Next, by duality method of conjugate functions (see [1]), we provide a poste-

riori error estimates desired for the numerical computation. And as an appli-

cation, we develop a regularization method for solving a sequence of penalised

problem.

2. Formulation and regularization method. Let Ω be a bounded domain of

Rn with smooth boundary Γ = ∂Ω and let f ∈ L2(Ω).
We denote by 〈·,·〉 the duality pairing betweenH−1(Ω) andH1(Ω), and (·,·)

the inner product of L2(Ω).
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Consider the following variational inequality problem:

Find u∈H1(Ω),

a(u,v−u)+
∫
Γ
v−−u−+〈f ,v−u〉 ≥ 0 ∀v ∈H1(Ω),

(2.1)

where a(·,·) is defined by

a(u,v)=
∫
Ω
∇u·∇v+

∫
Ω
u·v, u,v ∈H1(Ω). (2.2)

It is well known that problem (2.1) admit a unique solution (see [3]).

For all z ∈ L2(Ω), we denote

z+ =max{z,0}, z− =max{0,−z}. (2.3)

If v ∈H1(Ω), then we have v+,v− ∈H1(Ω) and

a
(
v+,v−

)= 0. (2.4)

Definition 2.1. Let ϕ be the following functional:

ϕ(v)=
∫
Γ
v−, v ∈H1(Ω). (2.5)

The functional ϕ, being nondifferentiable on H1(Ω), is approximated by a

sequence of differentiable functionals

ϕε(v)=
∫
Γ
φε(v)dx, (ε ≥ 0,ε �→ 0). (2.6)

The regularized problem is

Find uε ∈H1(Ω),

a
(
uε,v−uε

)+ϕε(v)−ϕε
(
uε
)+〈f ,v−uε〉≥ 0 ∀v ∈H1(Ω).

(2.7)

Problems (2.1) and (2.7), respectively, are equivalent to

u∈H1(Ω) : a(u,v−u)+
∫
Γ

(
v−−u−)dx

+
∫
Ω
f(v−u)dx ≥ 0 ∀v ∈H1(Ω),

(2.8)

uε ∈H1(Ω) : a
(
uε,v−uε

)+ϕε(v)−ϕε
(
uε
)

+
∫
Ω
f
(
v−uε

)
dx ≥ 0 ∀v ∈H1(Ω).

(2.9)
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There are many methods to construct sequences of differentiable approxima-

tions. In this paper, we take the sequence φε verifying one of the following

choices:

φ1
ε(t)=




0 if t ≥ 0,
t2

2ε
if −ε ≤ t ≤ 0,

−t− ε
2

if t ≤−ε,

φ2
ε(t)=




ε
2

if t ≥ 0,

1
2

(
t2

ε
+ε
)

if −ε ≤ t ≤ 0,

−t if t ≤−ε,

φ3
ε(t)=


ε if t ≥ 0,√
t2+ε2 if t ≤ 0.

(2.10)

With these choices, problem (2.7) admits a unique solution. To establish the

convergence of the sequence (uε), we need the following results (see [2]).

Lemma 2.2. Let V be a Hilbert space, a : V ×V → R a continuous, V -elliptic

bilinear, j : V → R proper, nonnegative, convex, weakly continuous function,

and f a linear continuous on V . Assume that jε : V → R, ε > 0, is a family of

nonnegative convex weakly lower semicontinuous (l.s.c.) functions verifying

jε(v) �→ j(v) ∀v ∈ V,
if uε �→u weakly in V, then j(u)≤ lim

ε→0
inf jε

(
uε
)
. (2.11)

Let u and uε be the solutions of the following variational inequalities:

a(u,v−u)+j(v)−j(u)+〈f ,v−u〉 ≥ 0 ∀v ∈ V,
a
(
uε,v−uε

)+jε(v)−jε(uε)+〈f ,v−uε〉≥ 0 ∀v ∈ V, (2.12)

respectively. Then, uε →u in V when ε→ 0.

