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CONTINUOUS DEPENDENCE OF SOLUTIONS
IN MAGNETO-ELASTICITY THEORY
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We prove continuous dependence on the intensity coefficient and continuous de-
pendence on the external data in the theory of magneto-elasticity. We do not re-
quire the Lamé coefficients to be positive. We use logarithmic convexity arguments
similar to those of Ames and Straughan (1992) in classical thermoelasticity.
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1. Introduction. In recent years, much attention has been directed to the
knowledge of existence, uniqueness, and continuous dependence in several
thermomechanical situations. We recall the book of Ames and Straughan [2]
where the energy method is widely considered as a tool to obtain qualitative
properties of solutions. We focus our interest on coupling elastic effects with
magnetic effects. A derivation of the equations and recent papers on magneto-
thermoelasticity and isothermal magneto-elasticity can be found in [3, 4, 5, 6,
7,8,9,10, 11, 12].

In this paper, we consider the dynamical theory of magneto-elasticity. The
system of equations is

pu —pAu—(A+pu)Vdivu— [V xh]xH = pm, (1.1)
Bh;+V x[Vxh]-BVx[vxH] = pr, (1.2)
divh =0, (1.3)

where u denotes the displacement, v = u; is the velocity, and h the magnetic
field. A (known) constant magnetic field is denoted by H = (H,0,0), p, «, and
B are positive constants, and m and r are the supply terms.

Here and from now on, we use summation and differentiation conventions:
subscripts preceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate; summation over repeated subscripts
is implied.

The logarithmic convexity method is a very useful source of information
about the qualitative behavior of the solutions of several kind of equations and
systems (see, e.g., [2]). In particular, the method has been used to analyze the
behavior of the solutions in classical thermoelasticity. Ames and Straughan [1]
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applied a logarithmic convexity technique to achieve continuous dependence
on the supply terms and structural stability on the coupling term for the classi-
cal linear theory of thermoelasticity. They did not require the elasticity tensor
to be sign-definite. All they needed was that the elasticity coefficients were
symmetric.

The aim of this paper is to obtain a continuous dependence result on the
intensity of the vector field H and the supply terms. Our main tool is also the
logarithmic convexity method.

In this paper, we restrict our attention to homogeneous and isotropic mate-
rials. It is worth recalling that the extension to inhomogeneous and anisotropic
materials would be straightforward.

Let B be a bounded domain in the three-dimensional Euclidean space whose
boundary 0B is smooth enough to allow the application of the divergence theo-
rem. We assume that the set of equations (1.1), (1.2), and (1.3) holds in Bx (0,t;)
for a time value t; < o, and we assume the boundary conditions

u=0, h-n=0, [Vxh]xn=0, onoBx(0,x), (1.4)

for all t > 0. Here and from now on, we denote by n the normal vector to the
boundary directed to the exterior. We impose the initial conditions

u(x,0) =f(x), v(x,0)=gx), h(x0)=hy(x), inB. (1.5)

For later use, we recall that the following inequality
L (hihi + hajh)dV < CJB (hij— i) (hij—hy)dV (1.6)

holds with any vector field (h;) that satisfies (1.3) and the second and third
equalities of (1.4). Here, C is a constant that depends on the domain B.

Here are the contents of the paper. In Section 2, we prove some lemmas
and we state some other preliminaries. In Section 3, we prove the continuous
dependence result.

2. Preliminaries. We denote by (uil),hil)) the solution corresponding to
the external data (m!",»") and intensity HV). Let (u\*,h{”’) be the solution
corresponding to the external data (mEZ) , rl-(z) ) and intensity H®', We introduce
the notation

wi=u?—u,  L=h?-n",  K=H®-HD, = K=(K,0,0),
Fi = p(mf) —mil)), R = p(rim —rim).
(2.1)
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It follows that (w;, ;) satisfies the system

PW it —UAW— A+ ) Vdivw — [V x1] xHY —x[Vxh®?P [ xK =F, (2.2)
Bl +V x[Vx1]-BV x [WxHP] - BV x[v? xK] =R, (2.3)

divl =0, (2.4)
the boundary conditions
w=0, 1'n=0, [Vx1l]xn=0, ondBx(0,0o), (2.5)
and the initial conditions
w(x,0) =w(0,x) =1(x,0) =0, inB. (2.6)
LEMMA 2.1. Let
t
Vi(t) = J J [PWW + UVW - VW + (A + 1) (divw)? + ol - 1]av ds. (2.7)
0Js

Then,

Vit)=2 Jot L(t -5 [Fiu'}i +Sili+ oK (1 (R — h$D) + i3 (RE) - 1Y)

