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Recently, Tautenhahn and Hamarik (1999) have considered a monotone rule as a
parameter choice strategy for choosing the regularization parameter while con-
sidering approximate solution of an ill-posed operator equation Tx = y, where T
is a bounded linear operator between Hilbert spaces. Motivated by this, we pro-
pose a new discrepancy principle for the simplified regularization, in the setting
of Hilbert scales, when T is a positive and selfadjoint operator. When the data y
is known only approximately, our method provides optimal order under certain
natural assumptions on the ill-posedness of the equation and smoothness of the
solution. The result, in fact, improves an earlier work of the authors (1997).
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1. Introduction. Tikhonov regularization (cf. [2]) is one of the most widely
used procedures to obtain stable approximate solution to an ill-posed operator
equation

Tx =, (1.1)

where T : X — Y is a bounded linear operator between Hilbert spaces X and
Y. Suppose that the data y is not exactly known, but only an approximation
of it, namely 7, is available. Then, the regularized solution X,, by Tikhonov
regularization, is obtained by minimizing the map

X — [ Tx - 311 + ll x|? (1.2)

for @« > 0. For vy € R(T) + R(T)+, if X is the generalized solution of (1.1), that
is, X = Tty, where Tt is the Moore-Penrose generalized inverse of T, then
estimates for the error || X — X«|| are obtained by choosing the regularization
parameter « appropriately. It is known that (see, e.g., [2]) if X € R((T*T)V) for
some v > 0 and if ||y — ¥| < 6 for some noise level § > 0, then the optimal
order for the above error is O (6*), where y = min{2v/(2v+1),2/3}.

In order to improve the error estimates available in Tikhonov regularization,
Natterer [9] carried out error analysis in the framework of Hilbert scales. Sub-
sequently, many authors extended, modified, and generalized Natterer’s work
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to obtain error bounds under various contexts (see, e.g., Natterer [9], Hegland
[3], Schroter and Tautenhahn [12], Mair [6], Nair et al. [8], and Nair [7]).

If T is a positive and selfadjoint operator on a Hilbert space, then the sim-
plified regularization introduced by Lavrentiev is better suited than Tikhonov
regularization in terms of speed of convergence and condition number in the
case of finite-dimensional approximations (cf. Schock [11]).

In [1], simplified regularization in the framework of Hilbert scales was stud-
ied for the first time and obtained error estimates under a priori and a poste-
riori parameter choice strategies. The a posteriori choice of the parameter in
that paper has a drawback that it can yield the optimal rate only under certain
restricted smoothness assumption on the solution.

In this paper, we propose a new discrepancy principle, for choosing the reg-
ularization parameter «, for simplified regularization in the setting of Hilbert
scales, which eliminates the drawback of the method in [1] yielding the optimal
order for a range of values of smoothness. The discrepancy principle of this
paper is motivated by a recent procedure adopted by Tautenhahn and Hamarik
[13].

2. Preliminaries. Let H be a Hilbert space and let A: H — H be a bounded,
positive and selfadjoint operator on H. Recall that A is said to be a positive
operator if (Ax,x) > 0 for every x € H.For v € R(A), the range of A, consider
the operator equation

Ax =y. (2.1)
Let X be the minimal norm solution of (2.1). It is well known that if R(A) is not
closed in H, then the problem of solving (2.1) for X is ill-posed in the sense that

small perturbation in the data  can cause large deviations in the solution.
A prototype of (2.1) is an integral equation of the first kind,

1
J k(s,t)x(t)dt =y(s), 0=<s<1, (2.2)
0
where k(-,-) is a nondegenerate kernel which is square integrable, that is,
1,1 >
J J |k(s,t) | dtds < oo, (2.3)
0Jo

satisfying k(s,t) = k(t,s) for all s, t in [0, 1], and such that the eigenvalues of
the corresponding integral operator A: L?[0,1] — L?[0,1],

1
(Ax)(s) = Jo k(s,t)x(t)dt, 0<s<1, (2.4)
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are all nonnegative. For example, consider the kernel k(-,-) defined by

<|(1—s)t, if0<s<tx<l,
k(s,t) = (2.5)

(1-t)s, if0<t<s<]l1.

Clearly, k(s,t) = k(t,s), so that A : L?[0,1] — L?[0,1], defined as in (2.4), is
a selfadjoint operator. Moreover, the eigenvalues of this operator are 1/n?7r?
for n =1,2,... (see Limaye [5, page 329]).

