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This paper addresses the two-machine flowshop scheduling problem with separate
setup times to minimize makespan or total completion time (TCT). Setup times
are relaxed to be random variables rather than deterministic as commonly used
in the OR literature. Moreover, distribution-free setup times are used where only
the lower and upper bounds are given. Global and local dominance relations are
developed for the considered flowshops and an illustrative numerical example is
given.
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1. Introduction. The two-machine flowshop scheduling problem is polyno-

mially solvable when the objective is to minimize makespan, see [7]. The prob-

lem, however, is proven to be NP-hard when the performance measure is total

completion time (TCT), see [6]. In these and the vast majority of subsequent

research on the flowshop problems, it is assumed that either the setup time

for a job is included in its processing time or the setup times are zero on each

machine. While these assumptions may be justified for some real scheduling

problems, other situations call for explicit (separate) setup time consideration.

The practical situations in which setup times must be considered as separate

include the chemical, pharmaceutical, printing, food processing, metal pro-

cessing, and semiconductor industries, see [3] for a survey on the scheduling

problems with separate setup times.

An obvious advantage of considering setup times separate is that when there

exists idle time on the second machine (usually the case), then the setup time

for a job on the second machine can be performed prior to the completion time

of this job on the first machine. This means that the performance measures

of makespan and TCT may be improved by considering setup times as sepa-

rate from processing times. Hence, some researchers considered the flowshop

problem with separate setup times, that is, relaxing the assumption that setup

times are included in processing times. Yoshida and Hitomi [11], Khurana and

Bagga [8], and Allahverdi [1] addressed the problem of minimizing makespan
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by considering setup times as separate. Bagga and Khurana [5] and Allahverdi

[2], on the other hand, addressed the two-machine separate setup time prob-

lem with respect to TCT. In the research mentioned so far, the setup times are

considered as separate from processing times but assumed to be deterministic,

that is, known before scheduling and fixed during a realization of the process.

In reality, this assumption is not valid in many cases, and setup times have to

be considered as random variables. Moreover, it is sometimes difficult to find

an appropriate probability distribution for random setup times.

In this paper, we address the two-machine flowshop scheduling problem to

minimize TCT (sum of job completion times) or makespan (maximum of the

job completion times) when assuming that deterministic setup times are not

realistic and it is hard to obtain exact probability distributions for random

setup times. As such, a solution obtained by assuming fixed setup times or

by assuming a certain probability distribution may not be close to the optimal

schedule for the realization of the process. It has been observed that although

the exact probability distribution of setup times may not be known before

scheduling, some upper and lower bounds on job setup times are easy to ob-

tain in most practical cases. This information on the bounds of setup times is

important, and it should be utilized in finding a solution for the scheduling

problem.

We consider the scheduling environments in which setup times are random

variables with unknown probability distributions when only a lower bound

Lj,m ≥ 0 and an upper bound Uj,m ≥ Lj,m of the setup time Sj,m of job j on

machinem are given before scheduling. Such a flowshop problem with two ma-

chines is denoted as F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|
∑
Cj for TCT criterion and as

F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax for the makespan criterion. Hereafter, Cj de-

notes the completion time of job j on the second machine andCmax denotes the

makespan criterion. Notice that the problems F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|Cmax

and F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|
∑
Cj can be considered as stochastic flowshop

problems under uncertainty of setup times when there is no prior information

about probability distributions of the random setup times (it is only known that

setup times will fall between the given lower and upper bounds with probabil-

ity one). Similar problems have been addressed in the literature for the case

where job processing times are random variables but setup times are assumed

to be zero, see [4, 9, 10].

If the equalities Lj,m = Sj,m =Uj,m hold for each job j ∈ J and each machine

m ∈M , where J = {1,2, . . . ,n} denotes the set of jobs and M = {1,2} denotes

the set of machines, then the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj re-

duces to the flowshop problem F2|Sj,m|
∑
Cj with fixed setup times that was

considered by Bagga and Khurana [5] and Allahverdi [2]. Similarly, the problem

F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax becomes a deterministic flowshop problem

F2|Sj,m|Cmax which is polynomially solvable if all setup times are fixed and

sequence-independent, see [11]. Setup time is called sequence-independent if
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it depends only on the job to be processed. On the other hand, if the setup

time depends on both the job to be processed and the immediately preced-

ing job, then it is called sequence-dependent. When setup times are sequence-

independent on both machines, then permutation schedules are dominant with

respect to any regular criterion, see [11]. Thus, in order to find an optimal

schedule, one only needs to consider the same sequence of jobs on both ma-

chines. In the problems F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax and F2|Sj,m,Lj,m ≤
Sj,m ≤ Uj,m|

∑
Cj under consideration, we assume that setup times are

sequence-independent on both machines, and hence, permutation schedules

are dominant with respect to any regular criterion.