+Ko(h (—usd - uf)) +Lud) + 15ull) (2.8)
(6.4
“3 (Lij=Li) (L = lj,i)]dv ds,
where
(64
Si(t) = ERi(t). (2.9)

PrOOF. Differentiate twice and use the evolution equations and the bound-
ary conditions to obtain

2 .
%‘z/ = ZJ [Hwi i j+ A+ pwi iy j + pwab; + alili|dV
B
=2 L [Hwi jwij+ A+ pw;w; ;]1dV
_2L[“wi,jwi,j+()‘+U)wi,iwj,j—0‘Hl(Wz(12,1—11,2)+w3(13,1—l1|3))]dV
i (1@ @Y L (2 (2)
+2<[B [Flwl+0(K(w2 (hz‘l hl,Z) +W3 (h3’1 h1’3))]d\/

2 L [&H (1 (Lot — L1s) 4103 (L1 —L13))]dV
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w2 it Ka(tn (- uh - ah) + L + 1)
(&4

B
=2 L} [Fiu'/i +Sili + ¢K (u'lz (h%) - hf%) + W3 (hé?l) — h(l?s)))

(li,j - lj,i) (li,J - lj'i)]dv

. . . . (04
+K(X(ll (7%&?2)71/1,(3??1) +lzu‘(2?1)+lgu(3?1)) - (li,j*lj,i) (li’jflj’i)]dv.

B
(2.10)
The lemma follows after two quadratures and from the equality
t s t
J (I f(T)dT)dS :J (t—5)F(s)ds, @.11)
o \Jo 0
which is satisfied by every function f(s). O
It will be useful to introduce the notation
t
Pi(t) = J li(s)ds. (2.12)
0
To obtain our results, we define the function
t P
H(t) = IO ,[B (pwiwi + E (t—13s) (Pl'_] —Pj,i) (Pi’j —Pj,i)>dVdS. (2.13)
It is clear that
dH t ) x
E =2 J;) JB (pwiwi + ﬁ (Pl',j —Pj,i) (Pi,j —Pj,i)>dVdS. (2.14)

The second derivative of the function H is given in the next lemma.

LEMMA 2.2. The second derivative of the function H is

f—tlj - 4]; | i+ & 6= 5) (o= 13a) g ) |avas
4 [ e [ i) + ok (aos (RS~ E) s (2 i2))
+ Kool (- - ) + L) + 1sul)) |dvds
w2 [(Fwir Qi) + ok (wa (n) - 1) +ws (5 - ni3)) Jav
v2 | [Ree(tn () + ol + 1)

—Ka(Li(=f33—f22) +1afo +13f3,1)]dV,
(2.15)
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where

t
Qi(t) = jo Si(s)ds. (2.16)

PROOF. A direct differentiation gives

d?H t o t .o
FTE ZJO JB pwiwid\/ds+2j0 JB [pwiwi+ E(Pi,j —Pji) (L —lj,i)]d\/ds.

(2.17)

Now, we make some calculations to determine the evolution of the second
integral. If we multiply (2.2) by w;, and integrate over B, we obtain

J pwiwid\/
B
=- JB [wi jwi j+ A+ ) wiw; j - «H (wo (Lo~ o) +w3 (I3~ 3)) | AV

+ | [Fw+ k(w2 (R - 1)+ ws (hE - ni3)) Jav.
(2.18)

If we integrate (2.3) with respect to the time parameter, multiply it by [;, and
integrate over B, we obtain

%JB Lil;dV

- _ JB [aHl (wa(log —lip) +ws(lsn—Liz)) — « (Pij—Pji)(Lij— lj,i)]dv

B
,[I:Qll +K0((ll< 7/L22) u33)+12u +137/"(3?1))

—Ka(li (= f33—fo2) + o fon +l3f3,1)]dv
(2.19)

It follows that

. X
JB (pwiwi + B (Pij—Pji)(Lij— lj,i))dv
J[uwljwlj+(A+u)w,leJ %lili]dv
() () (2.20)
+L[ Fiw;+Q;l; +0(K(w2(h2 -h% )+w3(h -h ))]dv
s | TRl (- - ud) + ) + 1)
B

—K“(ll(—f&a—fz,z) +hfon +laf3,1)]dV
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Then, we obtain

d’H t .
ae 4J0 L pww;dvVds
t oY
- ZJ J [uwi,jwi,j + (A + u)wi,iwj_j + Elili +pu’ziwi]dVds
0JB
w2 [(Fwi+ Qito) + ok (w2 () -1 2) + w3 (1 - n3) ) Jav
B
w2 [Ke(b(-ul-ul) +Luf + Lug)
B
—Ka(Li(=fa3—fo2) +lafor + l3f3,1)]dV.
(2.21)
Lemma 2.2 is a consequence of Lemma 2.1 and equality (2.21). O

We now state alemma concerning the behaviour of the magnetic field, which
will also be used in the next section.

