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Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a
parameter choice strategy for choosing the regularization parameter while con-
sidering approximate solution of an ill-posed operator equation Tx =y , where T
is a bounded linear operator between Hilbert spaces. Motivated by this, we pro-
pose a new discrepancy principle for the simplified regularization, in the setting
of Hilbert scales, when T is a positive and selfadjoint operator. When the data y
is known only approximately, our method provides optimal order under certain
natural assumptions on the ill-posedness of the equation and smoothness of the
solution. The result, in fact, improves an earlier work of the authors (1997).
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1. Introduction. Tikhonov regularization (cf. [2]) is one of the most widely

used procedures to obtain stable approximate solution to an ill-posed operator

equation

Tx =y, (1.1)

where T : X → Y is a bounded linear operator between Hilbert spaces X and

Y . Suppose that the data y is not exactly known, but only an approximation

of it, namely ỹ , is available. Then, the regularized solution x̃α, by Tikhonov

regularization, is obtained by minimizing the map

x � �→‖Tx−ỹ‖2+α‖x‖2 (1.2)

for α > 0. For y ∈ R(T)+R(T)⊥, if x̂ is the generalized solution of (1.1), that

is, x̂ = T †y , where T † is the Moore-Penrose generalized inverse of T , then

estimates for the error ‖x̂− x̃α‖ are obtained by choosing the regularization

parameter α appropriately. It is known that (see, e.g., [2]) if x̂ ∈ R((T∗T)ν) for

some ν > 0 and if ‖y − ỹ‖ ≤ δ for some noise level δ > 0, then the optimal

order for the above error is O(δµ), where µ =min{2ν/(2ν+1),2/3}.
In order to improve the error estimates available in Tikhonov regularization,

Natterer [9] carried out error analysis in the framework of Hilbert scales. Sub-

sequently, many authors extended, modified, and generalized Natterer’s work
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to obtain error bounds under various contexts (see, e.g., Natterer [9], Hegland

[3], Schröter and Tautenhahn [12], Mair [6], Nair et al. [8], and Nair [7]).

If T is a positive and selfadjoint operator on a Hilbert space, then the sim-

plified regularization introduced by Lavrentiev is better suited than Tikhonov

regularization in terms of speed of convergence and condition number in the

case of finite-dimensional approximations (cf. Schock [11]).

In [1], simplified regularization in the framework of Hilbert scales was stud-

ied for the first time and obtained error estimates under a priori and a poste-

riori parameter choice strategies. The a posteriori choice of the parameter in

that paper has a drawback that it can yield the optimal rate only under certain

restricted smoothness assumption on the solution.

In this paper, we propose a new discrepancy principle, for choosing the reg-

ularization parameter α, for simplified regularization in the setting of Hilbert

scales, which eliminates the drawback of the method in [1] yielding the optimal

order for a range of values of smoothness. The discrepancy principle of this

paper is motivated by a recent procedure adopted by Tautenhahn and Hämarik

[13].

2. Preliminaries. Let H be a Hilbert space and let A :H →H be a bounded,

positive and selfadjoint operator on H. Recall that A is said to be a positive

operator if 〈Ax,x〉 ≥ 0 for every x ∈H. For y ∈ R(A), the range of A, consider

the operator equation

Ax =y. (2.1)

Let x̂ be the minimal norm solution of (2.1). It is well known that if R(A) is not

closed inH, then the problem of solving (2.1) for x̂ is ill-posed in the sense that

small perturbation in the data y can cause large deviations in the solution.