The rest of this paper is organized as follows. The main notations are given

in Section 2. Global and local dominance relations are established in Sections

3 and 4 for both makespan and TCT criteria. Section 5 presents illustrative

examples and Section 6 provides concluding remarks.

2. Definitions and notations. Let Pj,m denote the processing time of job

j (j ∈ J = {1,2, . . . ,n}) on machine m (m ∈ M = {1,2}) and let the bracket

[i,m] denote the job in position i on machine m. That is, P[i,m] denotes the

processing time of the job in position i on machine m. Similarly, S[i,m], L[i,m],
and U[i,m] denote setup time, lower bound of setup time, and upper bound of

setup time of the job in position i on machine m, respectively. In contrast to

Pj,m and P[i,m] which are known before scheduling, exact values Sj,m and S[i,m]
are unknown.

For the deterministic versions of these problems where setup times are fixed

(i.e., Sj,m = Lj,m = Uj,m), Yoshida and Hitomi [11] established the following

formula for the completion time C[j] of the job in position j:

C[j] = max
0≤u≤j




u∑

i=1

(
S[i,1]−S[i,2]+P[i,1]

)−
u−1∑

i=1

P[i,2]


+

j∑

i=1

(
S[i,2]+P[i,2]

)
. (2.1)

The above equation can be written as follows:

C[j] = max
0≤u≤j




u∑

i=1

(
S[i,1]+P[i,1]

)−
u−1∑

i=1

(
S[i,2]+P[i,2]

)−S[u,2]

+

j∑

i=1

(
S[i,2]+P[i,2]

)

= max
0≤u≤j

[
SP[u,1]−

(
SP[u−1,2]+S[u,2]

)]+SP[j,2],
(2.2)

where we use notation SP[j,m] =
∑j
r=1(S[r ,m] + P[r ,m]) for j = 1,2, . . . ,n and

m∈M = {1,2}. Let Dj =max{0,σ1,σ2, . . . ,σj}, where σj = SP[j,1]−(SP[j−1,2]+
S[j,2]), j = 1,2, . . . ,n, with the assumption that SP[0,2] = 0. Then, C[j] can be

written as C[j] = SP[j,2]+Dj .



2478 ALI ALLAHVERDI ET AL.

Once completion times of the n jobs are known, then the makespan Cmax

and (TCT), are obtained as follows:

TCT=
n∑

j=1

(
SP[j,2]+Dj

)
,

Cmax = SP[n,2]+Dn.
(2.3)

It is clear from the latter equation that the term SP[n,2] is a constant term which

is independent of job sequence, and hence, minimization of Cmax is equivalent

to minimization of the termDn, which denotes the total idle time on the second

machine until all n jobs are completed.

For each job j ∈ J and machinem∈M , any feasible realization Sj,m of setup

time satisfies the inequalities Lj,m ≤ Sj,m ≤Uj,m.

Before scheduling, we only know the lower and upper bounds of setup times

given by the above inequalities, which define polytope (PT) of feasible vectors

S = (S1,1,S1,2,S2,1,S2,2, . . . ,Sn,1,Sn,2) of setup times as follows: PT = {S : Lj,m ≤
Sj,m ≤Uj,m, j ∈ J, m∈M}.

As it was mentioned so far, permutation schedules dominate schedules

with different sequences of jobs on machine 1 and machine 2 for both prob-

lems under consideration. Therefore, we consider only the set of permutation

schedules, and there are n! sequences (permutations)Q= {Q1,Q2, . . . ,Qn!} for

the problems of F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax and F2|Sj,m,Lj,m ≤ Sj,m ≤
Uj,m|

∑
Cj,2 that will be considered in finding the optimal sequence.

Similar to [4, 9] we use the following definition of a solution to the prob-

lems of F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj and F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax.

A set of sequences Q∗ ⊆ Q is a solution to the problem of F2|Sj,m,Lj,m ≤
Sj,m ≤ Uj,m|

∑
Cj (or F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax) if for each feasible vec-

tor S ∈ PT of setup times, the set Q∗ contains at least one optimal sequence.