For considering the regularization of (2.1) in the setting of Hilbert scales,
we consider a Hilbert scale {H;};cr generated by a strictly positive operator
L:D(L) — H with its domain D (L) dense in H satisfying

[ILx]| = [Ix|l, xe&D(L). (2.6)

Recall (cf. [4]) that the space H; is the completion of D := ﬂf:OD(Lk) with
respect to the norm ||x|¢, induced by the inner product

(w,v); = (L*u,L'v), wu,v €D. 2.7)

Moreover, if f <y, then the embedding H, — Hpg is continuous, and therefore
the norm || - || is also defined in H, and there is a constant cg,; such that

Ixllg < conllxlly, x€H,. (2.8)

We assume that the ill-posed nature of the operator A is related to the Hilbert
scale {H;}¢er according to the relation

cillxll-a = llAx |l < c2llxll—a, x €H, (2.9)

for some positive reals a, ¢, and c».
For the example of an integral operator given in the previous paragraph, one
may take L to be defined by

Lx:= > j*{x,u;j)u;, (2.10)
i

where u; () := V2sin(jmrt), j € N, and the domain of L is

8

D(L) := <|xeL2[0,1]: j4|<X,uj>|2<oo]>. (2.11)
j=1

In this case, it can be seen that

th{xeLz[O,l]:Zj4t|(x,u‘,-)\2<oo]» (2.12)

Jj=1
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and the constants a, c;, and ¢» in (2.9) are givenby a =1 and ¢; = ¢» = 1/
(see Schroter and Tautenhahn [12, Section 4]).

As in [1], we consider the regularized solution of (1.1) as the solution of the
well-posed equation

(A+al’)xy =y, o«>0, (2.13)

where s is a fixed nonnegative real number.
Suppose that the data y # 0 is known only approximately, say ¥ # 0 with
[l =¥l < 6 for a known error level 6 > 0. Then, in place of (2.13), we consider

(A+ L)Xy = 7. (2.14)

It can be seen that the solution X, of the above equation is the unique mini-
mizer of the function

x — (Ax,x) = 2(y,x)+ «{L*x,x), x €D(L). (2.15)
We also observe that taking
As:=L7PAL, (2.16)
(2.13) and (2.14) take the forms
L2 (As+ )L xy =y, L (As+al)L%y =7, (2.17)
respectively. Note that the operator A defined above is positive and selfadjoint
bounded operator on H.
One of the crucial results for proving the results in [1] as well as the results
in this paper is the following result, where functions f and g are defined by

f(&)=min{c!,ct}, g(t)=max{cl,ci}, teR, |t| <1, (2.18)

respectively.

PROPOSITION 2.1 (see [1, Proposition 3.1]). Fors >0 and |v| <1,

% A%
f(E)HXva(Ha)/zSHA}’/ZXHﬁg(i)HXva(sm)/z, xeH (219

Using the above proposition, the following result has been proved in [1].

THEOREM 2.2 (see [1, Theorem 3.2]). Suppose thatx € H;,0 <t < s+a, and
« > 0. Then

1% = Xall = s, 00! x| + g (5) 0@/ SH D, (2.20)
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where
In particular, if & = co6S+D/t+a) for some constant ¢y > 0, then
||% = Xall < n(s, )84/, (2.22)
where
n(s,t) =max { (s, )%l y(s)cg™ L (2.23)
Let Ry = (As + «I)~!. We will make use of the relation
[[ReAT|| < ™1, «>0,0<T<1, (2.24)

which follows from the spectral properties of the selfadjoint operator Ag, s > 0.

In [1], the authors considered parameter choice strategies, a priori and a
posteriori, which yield the optimal rate O (§'/({+4)) if X € H, for certain specific
values of t. The a posteriori parameter choice strategy in [1] is to choose & such
that

o (A + o) PTIL x| = K, (2.25)

where k > 1 and » € X satisfy 0 < ké < || ]l—5,2. Under the above procedure,
the optimal order O (5!/(*+®) is obtained for t = s + p(s +a).

In the present paper, we propose a new discrepancy for choosing the regu-
larization parameter & which yields the optimal rate

||% —Xal| = O (8" 1D). (2.26)

3. The discrepancy principle. Let s and a be fixed positive real numbers.
For @ > 0 and nonzero x € H, let

(X||R§/2A;S/(ZS+ZR)L_S/2X|\2

[[RRAS 20 L=s/2xc]|

d(a,x) = (3.1)

Note that, by assumption (2.9), [[R2As*/®* 2 [=s/2x|| is nonzero for every
nonzero x € H so that the function ®(c,x) is well defined for every o > 0
and for every nonzero x € H.