Lemma 2.3. Assume that

j(v)=
∫
Ω
φ(v)dx, jε(v)=

∫
Ω
φε(v)dx (2.13)

and j is weakly l.s.c. If

φε(t) �→φ(t) uniformly in t, as ε �→ 0, (2.14)

then (2.11) is verified.
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We notice that if

∣∣φε(t)−φ(t)∣∣≤ cε ∀t ∈R, (2.15)

then (2.14) is verified. Since the functionsφjε , j = 1,2,3, verify inequality (2.15),

then we have the convergence uε →u when ε→ 0 in H1(Ω).
Taking v = uε (resp., v = u) in the inequality of problem (2.1) (resp., (2.7)),

we obtain

a
(
u−uε,u−uε

)≤ϕ(uε)−ϕε
(
uε
)+ϕε(u)−ϕ(u). (2.16)

Consequently, we obtain the following a priori error estimates:

∥∥u−uε∥∥H1(Ω) ≤ (2c)1/2
√
ε. (2.17)

3. A posteriori error estimates. In this section, we use the duality method

by conjugating functions in order to derive the a posteriori error estimates of

the solution of approximate problem. We need the preliminary results (see [1]).

Let V and V∗ (resp., Y and Y∗) be two topological vector spaces and 〈·,·〉V
(resp., 〈·,·〉Y ) denote the duality pairing between V and V∗ (resp., Y and Y∗).

Letϕ be a function from V to R=R∪{−∞,+∞}, and let its conjugate function

be defined by

ϕ∗(v∗)= sup
v∈V

〈
v∗,v

〉
V −ϕ(v), (3.1)

where v∗ is in V∗.

Assume that there exists a continuous linear operator L from V to Y , L ∈
�(V ,Y), with transpose L∗ ∈�(Y∗,V∗). Let J be a function from V ×Y to R.

We consider the following minimization problem:

u∈ V, J(u,Lu)= inf
v∈V

J(v,Lv), (3.2)

where the conjugate function of J is given by

J∗
(
y∗,v∗

)= sup
v∈V,y∈Y

{〈
v∗,v

〉
V +

〈
y∗,y

〉
Y −J(v,y)

}
. (3.3)

Theorem 3.1. Assume that V is a reflexive Banach space and Y a normed

vector space. Let J : V×Y →R be a proper l.s.c. strictly convex function verifying
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(i) there exists u0 ∈ V such that J(u0,Lu0) <∞ and y → J(u0,y) is contin-

uous at Lu0;

(ii) J(v,Lv)→+∞ as ‖v‖V →+∞, v ∈ V .

Then, problem (3.2) admits a unique solution, and

J(u,Lu)= inf
v∈V

J(v,Lv)=− sup
y∗∈Y∗

J∗
(−y∗,L∗y∗). (3.4)

Let Ω be an open subset of Rn, and g : Ω×Rn → R be the Carathéodory

function, that is, for all s ∈ Rn, x → g(x,s) is a measurable function, and, for

almost all x ∈ Ω, the function s → g(x,s) is continuous. Then, the conjugate

function of

G(v)=
∫
Ω
g
(
x,v(x)

)
dx (3.5)

(assuming G is well defined over some function space V ) is

G∗
(
v∗
)=

∫
Ω
g
(
x,v∗(x)

)
dx ∀v∗ ∈ V∗, (3.6)

where

g∗(x,y)= sup
s∈RN

{
ys−g(x,s)}. (3.7)

For problem (2.1), we take

V =H1(Ω), Y = Y∗ = (L2(Ω)
)n×L2(Ω),

Lv = (∇v,v), J(v,Lv)=H(v)+G(Lv),

H(v)=

0 if v ≥ 0 on ∂Ω,

+∞ otherwise,

G(y)=
∫
Ω

1
2

∣∣y1

∣∣2+ 1
2

∣∣y2

∣∣2+fy2,

(3.8)

where y = (y1,y2) with y1 ∈ (L2(Ω))n and y2 ∈ L2(Ω); a similar notation is

used for y∗ ∈ Y∗. So, the obstacle problem (2.1) can be rewritten in the form

(3.2).

To apply Theorem 3.1, we compute the conjugate of the functional J. We

have

J∗
(−y∗,L∗y∗)=H∗(L∗y∗)+G∗(−y∗), (3.9)
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where

H∗(L∗y∗)= sup
v∈H1(Ω)

{〈Lv,y〉−H(v)}

= sup
{v∈H1(Ω),v≥0 in Γ}

∫
Ω

(∇vy∗1 +vy∗2 )dx

=

0 if −divy∗1 +y∗2 = 0 in Ω,

∞ otherwise,

G∗
(−y∗)= sup

y∈Y

{〈−y∗,y〉−G(y)}

= sup
y∈Y

∫
Ω

(
−y∗1 y1−y∗2 y2− 1

2

∣∣y1

∣∣2− 1
2

∣∣y2

∣∣2−fy2

)
dx

=
∫
Ω

(
1
2

∣∣y∗1 ∣∣2+ 1
2

∣∣y∗2 −f∣∣2
)
dx.