Thus, the whole set Q of sequences is a trivial solution for the problems of

F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj and F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax. How-

ever, it is only possible to construct the whole set Q for a small number

of jobs. It is also impractical to choose the best sequence from a large set

Q∗ of candidates as the processing of jobs evolves. Therefore, it is impor-

tant to minimize the cardinality of solution Q∗ constructed for problems of

F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj and F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax. To this

end, we introduce the following dominance relations on the set of sequences

Q.

Definition 2.1. For the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj , a se-

quence Q1 ∈ Q dominates a sequence Q2 ∈ Q with respect to PT if the in-

equality
∑
Ci,m(Q1) ≤

∑
Ci,m(Q2) holds for any vector S ∈ PT. Similarly, for

the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax, a sequence Q3 ∈ Q dominates

a sequence Q4 ∈ Q with respect to PT if the inequality Cmax(Q3) ≤ Cmax(Q4)
holds for any vector S ∈ PT.
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By Definition 2.1, a set of sequences Q∗ ⊆ Q is a solution to the problem

F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax (or F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj ) if for

each sequence Qk ∈ Q, there exists a sequence from set Q∗ that dominates

the sequence Qk with respect to PT.

3. Global dominance relations. Let qh denote a subsequence of a com-

plete sequence Qu ∈ Q of all the n jobs. Therefore, the notations of Q1 =
(q1, i,q2,k,q3) andQ2 = (q1,k,q2, i,q3)mean that the two sequences ofQ1 and

Q2 have the same jobs in all positions except that the jobs i∈ J and k∈ J are

interchanged. When the jobs i and k are adjacent, such two complete sequences

of Q3 and Q4 can be expressed as Q3 = (q1, i,k,q2) and Q4 = (q1,k,i,q2), re-

spectively.

Theorem 3.1. For the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax, the se-

quenceQ1 = (q1, i,q2,k,q3)∈Q dominates the sequenceQ2 = (q1,k,q2, i,q3)∈
Q with respect to PT if the following two inequalities hold:

Pk,2 ≤ Pi,2,
Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2. (3.1)

Theorem 3.2. For the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Cj , the se-

quenceQ1 = (q1, i,q2,k,q3)∈Q dominates the sequenceQ2 = (q1,k,q2, i,q3)∈
Q with respect to PT if the following three inequalities hold:

Pk,2 ≤ Pi,2,
Ui,2+Pi,2 ≤ Lk,2+Pk,2,

Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2.
(3.2)

Proofs of Theorems 3.1 and 3.2. We consider two job sequences Q1

and Q2, where Q1 is a sequence in which job i is in position α and job k
is in position β, where α< β, whereas sequence Q2 is obtained from sequence

Q1 by interchanging only the jobs in positions α and β. When necessary, we

attach a corresponding sequence Qu ∈Q to the notations C[j], Dj , σj , SP[j,j],
and TCT introduced in Section 2, that is, we have C[j](Qu), Dj(Qu), σj(Qu),
SP[j,j](Qu), and TCT(Qu).

It should be clear that SP[α−1,1](Q1) = SP[α−1,1](Q2) and SP[α−1,2](Q1) =
SP[α−1,2](Q2) since both sequences have the same job in each position 1,2, . . . ,
α−1. For j =α, we obtain

σα
(
Q2
)= SP[α−1,1]

(
Q2
)+Sk,1+Pk,1−

(
SP[α−1,2]

(
Q2
)+Sk,2

)
,

σα
(
Q1
)= SP[α−1,1]

(
Q1
)+Si,1+Pi,1−

(
SP[α−1,2]

(
Q1
)+Si,2

)
.

(3.3)

From (3.3) we obtain

σα
(
Q1
)≤ σα

(
Q2
)

(3.4)
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since Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2 always implies that Si,1+Pi,1+Sk,2 ≤
Sk,1+Pk,1+Si,2.