We assume that the available data y is nonzero and

ly->l=<é6 (3.2)
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for some known error level 6 > 0. Our idea is to prove the existence of a unique
« such that

d(x,¥)=co (3.3)

for some known ¢ > 0.
In due course we will make use of the relation

- —s/(2542a) | —s5/2 ( =S )
£ (57 7)1 < 114 LX< g( 550 )Ixl - B4

which can be easily derived from Proposition 2.1.
First we prove the monotonicity of the function ®(x,x) defined in (3.1).

THEOREM 3.1. For each nonzero x € H, the function x — ®(x,x) for « > 0,
defined in (3.1), is increasing and it is continuously differentiable with ®' (¢, x) >
0. In addition

hr%qn(a,x) =0, lim®(xx)= [|Ags/Gstea) [ =s/2x||. (3.5)
o— — 00

PROOF. Using (3.1), one can write

d
—
A (¢, x)
~ (d/de) (92 (x,x))
2P (¢, x)
_ 20(||R§‘A;S/(ZS+ZQ)L_S/2X||2||R§/2A;S/(25+2a)L_S/2X||2
2d||RY/ZASSI 2 —spa x| (3.6)
(d/do) [ | |[RYZ AT Z5+20 Los/2x| 2]
||RaA;s/(25+2a)L_S/2xH3
0(2{|Ri/2AS—S/(25+2a)L,S/2X|\4(d/do‘)[||R§AS—S/(2S+2a)L,S/2x||2]
— 20(||RZ/2AS—S/(2s+2u)L,S/2x||2||R§‘AS—S/(23+2a)L,S/2x||3
Thus,
a
—
dx (¢, x)

||R§A;5/(23+2u)L,S/2X||Z(d/do()[o(||Rl5;/2A;S/(ZS+2a)L,5/2x||2]
= HRE(A;S/(ZS+2[1)L7S/ZXH3
0(||R(3X/2AS—S/(25+2a)L,5/2X||2(d/d(x)[|{RE(AS—S/(ZS+2{1)L,S/2X||2:|
2||R§A§S/(25+2“)L*S/2x||3 .

(3.7)
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Let {E) :0 < A < a} be the spectral family of A, where a = ||A¢||. Then

difx (o(’|R§/2A;S/(25+2a)L—S/2x||2)

_ 4 Ja — & A(E\L52x, L)
T do /(s+a) 3 4AEA ;
do Jo AS/SHa) (A + &) (3.8)
@ 1 3
_ —5/2 —s/2
_Jo [2\5/(5+“>(2\+o<)3 7)\S/<S+a)(2\+(x)4]d<EAL T LX)
_ ||R§(/2A;s/(25+2a)L—5/2x||2 —30(||R§A;S/(2S+2“)L_S/2x{|2.
Similarly
(IR AT L) = | RZATI RO LS 22 (3.9

Therefore, from (3.7), using (3.8) and (3.9), we get

a
ﬁlb((x,x)

_ HRg(AS_S/(Z“za)L_S/szZ
[IIRY2 A5/ 2220 st~ 3| [R3AT 2L ] (310
||R§A;S/(25+2mL’S/2X||3

. 2O(||R§/2A;S/(ZS+ZM)L_S/2X||2’|Rg(/2A;S/(2S+2a)L_S/2X||2
||R§A;5/(25+2a)L_S/2xH3 .

The above equation can be rewritten as

i<I>(o<,x)=‘I’l((x,x)+‘I’2(o(,x), (3.11)
dx

where

Y1 (e, x)
_ ||R§A;s/(2s+2a)L—s/2x||2
[|1R§/2A;s/(25+2a)L_S/2X||2 3 o<||R§A§S/<2”2“)L‘5/2x||2]

||R§(A§S/(2”2“)L*S/2x|{3
Yo (x, x) (3.12)

_ (20([|{R;Z’/ZA;S/(Z”Z“)L’S/ZM|2
% ||Rg(/2A;3/(23+2u)L75/2X||2 _ ||R§AS—S/(ZS+2a)L75/2x||4])

1
X ||R§A;5/(25+ZQ)L_S/2X||3 .
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3/2 A—5/(25+2a) T —5/2 1|2
(x/ ASS/(S ayr-s/ XH