(3.10)

Hence,

J∗
(−y∗,L∗y∗)=



∫
Ω

(
1
2

∣∣y∗1 ∣∣2+ 1
2

∣∣y∗2 −f∣∣2
)
dx if −divy∗1 +y∗2 = 0,

∞ otherwise.
(3.11)

We have

J
(
uε,Luε

)−J(u,Lu)=
∫
Ω

1
2

∣∣∇uε∣∣2− 1
2
|∇u|2+ 1

2

∣∣uε∣∣2

− 1
2
|u|2+f (uε−u)dx.

(3.12)

Using (2.8) with v =uε, we obtain

J
(
uε,Luε

)−J(u,Lu)≥ 1
2

∥∥uε−u∥∥2
H1(Ω). (3.13)

Applying Theorem 3.1 and using (3.11), we have

J
(
uε,Luε

)−J(u,Lu)≤
∫
Ω

1
2

∣∣∇uε∣∣2+ 1
2

∣∣uε∣∣2+fuε

+ 1
2

∣∣y∗1 ∣∣2+ 1
2

∣∣y∗2 −f∣∣2dx
(3.14)

for all y∗ = (y∗1 ,y∗2 )∈ Y∗, with −divy∗1 +y∗2 = 0 in Ω.

Since φε is differentiable, inequality (2.9) is equivalent to uε ∈H1(Ω)

a
(
uε,v

)+
∫
Γ
φ′ε
(
uε
)
v+

∫
Ω
fv = 0. (3.15)
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Hence, uε verifies the following Neumann problem:

−∆uε+uε+f = 0 in Ω,

∂uε
∂n

=−
∫
Γ
φ′ε
(
uε
)

on Γ .
(3.16)

If we take

y∗1 =∇uε, y∗2 =
(
uε+f

)
uε, (3.17)

then we have

−divy∗1 +y∗2 = 0. (3.18)

Then, we have the a posteriori error estimate

1
2

∥∥uε−u∥∥2
H1(Ω) ≤

∫
Ω

∣∣∇uε∣∣2+∣∣uε∣∣2+fuε. (3.19)

Taking v =uε ∈H1(Ω) in (3.15),

a
(
uε,uε

)+
∫
Γ
φ′ε
(
uε
)(
uε
)+

∫
Ω
fuε = 0. (3.20)

Hence,

∫
Ω

∣∣∇uε∣∣2+
∫
Ω

∣∣uε∣∣2+
∫
Γ
φ′ε
(
uε
)(
uε
)+

∫
Ω
fuε = 0. (3.21)

Estimate (3.19) becomes

1
2

∥∥uε−u∥∥2
H1(Ω) ≤

∫
Γ
φ′ε
(
uε
)(
uε
)
. (3.22)

Hence, we obtain the a posteriori error estimates.

For the choice (1.1) and (1.2), we have

φ′ε(t)=




0 if t ≥ 0,
t
ε

if −ε ≤ t ≤ 0,

−1 if t ≤−ε.
(3.23)

The a posteriori error estimate is

1
2

∥∥uε−u∥∥2
H1(Ω) ≤

∫
[uε≤−ε]

∣∣uε∣∣+
∫
[−ε≤uε≤0]

∣∣uε∣∣2

ε
. (3.24)
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For the choice (2.4), we have

φ′ε(t)=




0 if t ≥ 0,

t√
t2+ε2

if t ≤ 0.
(3.25)

The a posteriori error estimate is

1
2

∥∥uε−u∥∥2
H1(Ω) ≤

∫
[uε≤0]

∣∣uε∣∣2√
u2
ε+ε2

. (3.26)

4. Application. Consider the following variational inequality problem:

Find u∈K, a(u,v−u)+〈f ,v−u〉 ≥ 0 ∀v ∈K, (4.1)

where a(·,·) is defined by

a(u,v)=
∫
Ω
∇u·∇v+

∫
Ω
u·v, u,v ∈H1(Ω),

K = {v ∈H1(Ω) : v ≥ 0 on Γ
}
.

(4.2)

It is well known that problem (4.1) admits a unique solution (see [3]).

We write the obstacle problem (4.1) in a new form.

Theorem 4.1. Let (uα) (α ≥ 0, α → 0) be the solution of the following

problem—called penalised problem:

Find uα ∈H1(Ω),

a
(
uα,v−uα

)+ϕα(v)−ϕα
(
uα
)+〈f ,v−uα〉≥ 0 ∀v ∈H1(Ω),

(4.3)

where ϕα is the functional defined by

ϕα(v)= 1
α

∫
Γ
v−, v ∈H1(Ω). (4.4)

Problem (4.3) admits a unique solution and (uα)(α≥0) solution of (4.3) converges

to u solution of (4.1) when α→ 0.