For j =α+1,α+2, . . . ,β−1, we obtain

σj
(
Q2
)= SP[α−1,1]

(
Q2
)+Sk,1+Pk,1+

j∑

r=α+1

(
S[r ,1]+P[r ,1]

)

−

SP[α−1,2]

(
Q2
)+Sk,2+Pk,2+

j−1∑

r=α+1

(
S[r ,2]+P[r ,2]

)+S[j,2]

,

σj
(
Q1
)= SP[α−1,1]

(
Q1
)+Si,1+Pi,1+

j∑

r=α+1

(
S[r ,1]+P[r ,1]

)

−

SP[α−1,2]

(
Q1
)+Si,2+Pi,2+

j−1∑

r=α+1

(
S[r ,2]+P[r ,2]

)+S[j,2]

,

(3.5)

where we assume that
∑α
r=α+1(S[r ,2]+P[r ,2])= 0. Both sequences have the same

job in all positions except for position α, and hence, it follows that σj(Q1)−
σj(Q2)= (Si,1+Pi,1+Sk,2+Pk,2)−(Sk,1+Pk,1+Si,2+Pi,2), which results in

σj
(
Q1
)≤ σj

(
Q2
)

(3.6)

since Pk,2 ≤ Pi,2 and Si,1+Pi,1+Sk,2 ≤ Sk,1+Pk,1+Si,2 (again this is implied by

the fact that Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2).

For j = β, we obtain

σβ
(
Q2
)= SP[α−1,1]

(
Q2
)+Sk,1+Pk,1+

β−1∑

r=α+1

(
S[r ,1]+P[r ,1]

)+Si,1+Pi,1

−

SP[α−1,2]

(
Q2
)+Sk,2+Pk,2+

β−1∑

r=α+1

(
S[r ,2]+P[r ,2]

)+Si,2

,

σβ
(
Q1
)= SP[α−1,1]

(
Q1
)+Si,1+Pi,1+

β−1∑

r=α+1

(
S[r ,1]+P[r ,1]

)+Sk,1+Pk,1

−

SP[α−1,2]

(
Q1
)+Si,2+Pi,2+

β−1∑

r=α+1

(
S[r ,2]+P[r ,2]

)+Sk,2

.

(3.7)

It follows from (3.7) that

σβ
(
Q1
)≤ σβ

(
Q2
)

(3.8)

since Pk,2 ≤ Pi,2. It is obvious that σj(Q1) = σj(Q2) for each j = 1,2, . . . ,α−1

since both sequences have the same job in these positions. It can easily be

shown that σj(Q1) = σj(Q2) for each j = β+1,β+2, . . . ,n. From these facts

and (3.4), (3.6), and (3.8), we obtain

σj
(
Q1
)≤ σj

(
Q2
)

(3.9)
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for each position j = 1,2, . . . ,n. Therefore, Dn(Q1) ≤ Dn(Q2). This shows

that the sequence Q1 = (q1, i,q2,k,q3) ∈ Q dominates the sequence Q2 =
(q1,k,q2, i,q3)∈Q with respect to Cmax. Observe that

C[j]
(
Q1
)= C[j]

(
Q2
)

(3.10)

for each position j = 1,2, . . . ,α−1 since both sequences have the same job in

these positions. It is obvious thatDα−1(Q1)=Dα−1(Q2). It can easily be shown

that for each position j = β,β+1, . . . ,n,

C[j]
(
Q1
)−C[j]

(
Q2
)=max

{
Dα−1

(
Q1
)
,σα

(
Q1
)
,σα+1

(
Q1
)
, . . . ,σj

(
Q1
)}

−max
{
Dα−1

(
Q2
)
,σα

(
Q2
)
,σα+1

(
Q2
)
, . . . ,σj

(
Q2
)}
.

(3.11)

But it follows from (3.9) that

max
{
Dα−1

(
Q1
)
,σα

(
Q1
)
,σα+1

(
Q1
)
, . . . ,σj

(
Q1
)}

≤max
{
Dα−1

(
Q2
)
,σα

(
Q2
)
,σα+1

(
Q2
)
, . . . ,σj

(
Q2
)}
,

(3.12)

and therefore,

C[j]
(
Q1
)≤ C[j]

(
Q2
)

(3.13)

for each position j = β,β+1, . . . ,n. Observe that for j =α,

C[α]
(
Q2
)= SP[α−1,2]

(
Q2
)+Sk,2+Pk,2+max

{
Dα−1

(
Q2
)
,σα

(
Q2
)}
,

C[α]
(
Q1
)= SP[α−1,2]

(
Q1
)+Si,2+Pi,2+max

{
Dα−1

(
Q1
)
,σα

(
Q1
)}
,

(3.14)

and for j =α+1,α+2, . . . ,β−1,

C[j]
(
Q2
)= SP[α−1,2]

(
Q2
)+Sk,2+Pk,2+

j∑

r=α+1

(
S[r ,2]+P[r ,2]

)

+max
{
Dα−1

(
Q2
)
,σα

(
Q2
)
,σα+1

(
Q2
)
, . . . ,σj

(
Q2
)}
,

C[j]
(
Q1
)= SP[α−1,2]

(
Q1
)+Si,2+Pi,2+

j∑

r=α+1

(
S[r ,2]+P[r ,2]

)

+max
{
Dα−1

(
Q1
)
,σα

(
Q1
)
,σα+1

(
Q1
)
, . . . ,σj

(
Q1
)}
.