LEMMA 2.3. There exist three positive constants A, B*, and C* such that
t ty
J J I;l;dVds sj J [AS;S; +B* pw; + C*K?]dV ds, (2.22)
0Js 0o Js

fort <t.

PROOF. In view of (2.3), we have

[fanavace 3 v
-2 [ ], )[Rt~ o130 s~ 13

~BHY (W (Ioy —112) +1r3(l31 —113))

—BK (18” (Lg — L 2) + 8 (131 — 1 3) ) [dV ds.
(2.23)
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The use of the arithmetic-geometric mean inequality leads to the following
estimates:

t t
J j (t—s)Ril;dV ds < %J J tiRiR; dVd5+—J J Ll dv ds,
0Js 0
t
JO JB(t—S)(WZ(lZ,l—11,2)+w3(l3,1—ll,3))dVd5
€ t
< ?ZJ() JB tl(li'j—lj,i)(li’j—lj'l)dVdS+ Z_QJ J thhww;dVds, (2.24)

t -
J J (t—S)K(uéz)(lz,l—11,2)+u3 (131—113))dVdS
0JB

Lot
S%J 4[ thZdVdSJr—J J tlu(Z llj_lj l)(llj lJ l)dVdS
0

where €1, €2, and €3 are arbitrary positive constants.

If we assume that u(Z) is uniformly bounded on the interval [0, t;], we can
make a suitable choice of the parameters €; (i = 1,2,3) to obtain the estimate
(2.22), where A, B*, and C* can be easily computed. O

3. Continuous dependence. In this section, we obtain continuous depen-
dence and structural stability results. We assume that the functions

sup ‘h@ , sup ‘um , sgp ‘ufj) —fij ‘ 2, (3.1)

are uniformly bounded by a constant M.
Here, we introduce a family of functions

Hy(t) = H(t) + w, (3.2)

where w is an arbitrary positive constant.

LEMMA 3.1. Let
t
w:J J (FiF; +2K? +5;S; +Q;Q;)dV ds. (3.3)
0 JB

Then, there exists a positive constant & such that

Hy > —EHg,, (3.4)

d*Hy (de )2
dt? dt

fort <t.



236 F. BOFILL AND R. QUINTANILLA

PROOF. From the definition of H, and Lemma 2.2, it follows that

He

d*Hy (de)Z

acc \adt

x

B
t

H, (4 JO L(t — ) (g + $ile) + ok (12 (R — 03 + 13 (R~ 13} )

+ Kool (-l - ) + Lud + 150l |dvds

t
=4N? +4w J() JB <pu'/iwi+ (t—s5) (li,j —lj,i)(li’j—lj,i)>d‘/d5

+zj0t L [(Frwi+ Qulo) + ok (w2 (R~ ) +1w3 (hE ~h3) ) |av
v2 [ [Ko(ts(-ufl ) +ufd + L)

_K‘X(ll(_f3,3 _f2,2) +lzf2,1 +l3f3,1)]dVdS),

(3.5)
where
N?=NLI-1I3,
= Jot L; (pwiw” (t_s)%(PiJ_Pj,i)(Pi,j_Pj,i))dVdS,
I - Iot | [P+ (t )% (b~ L) (1 o avas, (3.6)
Is = Jot JB (pwiwi+ (t—s)%(Pi,j —Pj,i)(zi,j_ljvi)>dms_

In view of the Schwarz inequality, we have N2 > 0.

Now, we estimate some integrals which are on the right-hand side of equality
(3.5). After some uses of the Holder inequality and inequality (1.6), we can
obtain the existence of constants a; such that

t t 1/2 t 1/2
J J (t—s)Fiw;dVds sm(J J pu‘ziu'zidVds> (J J FiFidVdS) ,
0JB 0JB 0JB

L: JB(t—s)SilidVds < az(ﬂ JB(t—s)(li,j—lj,i)(li,j—lA,-,i)dVds>l/2

t 1/2
X (J J SiSidVds> ,
0JB

[[ [ ek (s (g3 ~ni2) 4100 (03 - i2) ) v s

t 1/2 t 1/2
sag(J I pwiwidVds) (J J KZdVds) ,
0JB 0JB
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) :
Jj(t 5)Ko< 11 u22 u33)+lgu +13u )dVds