_ <(AS+O(I)—3A;5/(25+2u)Lfs/2X,A;s/(2S+2a)Lfs/2X>’

2 A-s/(2s4+2a) T —5/2 1-||2
(XASS/( S+ a)L s/ XH

= ((Ag+ O(I)*3AS—S/(ZS+211)L—S/2X’ (As + O(I)*lAS—S/(ZSﬁZa)L—S/Zx),

we have

Also,

||Rg/2A;3/(23+2u)L75/2X||2 _ o‘|’RiA;s/(23+2a)L—s/2xH2

_ ||Asa/(25+2a)Rg(L—s/2X||2_

_ — 4
||R§ASS/(25+2a)L S/ZXH
— [<RiA;s/(23+2u)Lfs/2x’RE(AES/(ZSJrZa)L—S/ZX)]Z
_ _ 5 _ _ 2
— [(R;?/ZAS s/(2s+2a)L S/ZX,R&/ZAS s/(2s+2a)L 5/2X>]

— — 2 — — 2
< ||Rg(/2ASS/(25+2u)L s/2xH ||Rg(/2A55/(25+2a)L 5/2x|| .

Hence

Y (e, x) =0, ¥ (x,x) =0,

so that

i(<I>(o<,x)) =¥ (e, x) +¥o(cx,x) = 0.
dx

To prove the last part of the theorem we observe that

Since

0(2||R‘2)(A;s/(2s+2a)Lfs/2xH —CI)(O(,X)

0(2||R§A;S/(2s+2a)L75/2x||2 _(X||R3(/2AS—S/(25+241)L75/2X||2
||R§A;S/(ZS+M)L‘5/2x|| .

0(2||R§A;5/(23+2u)[‘7s/2x||2
= (x<R§>‘A;s/(25+2a)L—s/2x, O(RD(AS—S/(ZHZM)L—S/ZX),
- - 2

0<||R§/2AS s/(25+2u)L S/ZXH

_ (X<R2(AS—S/(25+211)L—S/2X’AS—S/(25+2a)L—s/2X>’

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and since xRy —I = A;Ry = RyAs, we have
0‘2||R§A;S/(ZS+2a)L7S/2X|| _q)(o(,x)

_O(<R§AS—S/(2$+2&)L75/2X,ASRD(AS—S/(Z.HZa)L,S/Zx)
[[REAT/#20 =s/2x]|

*0(||A?/(ZS+2‘Z)RIZXL75/2X|\2 B
||R§A;S/(2s+2a)L,5/2XH

Hence

o [ A

(1Al +e0)®

(0, x) = &®||REZA;S/ 2 [ =52 x|| >

Also, we have

o‘<R(XAS—5/(ZS+2a)L—s/2x’RE(AS—S/(ZHZa)L,S/Zx)

®(x,x) = |RZAS @20 [ —sp2 x|

< (X||RD‘A;s/(25+2a)L—S/2x||_

Hence

2
<||A3(|)|(+0<> ||A;s/@s2a s/ ||
<®(0,x) < &||RgAFS/ZSH2AI =512 x]).

From this, it follows that

%(i%d)(a,x) =0, g(iglﬁ(a,x) = ||Ags/ st =52 ]|,
This completes the proof.

For the next theorem, in addition to (3.2), we assume that
s/ 20125 = e

for some ¢ > 0. This assumption will be satisfied if, for example,

5 < f(f)
e+ f(s)

vl Fe= (550

2s+2a

since, by (3.2), we have ||y > |||l - §, and by (3.4),

—s/(25+2a) T —S/2 & —-S ) -
lagsiesor=sey) s £ =517,

where f is as in (2.18).
Now, the following theorem is a consequence of Theorem 3.1.

2495

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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THEOREM 3.2. Assume that (3.2) and (3.25) are satisfied. Then there exists a
unique «:= x(6) satisfying

®(x,¥7) =co. (3.28)
4. Error estimates. In order to obtain Holder-type error bounds, that is, er-

ror
bounds of the form

||X~o<_fc||:O(6T) (4.1)

for some T, we assume that the solution x of (2.1) satisfies the source condition
(asin [1, 10]):

X EMp,t = {X € H;: HXH; =< p} (42)

for some t > 0.