(3.15)

Hence, for each position j =α,α+1, . . . ,β−1, we obtain

C[j]
(
Q1
)−Cj

(
Q2
)

= (Si,2+Pi,2
)−(Sk,2+Pk,2

)

+max
{
Dα−1

(
Q1
)
, . . . ,σj

(
Q1
)}−max

{
Dα−1

(
Q2
)
, . . . ,σj

(
Q2
)}
.

(3.16)

However, Ui,2+Pi,2 ≤ Lk,2+Pk,2 implies Si,2+Pi,2 ≤ Sk,2+Pk,2 and, by (3.12),

max
{
Dα−1

(
Q1
)
, . . . ,σj

(
Q1
)}≤max

{
Dα−1

(
Q2
)
, . . . ,σj

(
Q2
)}
, (3.17)
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and therefore,

C[j]
(
Q1
)≤ C[j]

(
Q2
)

(3.18)

for each j = α,α+ 1, . . . ,β− 1. Now it follows from (3.10), (3.13), and (3.18)

that the sequence Q1 = (q1, i,q2,k,q3) ∈ Q dominates the sequence Q2 =
(q1,k,q2, i,q3) ∈ Q with respect to TCT minimization. This completes the

proofs.

Remark 3.3. Observe that the sufficient conditions given in Theorem 3.1

are included in those of Theorem 3.2. Thus, using the latter conditions for

some flowshop problems, one can minimize both objective functions Cmax and∑
Cj .

4. Local dominance relations. In this section, we prove similar sufficient

conditions for dominance relations for the case of adjacent jobs.

Theorem 4.1. For the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax, the se-

quence Q3 = (q1, i,k,q2) ∈ Q dominates the sequence Q4 = (q1,k,i,q2) ∈ Q
with respect to PT if the inequality Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2 and one of

the following inequalities hold:

(i) Uk,1+Pk,1 ≤ Pi,2+Lk,2,

(ii) Ui,1+Pi,1 ≤ Li,2+Pi,2,

(iii) Pk,2 ≤ Pi,2.

Theorem 4.2. For the problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|
∑
Ci, the se-

quence Q3 = (q1, i,k,q2) ∈ Q dominates the sequence Q4 = (q1,k,i,q2) ∈ Q
with respect to PT if the inequalitiesUi,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2,Ui,2+Pi,2 ≤
Lk,2+Pk,2 and one of the following inequalities hold:

(i) Uk,1+Pk,1 ≤ Pi,2+Lk,2,

(ii) Ui,1+Pi,1 ≤ Li,2+Pi,2,

(iii) Pk,2 ≤ Pi,2.

Proofs of Theorems 4.1 and 4.2. We assume that the sequence Q3 has

job i∈ J in position α and job k∈ J in position α+1, and the sequence Q4 is

obtained from the sequenceQ3 by interchanging only the two jobs in positions

α and α+1. For these two sequences, we obtain

σα
(
Q3
)= SP[α−1,1]

(
Q3
)+Si,1+Pi,1−SP[α−1,2]

(
Q3
)−Si,2,

σα
(
Q4
)= SP[α−1,1]

(
Q4
)+Sk,1+Pk,1−SP[α−1,2]

(
Q4
)−Sk,2,

σα+1
(
Q3
)= SP[α−1,1]

(
Q3
)+Si,1

+Pi,1+Sk,1+Pk,1−SP[α−1,2]
(
Q3
)−Si,2−Pi,2−Sk,2,

σα+1
(
Q4
)= SP[α−1,1]

(
Q4
)+Sk,1

+Pk,1+Si,1+Pi,1−SP[α−1,2]
(
Q4
)−Sk,2−Pk,2−Si,2.