< M(JO L(t—s)(lu 1) (e —zj,i)dv(;zs)llz

t i 1/2
X(J JKZdVds> )
0Js

(3.7)
From (3.7), it follows that
t
jo Lu_s)[(m +8iLi) + ok (w2 (R~ h) + 13 (R~ h3))
+Ko<(ll( u<222) u(3 3) + lzu(Z) + lsu(Z))]dVds
(3.8)

t 1/2
SD(J J (pwiwidVdS+(t75)([1‘"7'7ljyi)(li’j7[j’i))dVdS)
0JB
t 1/2
X(J J (FiFi+SiSi+K2)dVdS> ,
0JB

where D is an easily computable constant that depends on the constitutive
coefficients, the initial conditions, the time t;, and the domain.
The arithmetic-geometric mean inequality implies that

t
4H,, JO JB(t—s) [ (Fiiri + $ili) + ok (w2 (R — () + 103 (RS — 1Y) )
+K¢x(l1( u<222) ugzg)+lgu(2)+lgu<2))]dVds
t
SD2H5)+4<J J (p’bi/iwidVdS+(t—S)(li,j—lj,i)(li,j—lj,i))dVdS)
0JB

t
X(J J (FiFi-l—SiSi-i-Kz)dVdS).
0JB

(3.9)
Similarly, we can obtain several constants b; such that
t t 1/2 t 1/2
J J FiwidVdssh(J J pwiwidVds> (J J FiFidVds> ,
0JB 0JB 0JB (3.10)
t t 12, pt 1/2
J J Qilidv ds < (J J lAlAdVds) (j J QiQidVds) ,
0JB
J j ok (w2 (R —n3)) +ws (R - hY))dvds
172 , ot 1/2 (3.11)
§b3(I J pw'widVds) (J J szVds) ,
0JB
J I Ko( l1 uzz u(f%) (- f3,3—f2,2))
+1 (u) = fon) +1s(u) - f31)) |dv ds (3.12)
/2

(uf?) -
m(J J llldVds> (J JBKZdVdS>]/2.
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Thus,

ot [ [ (e ok (w5~ E2) 5, (5 i3 v s
- t (3.13)
< EH +Hw(J0 L} (FiFi+K2)dVdS>.

In (3.13), E is a constant that can be computed in terms of the constitutive
coefficients, the initial conditions, the time t;, and the domain.
In view of the estimates (2.22), (3.10), and (3.13), we can see that

2H,, Jot JB QilsdV ds
< 2Hw(Lt JE (ASiSi+C*K2)dVds)l/2(Lt JE QiQidVds)1/2
+2H,, (B*H pwiwid\/ds)l/z(ﬂ JB QiQidVds)l/z,
2ijj [Koe(1((~usd ~uld) + (fs3+ f22) (3.14)
1 (us) — fon ) +1s(u)) = f31) |V ds

1/2 t 1/2
SN*HQ,<J J (ASiSi+C*K2)dVds> (J JK%ins)
0JB 0JB

t 1/2 t 1/2
+N*Hw(B*J j pu’)l-u'/idVds> (J JKZdVds> .
0JB 0JB

Again, N* is an easily computable positive constant. If we use the arithmetic-
geomeftric mean inequality, we obtain

2HwJI Qili+ KO((h(( uzz u33> (f33+f22))

+l2<u21 f21>+l3(1xl31 f31))]>dVdS

< 4F*Hg + (H ((C*+1)K? + AS;S; + QiQi)dVds) 319

B*‘,ZFZH2 +4<J J pUW; wldVds)(J J (K> +Q;Q; )d\/ds)

where F can be computed in terms of the constitutive coefficients, the initial
conditions, the time t;, and the domain.

From (3.5), (3.9), (3.13), and (3.15), we conclude that we can explicitly deter-
mine a constant & satisfying (3.4). g

THEOREM 3.2. Let (wj,l;) be a solution of the problem determined by system
(2.2), (2.3) with initial conditions (2.4), and boundary conditions (2.5). Then, there
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exists a positive constant M* such that

ty 1-t/t1
Hy (t) sM*(L JB (FiFi+2K2+SiSi+QiQi)dVd5> , (3.16)

for all t < t,, where w is given in (3.3).

PROOEF.

then

If we define the function

Thus, according to (3.4),

P(t)=ln[Hw(t)exp(%§t2)], (3.17)
ar d’H, (dHy)\? )
ez~ Ho (H‘“ at? _( dt ) +§H‘“)' 518
dp

Jensen’s inequality gives

He(t) < [Hew(0)]' ™" [Hy (t1)]"" exp [%Et(tl —t)], (3.20)

for t € [0,t1]. The theorem is proved taking

M* =max(1,Hw(t1))eXp[%§tf]. (3.21)
O
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