Proof (see [2]). The functional ϕα, being nondifferentiable on H1(Ω), is

approximated by a sequence of differentiable functionals

ϕα,ε(v)= 1
α

∫
Γ
φε(v)dx, (ε ≥ 0,ε �→ 0). (4.5)
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The regularized problem is

Find uα,ε ∈H1(Ω),

a
(
uα,ε,v−uα,ε

)+ϕα,ε(v)−ϕα,ε
(
uα,ε

)+〈f ,v−uα,ε〉≥ 0 ∀v ∈H1(Ω).
(4.6)

Problems (4.3) and (4.6) are, respectively, equivalent to

uα ∈H1(Ω) : a
(
uα,v−uα

)+ 1
α

∫
Γ

(
v−−u−α

)
dx

+
∫
Ω
f
(
v−uα

)
dx ≥ 0 ∀v ∈H1(Ω),

uα,ε ∈H1(Ω) : a
(
uα,ε,v−uα,ε

)+ϕα,ε(v)−ϕα,ε
(
uα,ε

)
+
∫
Ω
f
(
v−uα,ε

)
dx ≥ 0 ∀v ∈H1(Ω).

(4.7)

We can similarly proceed to drive the a posteriori error estimates; then, for the

choice (1.1) and (1.2), we have

φ′ε(t)=




0 if t ≥ 0,
t
ε

if −ε ≤ t ≤ 0,

−1 if t ≤−ε.
(4.8)

The a posteriori error estimate is

1
2

∥∥uα,ε−uα∥∥2
H1(Ω) ≤

1
α

∫
[uα,ε≤−ε]

∣∣uα,ε∣∣+ 1
α

∫
[−ε≤uα,ε≤0]

∣∣uα,ε∣∣2

ε
. (4.9)

For the choice (2.4), the a posteriori error estimate is

1
2

∥∥uα,ε−uα∥∥2
H1(Ω) ≤

1
α

∫
[uα,ε≤0]

∣∣uα,ε∣∣2√
u2
α,ε+ε2

. (4.10)

5. A posteriori error estimates for regularized discrete problem. Let Vh
be a finite element space approximating H1(Ω). Then, the finite element solu-

tion uh ∈ Vh for the obstacle problem (4.1) is determined from the following

problem:

Find uh ∈ Vh, uh ≥ 0 on ∂Ω,

a
(
uh,vh−uh

)+〈f ,vh−uh〉≥ 0 ∀vh ∈ Vh, vh ≥ 0 on ∂Ω.
(5.1)
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If we use the penalisation method, then the solution uh of problem (5.1) is the

limit when α tends to 0 of the solution uα,h of the following problem:

Find uα,h ∈ Vh,
a
(
uα,h,vh−uα,h

)+ϕα
(
vh
)−ϕα

(
uα,h

)+〈fh,vh−uα,h〉≥ 0 ∀vh ∈ Vh.
(5.2)

We can similarly proceed as in [2] to prove the convergence of the finite element

approximations and to have a priori error estimates.

The regularized problem of (5.2) is

Find uα,h,ε ∈ Vh,
a
(
uα,h,ε,vh−uα,h,ε

)+ϕα,ε
(
vh
)−ϕα,ε

(
uα,h,ε

)+〈fh,vh−uα,h,ε〉≥ 0 ∀vh ∈ Vh.
(5.3)

We can similarly prove that (5.3) has unique solution and its solution converges

to the corresponding solution of problem (5.2).

By the duality theory on the discrete problems, we prove the following a

posteriori error estimates.

For the choice (1.1) and (1.2), the a posteriori error estimate is

1
2

∥∥uα,h,ε−uα,h∥∥2
H1(Ω) ≤

1
α

∫
[uα,h,ε≤−ε]

∣∣uα,h,ε∣∣+ 1
α

∫
[−ε≤uα,h,ε≤0]

∣∣uα,h,ε∣∣2

ε
.

(5.4)

For the choice (2.4), the a posteriori error estimate is

1
2

∥∥uα,h,ε−uα,h∥∥2
H1(Ω) ≤

1
α

∫
[uα,h,ε≤0]

∣∣uα,h,ε∣∣2√
u2
α,h,ε+ε2

. (5.5)
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