(4.1)
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Since both sequences have the same jobs in positions 1,2, . . . ,α−1, we obtain

the equality Dα−1
(
Q3
) = Dα−1

(
Q4
)
. Let Dα−1 = Dα−1

(
Q3
) = Dα−1

(
Q4
)
. Then

we have

C[α]
(
Q3
)= SP[α−1,2]

(
Q3
)+Si,2+Pi,2+max

{
Dα−1,σα

(
Q3
)}
,

C[α]
(
Q4
)= SP[α−1,2]

(
Q4
)+Sk,2+Pk,2+max

{
Dα−1,σα

(
Q4
)}
,

C[α+1]
(
Q3
)= SP[α−1,2]

(
Q3
)+Si,2+Pi,2+Sk,2+Pk,2

+max
{
Dα−1,σα

(
Q3
)
,σα+1

(
Q3
)}
,

C[α+1]
(
Q4
)= SP[α−1,2]

(
Q4
)+Sk,2+Pk,2+Si,2+Pi,2

+max
{
Dα−1,σα

(
Q4
)
,σα+1

(
Q4
)}
.

(4.2)

Observe that SP[α−1,1](Q3)=SP[α−1,1](Q4) and SP[α−1,2](Q3)=SP[α−1,2](Q4)
because both sequences have the same jobs in positions 1,2, . . . ,α− 1. As a

result, it holds that

σj
(
Q3
)= σj

(
Q4
)

(4.3)

for each position j = 1,2, . . . ,α−1. It can easily be shown that σj(Q3)= σj(Q4)
for each position j =α+2,α+3, . . . ,n. It follows from the above equalities that

σα
(
Q3
)≤ σα

(
Q4
)

(4.4)

since Ui,1+Pi,1+Uk,2 ≤ Lk,1+Pk,1+Li,2. From (4.4),

max
{
Dα−1,σα

(
Q3
)}≤max

{
Dα−1,σα

(
Q4
)}
. (4.5)

Again from the above inequalities if Uk,1+Pk,1 ≤ Pi,2+Lk,2, then

σα+1
(
Q3
)≤ σα

(
Q3
)
, (4.6)

if Ui,1+Pi,1 ≤ Li,2+Pi,2, then

σα+1
(
Q3
)≤ σα

(
Q4
)
, (4.7)

and if Pk,2 ≤ Pi,2, then

σα+1
(
Q3
)≤ σα+1

(
Q4
)
. (4.8)

If any one of the inequalities (4.6), (4.7), and (4.8) holds, then

max
{
Dα−1,σα

(
Q3
)
,σα+1

(
Q3
)}≤max

{
Dα−1,σα

(
Q4
)
,σα+1

(
Q4
)}
. (4.9)

Therefore, from (4.3), (4.4), and (4.9), we obtain Dn(Q3) ≤ Dn(Q4), which

shows that the sequence Q3 = (q1, i,k,q2) ∈Q dominates the sequence Q4 =
(q1,k,i,q2)∈Q for criterion of minimizing Cmax.
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Taking the difference between completion times of the jobs in positions α
and α+1 for the two sequences yields
[
C[α]

(
Q3
)+C[α+1]

(
Q3
)]−[C[α]

(
Q4
)+C[α+1]

(
Q4
)]

= (Si,2+Pi,2
)−(Sk,2+Pk,2

)

+max
{
Dα−1,σα

(
Q3
)}−max

{
Dα−1,σα

(
Q4
)}

+max
{
Dα−1,σα

(
Q3
)
,σα+1

(
Q3
)}−max

{
Dα−1,σα

(
Q4
)
,σα+1

(
Q4
)}
.

(4.10)

From (4.5), (4.9), and the fact that Ui,2+Pi,2 ≤ Lk,2+Pk,2, we obtain

C[α]
(
Q3
)+C[α+1]

(
Q3
)≤ C[α]

(
Q4
)+C[α+1]

(
Q4
)
. (4.11)

It can also be shown that for each position j =α+2,α+3, . . . ,n,

C[j]
(
Q3
)−C[j]

(
Q4
)

=max
{
Dα−1,σα

(
Q3
)
,σα+1

(
Q3
)
,σα+2

(
Q3
)
, . . . ,σj

(
Q3
)}

−max
{
Dα−1,σα

(
Q4
)
,σα+1

(
Q4
)
,σα+2

(
Q4
)
, . . . ,σj

(
Q4
)}
.