A prototype of (2.1) is an integral equation of the first kind,

∫ 1

0
k(s,t)x(t)dt =y(s), 0≤ s ≤ 1, (2.2)

where k(·,·) is a nondegenerate kernel which is square integrable, that is,

∫ 1

0

∫ 1

0

∣∣k(s,t)∣∣2dtds <∞, (2.3)

satisfying k(s,t)= k(t,s) for all s, t in [0,1], and such that the eigenvalues of

the corresponding integral operator A : L2[0,1]→ L2[0,1],

(Ax)(s)=
∫ 1

0
k(s,t)x(t)dt, 0≤ s ≤ 1, (2.4)
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are all nonnegative. For example, consider the kernel k(·,·) defined by

k(s,t)=

(1−s)t, if 0≤ s ≤ t ≤ 1,

(1−t)s, if 0≤ t ≤ s ≤ 1.
(2.5)

Clearly, k(s,t) = k(t,s), so that A : L2[0,1] → L2[0,1], defined as in (2.4), is

a selfadjoint operator. Moreover, the eigenvalues of this operator are 1/n2π2

for n= 1,2, . . . (see Limaye [5, page 329]).

For considering the regularization of (2.1) in the setting of Hilbert scales,

we consider a Hilbert scale {Ht}t∈R generated by a strictly positive operator

L :D(L)→H with its domain D(L) dense in H satisfying

‖Lx‖ ≥ ‖x‖, x ∈D(L). (2.6)

Recall (cf. [4]) that the space Ht is the completion of D := ⋂∞
k=0D(Lk) with

respect to the norm ‖x‖t , induced by the inner product

〈u,v〉t =
〈
Ltu,Ltv

〉
, u,v ∈D. (2.7)

Moreover, if β≤ γ, then the embedding Hγ ↩Hβ is continuous, and therefore

the norm ‖·‖β is also defined in Hγ and there is a constant c0,1 such that

‖x‖β ≤ c0,1‖x‖γ, x ∈Hγ. (2.8)

We assume that the ill-posed nature of the operator A is related to the Hilbert

scale {Ht}t∈R according to the relation

c1‖x‖−a ≤ ‖Ax‖ ≤ c2‖x‖−a, x ∈H, (2.9)

for some positive reals a, c1, and c2.

For the example of an integral operator given in the previous paragraph, one

may take L to be defined by

Lx :=
∞∑
j=1

j2〈x,uj〉uj, (2.10)

where uj(t) :=√2sin(jπt), j ∈N, and the domain of L is

D(L) :=

x ∈ L2[0,1] :

∞∑
j=1

j4
∣∣〈x,uj〉|2 <∞


. (2.11)

In this case, it can be seen that

Ht =

x ∈ L2[0,1] :

∞∑
j=1

j4t∣∣〈x,uj〉∣∣2 <∞

 (2.12)
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and the constants a, c1, and c2 in (2.9) are given by a = 1 and c1 = c2 = 1/π2

(see Schröter and Tautenhahn [12, Section 4]).

As in [1], we consider the regularized solution of (1.1) as the solution of the

well-posed equation

(
A+αLs)xα =y, α > 0, (2.13)

where s is a fixed nonnegative real number.

Suppose that the data y 
= 0 is known only approximately, say ỹ 
= 0 with

‖y−ỹ‖ ≤ δ for a known error level δ > 0. Then, in place of (2.13), we consider

(
A+αLs)x̃α = ỹ. (2.14)

It can be seen that the solution x̃α of the above equation is the unique mini-

mizer of the function

x � �→ 〈Ax,x〉−2〈ỹ,x〉+α〈Lsx,x〉, x ∈D(L). (2.15)

We also observe that taking

As := L−s/2AL−s/2, (2.16)

(2.13) and (2.14) take the forms

Ls/2
(
As+αI

)
Ls/2xα =y, Ls/2

(
As+αI

)
Ls/2x̃α = ỹ, (2.17)

respectively. Note that the operatorAs defined above is positive and selfadjoint

bounded operator on H.

One of the crucial results for proving the results in [1] as well as the results

in this paper is the following result, where functions f and g are defined by

f(t)=min
{
ct1,c

t
2

}
, g(t)=max

{
ct1,c

t
2

}
, t ∈R, |t| ≤ 1, (2.18)

respectively.

