
IJMMS 2003:38, 2447–2453
PII. S0161171203201046

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

TOTAL CHARACTERS AND CHEBYSHEV POLYNOMIALS
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The total character τ of a finite group G is defined as the sum of all the irreducible
characters of G. K. W. Johnson asks when it is possible to express τ as a polyno-
mial with integer coefficients in a single irreducible character. In this paper, we
give a complete answer to Johnson’s question for all finite dihedral groups. In
particular, we show that, when such a polynomial exists, it is unique and it is the
sum of certain Chebyshev polynomials of the first kind in any faithful irreducible
character of the dihedral group G.
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1. Introduction. A Gel’fand model M for a group G was defined in [8] as any

complex representation of G which is isomorphic to the direct sum of all irre-

ducible representations ofG. We refer to the character of such a representation

as the total character τ of G. A Gel’fand model afforded by a (generalized) per-

mutation representation is referred to as a (weakly) geometric Gel’fand model.

When a Gel’fand modelM is the representation afforded by a nonnegative inte-

ger linear combination of powers of a genuine G-set X, then the total character

τ of G can be expressed as a polynomial in the character χ afforded by X. A

question related to this idea was posed by Johnson [5].

Question 1.1. For a finite groupG, do there necessarily exist an irreducible

character χ and a monic polynomial f(x)∈ Z[x] such that f(χ)= τ , where τ
is the total character of G?

Johnson’s question arose in the context of character sharpness which we will

briefly explain. Let G be a finite group, χ a generalized character of G of degree

n, L= {χ(g) | g �= 1}, and fL(x)=
∏
l∈L(x−l). It was discovered by Blichfeldt

[2] and rediscovered in a modern context by Kiyota [6] that fL(x)∈ Z[x] and

|G| divides fL(n). In the special case that fL(n) = |G|, the character χ is said

to be sharp. Another way to characterize a sharp character is to notice that the

class function fL(χ)=
∏
l∈L(χ−l1G)= ρ, where ρ is the regular character and

1G is the trivial character of G. In other words, every irreducible character of

G appears as a constituent of fL(χ).
A partial answer to Johnson’s question was given in [7] for certain dihedral

groups. In this paper, we give a complete treatment for all dihedral groups

and we show that the right polynomials, when they exist, are integer sums of

Chebyshev polynomials of the first kind.
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We prove the following main theorem.

Theorem 1.2. Let G �D2n and let τ be the total character of G.

(1) If n is odd or if n = 2m, where m ≡ 2,3(mod4), then there exists a

unique monic polynomial P(x)∈ Z[x] such that P(χ)= τ for any faithful

χ ∈ Irr(G). Moreover,

P(x)=




2
m∑
k=0

Tk
(
x
2

)
−2Tm−1

(
x
2

)
, if n= 2m−1, n≡ 1,3(mod8),

2
m−1∑
k=0

Tk
(
x
2

)
, if n= 2m−1, n≡ 5,7(mod8),

2
m∑
k=0

Tk
(
x
2

)
, if n= 2m, m≡ 2,3(mod4),

(1.1)

where Tk(x) is the kth Chebyshev polynomial of the first kind.

(2) If n = 2m and m ≡ 1(mod4), then there exists a unique monic polyno-

mial P(x)∈ Z[x] such that P(χ)= 2τ for any faithful χ ∈ Irr(G), where

P(x)= 2


Tm+1

(
x
2

)
+2

m∑
k=0

Tk
(
x
2

)
−Tm−1

(
x
2

). (1.2)

Moreover, there does not exist P(x) ∈ Z[x] such that P(χ) = τ for any

χ ∈ Irr(G).
(3) If G � D2n, where n ≡ 0(mod8), then there does not exist a polynomial

P(x)∈ C[x] such that P(χ)= τ for any χ ∈ Irr(G).

2. Preliminaries. The total character for all dihedral groups was computed

in [7, Proposition 2.1]. A dihedral group of order 2n with n ≥ 3 will be pre-

sented as usual as

D2n =G =
〈
a,b : an = b2 = 1, b−1ab = a−1〉. (2.1)

Using the notation in [4], we use gi and hi to denote a representative and

the size of the ith conjugacy class, respectively. The character table and total

character τ of D2n are given below.

Case 1 (n odd). The conjugacy classes of D2n (n odd) are

{1}, {
ar ,a−r

} (
1≤ r ≤ n−1

2

)
,
{
asb | 0≤ s ≤n−1

}
. (2.2)

The character table of D2n (n odd) and the total character τ , where ε= e2πi/n,

is presented in Table 2.1.