(4.12)

We observe that σk(Q3) = σk(Q4) for each k = α+2,α+3, . . . ,n. Therefore,

from the inequality of (4.9) we obtain

C[j]
(
Q3
)≤ C[j]

(
Q4
)

(4.13)

for each position j =α+2,α+3, . . . ,n. It is obvious that

C[j]
(
Q3
)= C[j]

(
Q4
)

(4.14)

for each j = 1,2, . . . ,α−1. Clearly, from (4.5), (4.9), (4.11), (4.13), and (4.14),

we obtain the inequality TCT(Q3) ≤ TCT(Q4) which completes the proofs.

Remark 3.3 is valid for Theorems 4.1 and 4.2 as well.

5. Examples. Let n = 4 and let numerical input data for both examples of

problems F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|Cmax and F2|Sj,m,Lj,m ≤ Sj,m≤Uj,m|
∑
Cj

be given in Table 5.1.

For problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax, Theorem 3.1 implies the fol-

lowing precedence relations in an optimal sequence for a feasible vector S ∈ PT

of setup times, polytope PT being defined in Table 5.1. Job 1 precedes job 3

and job 4. Job 2 precedes job 3 and job 4. Job 3 precedes job 4. The order

of job 1 and job 2 is not defined in an optimal sequence for the above ex-

ample of problem F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax (both Theorems 3.1 and

4.1 do not define the order of jobs 1 and 2). Thus, the two sequences Q1 =
(1,2,3,4) and Q2 = (2,1,3,4) dominate all sequences from the set Q with re-

spect to PT, and we obtain the solution Q∗ = {Q1,Q2} for the example of
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Table 5.1. Job processing times, lower bounds, and upper bounds
of setup times.

Job j Lj,1 Uj,1 Pj,1 Lj,2 Uj,2 Pj,2

j = 1 1 2 4 4 6 12

j = 2 2 4 5 6 8 10

j = 3 2 4 8 4 6 10

j = 4 9 10 12 11 12 5

problem F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|Cmax with numerical input data defined in

Table 5.1.

It is easy to see that this solution Q∗ is minimal. Indeed, there exists vector

S1 = (1,6,4,6,2,4,9,11) ∈ PT for which sequence Q1 is optimal (for vector S1

of setup times, the second machine has no idle time with sequence Q1 of four

jobs, and Cmax(Q1)= 64), while sequenceQ2 is not optimal (Cmax(Q2)= 67 for

vector S1 of setup times).

On the other hand, there exists vector S2 = (2,4,2,8,2,4,9,11) ∈ PT for

which sequence Q2 is optimal (for vector S2 of setup times, the second ma-

chine has no idle time with sequence Q2 of four jobs, and Cmax(Q2) = 64),

while sequenceQ1 is not optimal (Cmax(Q1)= 66 for vector S2 of setup times).

For the above example of problem F2|Sj,m,Lj,m ≤ Sj,m≤Uj,m|
∑
Cj , Theorem

3.2 shows that for any feasible setup times, there exists optimal sequence of

four jobs in which job 3 precedes job 4. The order of other jobs from the

set J = {1,2,3,4} is defined via neither Theorem 3.2 nor Theorem 4.2. Thus,

instead of considering 4! = 24, sequences Q of four jobs, it is sufficient to

consider 12 sequences with job 3 preceding job 4.

6. Conclusions. In this paper, we relax the assumption that setup times are

deterministic and consider setup times to be random variables with free distri-

butions where only their lower and upper bounds are given. We develop both

local and global dominance relations for the problems of F2|Sj,m,Lj,m ≤ Sj,m ≤
Uj,m|Cmax and F2|Sj,m,Lj,m ≤ Sj,m ≤Uj,m|

∑
Cj . In many cases, these relations

allow to decrease the cardinality of solution Q∗ which has to be constructed

for both problems to have a guarantee that set Q∗ contains at least one opti-

mal job sequence for each feasible realization of setup times. Testing all the

conditions presented in Theorems 3.1, 3.2, 4.1, and 4.2 takes a polynomial

time.

Similar approach may be used for larger number of machines (m > 2) in

a flowshop problem under uncertainty of setup times and for other gener-

alizations of problems F2|Sj,m,Lj,m ≤ Sj,m ≤ Uj,m|Cmax and F2|Sj,m,Lj,m ≤
Sj,m ≤Uj,m|

∑
Cj . Another interesting question for future research is to study

sequence-dependent random and bounded setup times, which are more com-

plicated.
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