Proposition 2.1 (see [1, Proposition 3.1]). For s ≥ 0 and |ν| ≤ 1,

f
(
ν
2

)
‖x‖−ν(s+a)/2 ≤

∥∥Aν/2s x
∥∥≤ g(ν

2

)
‖x‖−ν(s+a)/2, x ∈H. (2.19)

Using the above proposition, the following result has been proved in [1].

Theorem 2.2 (see [1, Theorem 3.2]). Suppose that x̂ ∈Ht , 0< t ≤ s+a, and

α> 0. Then

∥∥x̂− x̃α∥∥≤φ(s,t)αt/(s+a)‖x‖t+ψ(s)α−a/(s+a)δ, (2.20)
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where

φ(s,t)= g
(
(s−2t)/(2s+2a)

)
f
(
s/(2s+2a)

) , ψ(s)= g
(−s/(2s+2a)

)
f
(
s/(2s+2a)

) . (2.21)

In particular, if α= c0δ(s+a)/(t+a) for some constant c0 > 0, then

∥∥x̂− x̃α∥∥≤ η(s,t)δt/(t+a), (2.22)

where

η(s,t)=max
{
φ(s,t)‖x̂‖tct/(t+a)0 ,ψ(s)c−a/(s+a)0

}
. (2.23)

Let Rα = (As+αI)−1. We will make use of the relation

∥∥RαAτs ∥∥≤ατ−1, α > 0, 0< τ ≤ 1, (2.24)

which follows from the spectral properties of the selfadjoint operatorAs , s > 0.

In [1], the authors considered parameter choice strategies, a priori and a

posteriori, which yield the optimal rateO(δt/(t+a)) if x̂ ∈Ht for certain specific

values of t. The a posteriori parameter choice strategy in [1] is to chooseα such

that

αp+1
∥∥(As+αI)−p−1L−s/2x

∥∥= kδ, (2.25)

where k > 1 and ỹ ∈ X satisfy 0 < kδ ≤ ‖ỹ‖−s/2. Under the above procedure,

the optimal order O(δt/(t+a)) is obtained for t = s+p(s+a).
In the present paper, we propose a new discrepancy for choosing the regu-

larization parameter α which yields the optimal rate

∥∥x̂− x̃α∥∥=O(δt/(t+a)). (2.26)

3. The discrepancy principle. Let s and a be fixed positive real numbers.

For α> 0 and nonzero x ∈H, let

Φ(α,x) := α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥ . (3.1)

Note that, by assumption (2.9), ‖R2
αA

−s/(2s+2a)
s L−s/2x‖ is nonzero for every

nonzero x ∈ H so that the function Φ(α,x) is well defined for every α > 0

and for every nonzero x ∈H.

We assume that the available data ỹ is nonzero and

‖y−ỹ‖ ≤ δ (3.2)
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for some known error level δ > 0. Our idea is to prove the existence of a unique

α such that

Φ(α,ỹ)= cδ (3.3)

for some known c > 0.

In due course we will make use of the relation

f
( −s

2s+2a

)
‖x‖ ≤ ∥∥A−s/(2s+2a)

s L−s/2x
∥∥≤ g( −s

2s+2a

)
‖x‖ (3.4)

which can be easily derived from Proposition 2.1.

First we prove the monotonicity of the function Φ(α,x) defined in (3.1).

Theorem 3.1. For each nonzero x ∈H, the function α� Φ(α,x) for α> 0,

defined in (3.1), is increasing and it is continuously differentiable with Φ′(α,x)≥
0. In addition

lim
α→0

Φ(α,x)= 0, lim
α→∞Φ(α,x)=

∥∥A−s/(2s+2a)
s L−s/2x

∥∥. (3.5)

Proof. Using (3.1), one can write

d
dα

Φ(α,x)

= (d/dα)
(
Φ2(α,x)

)
2Φ(α,x)

= 2α
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

×
(d/dα)

[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

−
α2
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥4(d/dα)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 .