LEMMA 4.1. Suppose that X belongs to M, for somet <s, and & := x(5) >0
is the unique solution of (3.28), where ¢ > g(—s/(2s+2a)). Then
c—g(-s/(2s+2a))

& > codsra/tia) co= . 4.3
0 7 g((s—2t)/(2s+2a))p (4.3)

PROOF. Note that by (3.22), Proposition 2.1, and (2.24), we have

B(,7) < &||[Ry AT/ st =52 5|
< o |ReAFS E DL (5 — ) || + | [Re AT/ 524 ALS2 R |
< O(||RO(AS_S/(25+2‘1)L_S/2(5/ _y)H + 0(||RaA§s+2a)/(2s+2a)Ls/2}%||
< ol [Ra AT E 2L (5 - )|
+ 0l||RuA§t+“)/(”“)A§3‘2””25+2"1)LS/2)}||
< [|aRal[||AT*/E2OLTE (3 - )|

+ H(XRaAgHa)/(Sﬂl) ||\|A§372t)/(23+2“)LS/2)%||

—S s—2t
< (t+a)/(s+a)
_g(2S+2a>6+g(23+2a)p¢x '

Thus

_ —S S=2U N\ (tha)/(s+a)
[C g(25+2a>]5s‘q(23+2a)p(x ’ (4.5

which implies

(s+a)/(t+a) _ c—g(-s/(2s+2a))
= o © 0T G(G-20)/(2s+2a))p (4.6)

This completes the proof. ]
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THEOREM 4.2. Under the assumptions in Lemma 4.1,

- t
[ —xal| = 0(5%), k:= ra 4.7)

PROOF. Since x is the solution of (2.13), we have

X-xoq=%—(A+al) 'y

(4.8)
= oL ™2 (Ag+ o) L8R = aLTPRG LYK
Therefore, by (3.4), we have
s ~ ~
f( - Za) 1% = x| < ||cAS/ Cst20 R L 5I2%|. 4.9)

To obtain an estimate for || xA$/* PR L/2% |, first we will make use of the
following moment inequality

IBx|| < [[BYx||""" x|/, 0<u=<wv, (4.10)

where B is a positive selfadjoint operator. Precisely, we use (4.10) with

t t
u=—-, v=1+—, B=aR AT,
a a 4.11)
X = 0(1—t/uRllet/aA)(qsfu)/(Zs+2a)Ls/2)AC_
Then since
HXH < ||A§S_2t)/(25+2a)LS/2)2||
s—2t . s—2t (4.12)
Sg<2s+2a>HLS/ZXHt’”Z Sg(25+2a>p’
we have

H‘XAg/(ZHZa)RD(LS/Z)ACH

= B ] = B ] e

< ||o(zRiAgzMs)/(2s+2a)Ls/2fc||t/<t+a)”X”a/<t+a) 4.13)

< ||o<2R§A;S/(25+2“)L‘S/2y||t/(t+“) HxHa/(t+a>

-2t al(t+a) o
< al(t+a) || 2 R2 A=S/(2s+2a) [ =s/2., ||t/ (t+a)
_g(25+2a) p o R A i

Further, by (2.24) and (3.20),
|{o(ZRiAS—S/(ZSJrZu)LfS/ZyH < ||(X2R§(A;s/(2$+2a)Lfs/2(y _5})”

+ ’|(X2R§A;S/(ZS+2a)L7S/25/H (4.14)
<O0+P(e, 7).
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Therefore, if «:= x(9) is the unique solution of (3.28), then we have
[|o®R2A;S/ 520 [ =512 3| | < (1 +¢)6. (4.15)

Now the result follows from (4.9), (4.13), (4.14), and (4.15). O

THEOREM 4.3. Under the assumptions in Lemma 4.1,

S t
1% =Xall =0(8"), «:

=Tia (4.16)

PROOF. Let x4 and X, be the solutions of (2.13) and (2.14), respectively.
Then by triangle inequality, (2.24), and Proposition 2.1,

\|5€—5<a|| = ch—xaH"'Hxa—;CaH

= [1% = xall+[IL7"2RaL™"*(y = 7|

<l =xall+ 7y sy 148 R =)
<l =xall+ 57 2y AT R/ 0 L2 (= 30
< I =xall+ 75 ey 148 Ralll A 32015 (= 9
<|I% = xal |+ g;(—sjigizio;t))) ~al(sta)
(4.17)
The proof now follows from Lemma 4.1 and Theorem 4.2. O

REMARK 4.4. We observe that unlike the discrepancy principle in [1], the
discrepancy principle (3.3) gives the optimal order O (5!/(*@)) forall 0 <t < s.
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