(3.6)

Thus,

d
dα

Φ(α,x)

=
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2(d/dα)
[
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

−
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2(d/dα)
[∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥3 .

(3.7)
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Let {Eλ : 0≤ λ≤ a} be the spectral family of As , where a= ‖As‖. Then

d
dα

(
α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2
)

= d
dα

∫ a
0

α
λs/(s+a)(λ+α)3d

〈
EλL−s/2x,L−s/2x

〉

=
∫ a

0

[
1

λs/(s+a)(λ+α)3 −
3α

λs/(s+a)(λ+α)4
]
d
〈
EλL−s/2x,L−s/2x

〉

= ∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−3α

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2.

(3.8)

Similarly

d
dα

(∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥)=−4

∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2. (3.9)

Therefore, from (3.7), using (3.8) and (3.9), we get

d
dα

Φ(α,x)

= ∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2−3α
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3

+ 2α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥3 .

(3.10)

The above equation can be rewritten as

d
dα

Φ(α,x)= Ψ1(α,x)+Ψ2(α,x), (3.11)

where

Ψ1(α,x)

= ∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥2

×
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2−α∥∥R2
αA

−s/(2s+2a)
s L−s/2x

∥∥2
]

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 ,

Ψ2(α,x)

=
(
2α
[∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

×∥∥R5/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥4
])

× 1∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥3 .

(3.12)
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Since

∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2x,A−s/(2s+2a)

s L−s/2x
〉
,∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

= 〈(As+αI)−3A−s/(2s+2a)
s L−s/2x,

(
As+αI

)−1A−s/(2s+2a)
s L−s/2x

〉
,

(3.13)

we have

∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2−α∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

= ∥∥Aa/(2s+2a)
s R2

αL−s/2x
∥∥2.

(3.14)

Also,

∥∥R2
αA−s/(2s+2a)

s L−s/2x
∥∥4

= [〈R2
αA−s/(2s+2a)

s L−s/2x,R2
αA−s/(2s+2a)

s L−s/2x
〉]2

= [〈R3/2
α A−s/(2s+2a)

s L−s/2x,R5/2
α A−s/(2s+2a)

s L−s/2x
〉]2

≤ ∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R5/2

α A−s/(2s+2a)
s L−s/2x

∥∥2.

(3.15)

Hence

Ψ1(α,x)≥ 0, Ψ2(α,x)≥ 0, (3.16)

so that

d
dα

(
Φ(α,x)

)= Ψ1(α,x)+Ψ2(α,x)≥ 0. (3.17)

To prove the last part of the theorem we observe that

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥−Φ(α,x)
= α

2
∥∥R2

αA
−s/(2s+2a)
s L−s/2x

∥∥2−α∥∥R3/2
α A−s/(2s+2a)

s L−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥ .
(3.18)

Since

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥2

=α〈R3
αA−s/(2s+2a)

s L−s/2x,αRαA−s/(2s+2a)
s L−s/2x

〉
,

α
∥∥R3/2

α A−s/(2s+2a)
s L−s/2x

∥∥2

=α〈R3
αA−s/(2s+2a)

s L−s/2x,A−s/(2s+2a)
s L−s/2x

〉
,

(3.19)
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and since αRα−I =AsRα = RαAs , we have

α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥−Φ(α,x)
= −α

〈
R3
αA

−s/(2s+2a)
s L−s/2x,AsRαA

−s/(2s+2a)
s L−s/2x

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥
= −α

∥∥Aa/(2s+2a)
s R2

αL−s/2x
∥∥2∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥ ≤ 0.

(3.20)

Hence

Φ(α,x)≥α2
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥≥α2

∥∥A−s/(2s+2a)
s L−s/2x

∥∥(∥∥As∥∥+α)2 . (3.21)

Also, we have

Φ(α,x)= α
〈
RαA

−s/(2s+2a)
s L−s/2x,R2

αA
−s/(2s+2a)
s L−s/2x

〉
∥∥R2

αA−s/(2s+2a)
s L−s/2x

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2x
∥∥.

(3.22)

Hence

(
α∥∥As∥∥+α

)2∥∥A−s/(2s+2a)
s L−s/2x

∥∥
≤ Φ(α,x)≤α∥∥RαA−s/(2s+2a)

s L−s/2x
∥∥.

(3.23)

From this, it follows that

lim
α→0

Φ(α,x)= 0, lim
α→∞Φ(α,x)=

∥∥A−s/(2s+2a)
s L−s/2x

∥∥. (3.24)

This completes the proof.

For the next theorem, in addition to (3.2), we assume that

∥∥A−s/(2s+2a)
s L−s/2ỹ

∥∥≥ cδ (3.25)

for some c > 0. This assumption will be satisfied if, for example,

δ≤ f̃ (s)
c+ f̃ (s)‖y‖, f̃ (s) := f

( −s
2s+2a

)
(3.26)

since, by (3.2), we have ‖ỹ‖ ≥ ‖y‖−δ, and by (3.4),

∥∥A−s/(2s+2a)
s L−s/2ỹ

∥∥≥ f( −s
2s+2a

)
‖ỹ‖, (3.27)

where f is as in (2.18).

Now, the following theorem is a consequence of Theorem 3.1.
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Theorem 3.2. Assume that (3.2) and (3.25) are satisfied. Then there exists a

unique α :=α(δ) satisfying

Φ(α,ỹ)= cδ. (3.28)

4. Error estimates. In order to obtain Hölder-type error bounds, that is, er-

ror

bounds of the form

∥∥x̃α− x̂∥∥=O(δτ) (4.1)

for some τ , we assume that the solution x̂ of (2.1) satisfies the source condition

(as in [1, 10]):

x̂ ∈Mρ,t := {x ∈Ht : ‖x‖t ≤ ρ
}

(4.2)

for some t > 0.

Lemma 4.1. Suppose that x̂ belongs toMρ,t for some t ≤ s, andα :=α(δ) > 0

is the unique solution of (3.28), where c > g(−s/(2s+2a)). Then

α≥ c0δ(s+a)/(t+a), c0 = c−g(−s/(2s+2a)
)

g
(
(s−2t)/(2s+2a)

)
ρ
. (4.3)

Proof. Note that by (3.22), Proposition 2.1, and (2.24), we have

Φ(α,ỹ)≤α∥∥RαA−s/(2s+2a)
s L−s/2ỹ

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥+α∥∥RαA−s/(2s+2a)
s AsLs/2x̂

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥+α∥∥RαA(s+2a)/(2s+2a)
s Ls/2x̂

∥∥
≤α∥∥RαA−s/(2s+2a)

s L−s/2(ỹ−y)∥∥
+α∥∥RαA(t+a)/(s+a)s A(s−2t)/(2s+2a)

s Ls/2x̂
∥∥

≤ ∥∥αRα∥∥∥∥A−s/(2s+2a)
s L−s/2(ỹ−y)∥∥

+∥∥αRαA(t+a)/(s+a)s
∥∥∥∥A(s−2t)/(2s+2a)

s Ls/2x̂
∥∥

≤ g
( −s

2s+2a

)
δ+g

(
s−2t

2s+2a

)
ρα(t+a)/(s+a).

(4.4)

Thus [
c−g

( −s
2s+2a

)]
δ≤ g

(
s−2t

2s+2a

)
ρα(t+a)/(s+a), (4.5)

which implies

α≥ c0δ(s+a)/(t+a), c0 = c−g(−s/(2s+2a)
)

g
(
(s−2t)/(2s+2a)

)
ρ
. (4.6)

This completes the proof.
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Theorem 4.2. Under the assumptions in Lemma 4.1,

∥∥x̂−xα∥∥=O(δκ), κ := t
t+a. (4.7)

Proof. Since xα is the solution of (2.13), we have

x̂−xα = x̂−
(
A+αLs)−1y

=αL−s/2(As+αI)−1Ls/2x̂ =αL−s/2RαLs/2x̂.
(4.8)

Therefore, by (3.4), we have

f
(

s
2s+2a

)∥∥x̂−xα∥∥≤ ∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥. (4.9)

To obtain an estimate for ‖αAs/(2s+2a)
s RαLs/2x̂‖, first we will make use of the

following moment inequality

∥∥Bux∥∥≤ ∥∥Bvx∥∥u/v‖x‖1−u/v , 0≤u≤ v, (4.10)

where B is a positive selfadjoint operator. Precisely, we use (4.10) with

u= t
a
, v = 1+ t

a
, B =αRαAa/(s+a)s ,

x =α1−t/aR1−t/a
α A(s−2t)/(2s+2a)

s Ls/2x̂.
(4.11)

Then since

‖x‖ ≤ ∥∥A(s−2t)/(2s+2a)
s Ls/2x̂

∥∥
≤ g

(
s−2t

2s+2a

)∥∥Ls/2x̂∥∥t−s/2 ≤ g
(
s−2t

2s+2a

)
ρ,

(4.12)

we have

∥∥αAs/(2s+2a)
s RαLs/2x̂

∥∥
= ∥∥Bt/ax∥∥≤ ∥∥B1+t/ax

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA(2a+s)/(2s+2a)
s Ls/2x̂

∥∥t/(t+a)‖x‖a/(t+a)
≤ ∥∥α2R2

αA−s/(2s+2a)
s L−s/2y

∥∥t/(t+a)‖x‖a/(t+a)
≤ g

(
s−2t

2s+2a

)a/(t+a)
ρa/(t+a)

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥t/(t+a).

(4.13)

Further, by (2.24) and (3.20),

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥≤ ∥∥α2R2

αA−s/(2s+2a)
s L−s/2(y−ỹ)∥∥

+∥∥α2R2
αA−s/(2s+2a)

s L−s/2ỹ
∥∥

≤ δ+Φ(α,ỹ).
(4.14)
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Therefore, if α :=α(δ) is the unique solution of (3.28), then we have

∥∥α2R2
αA−s/(2s+2a)

s L−s/2y
∥∥≤ (1+c)δ. (4.15)

Now the result follows from (4.9), (4.13), (4.14), and (4.15).

Theorem 4.3. Under the assumptions in Lemma 4.1,

∥∥x̂− x̃α∥∥=O(δκ), κ := t
t+a. (4.16)

Proof. Let xα and x̃α be the solutions of (2.13) and (2.14), respectively.

Then by triangle inequality, (2.24), and Proposition 2.1,

∥∥x̂− x̃α∥∥≤ ∥∥x̂−xα∥∥+∥∥xα− x̃α∥∥
= ∥∥x̂−xα∥∥+∥∥L−s/2RαL−s/2(y−ỹ)∥∥
≤ ∥∥x̂−xα∥∥+ 1

f
(
s/(2s+2a)

)∥∥As/(2s+2a)
s RαL−s/2(y−ỹ)

∥∥
≤ ∥∥x̂−xα∥∥+ 1

f
(
s/(2s+2a)

)∥∥As/(s+a)s RαA−s/(2s+2a)
s L−s/2(y−ỹ)∥∥

≤ ∥∥x̂−xα∥∥+ 1
f
(
s/(2s+2a)

)∥∥As/(s+a)s Rα
∥∥∥∥A−s/(2s+2a)

s L−s/2(y−ỹ)∥∥
≤ ∥∥x̂−xα∥∥+ g

(−s/(2s+2a)
)

f
(
s/(2s+2a)

) δα−a/(s+a).
(4.17)

The proof now follows from Lemma 4.1 and Theorem 4.2.

Remark 4.4. We observe that unlike the discrepancy principle in [1], the

discrepancy principle (3.3) gives the optimal order O(δt/(t+a)) for all 0< t ≤ s.
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