TOTAL CHARACTERS AND CHEBYSHEV POLYNOMIALS 2449

Table 2.1

gi 1 ar
(
1≤ r ≤ (n−1)/2

)
b

hi 1 2 n

χ1 1 1 1

χ2 1 1 −1

ψj
(
1≤ j ≤ (n−1)/2

)
2 εjr +ε−jr 0

τ n+1 1 0

Case 2 (n even). If n is even, say n= 2m, then the conjugacy classes ofD2n

are

{1}, {
am
}
,

{
ar ,a−r

}
(1≤ r ≤m−1),{

asb | s even
}
,

{
asb | s odd

}
.

(2.3)

The character table of D2n (n even, n = 2m, and the total character τ , where

ε= e2πi/n) is given in Table 2.2.

Table 2.2

gi 1 am ar (1≤ r ≤m−1) b ab

hi 1 1 2 n/2 n/2

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 (−1)m (−1)r 1 −1

χ3 1 (−1)m (−1)r −1 1

ψj (1≤ j ≤m−1) 2 2(−1)j εjr +ε−jr 0 0

τ 2(m+1)
0, m odd, 0, r odd,

0 0

2, m even, 2, r even,

The nth Chebyshev polynomial of the first kind is defined as Tn(x) =
cos(ncos−1(x)) for |x| ≤ 1. Chebychev polynomials can be expressed recur-

sively as Tn+2(x) = 2xTn+1(x)−Tn(x), T0(x) = 1, and T1(x) = x. Before we

proceed with the proof of Theorem 1.2 we need the following lemmas.

Lemma 2.1. If P(ψ1) = τ for some P(x) ∈ Z[x], then P(ψj) = τ for any

faithful character ψj of D2n.

Proof. We first observe that ψj is faithful if and only if (j,n) = 1, for

εjr + ε−jr = 2cos(2πrj/n) = 2 if and only if n|rj if and only if (n,j) �= 1.
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Hence for (j,n) = 1, the character ψj is faithful and a Galois conjugate of

ψ1 with the same set of character values. Since for n odd P(ψ1[ar ]) = 1 for

all r , it follows that P(ψj[ar ]) = P(ψ1[ar ]) = 1. When n is even, we have

that P(ψ1[ar ]) = 2 when r is even and P(ψ1[ar ]) = 0 when r is odd. For a

faithfulψj , the set of character values is the same as those ofψ1; and since j is

necessarily odd, it follows that P(ψj[ar ])= 2 when r is even, and P(ψj[ar ])=
0 when r is odd as required.

Lemma 2.2. Let the nth Chebyshev polynomial of the first kind be expressed

as Tn(x)=
∑n
k=1 cn,kxk+cn,0. Then cn,n = 2(n−1) and 2(k−1)|cn,k for 1≤ k≤n.

Proof. The first half follows easily by an inductive argument on n and

by using the recursive relation mentioned above. For divisibility of the coeffi-

cients, observe that the result is true for n= 1 and n= 2. Now assume that the

result is true for all Chebyshev polynomials of degree less that n and consider

the nth degree Chebyshev polynomial Tn(x). We have by the recursive relation

that cn,k = 2cn−1,k−1−cn−2,k. By inductive hypothesis, 2(k−1)|2cn−1,k−1−cn−2,k

for any 1≤ k≤n. Hence the result is true for all the coefficients of Tn(x) and

hence for all n.

Lemma 2.3 [3, 134.2]. For m∈ Z+,

m∑
k=0

coskx = 1
2

[
1+ sin

(
(m+1/2)x

)
sin
(
(1/2)x

)
]
. (2.4)

Lemma 2.4. Let pm(x)= 2
∑m
k=0Tk(x/2). The following equations hold:

pm(2)= 2(m+1); (2.5)

pm
(

2cos
2πr
2m

)
=

0, if r odd,

2, if r even;
(2.6)

pm
(

2cos
(

2πr
(2m−1)

))
= 1+(−1)r2cos

(
πr

(2m−1)

)
; (2.7)

pm(0)= 1+sin
(
mπ

2

)
+cos

(
mπ

2

)
. (2.8)

Proof. Equation (2.5) follows immediately since Tk(1) = 1, for all k ≥ 0.

For the other equations, we use Lemma 2.3,

pm
(

2cos
(

2πr
2m

))
= 2

m∑
k=0

cos
(
πkr
m

)

= 1+ sin
(
(m+1/2)(πr/m)

)
sin(πr/2m)

= 1+cos(πr)=

0, if r odd,

2, if r even,
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pm
(

2cos
(

2πr
2m−1

))
= 1+ sin

((
(2m−1)+2

)
/2
)(

2πr/(2m−1)
)

sin
(
πr/(2m−1)

)

= 1+cos(πr)
sin2

(
πr/(2m−1)

)
sin
(
πr/(2m−1)

)

= 1+(−1)r2cos
(
πr

2m−1

)
,

pm(0)= 2
m∑
k=0

Tk(0)= 2
m∑
k=0

cos
(
kπ
2

)

= 1+ sin
(
(m+1/2)(π/2)

)
sin(π/4)

= 1+sin
(
mπ

2

)
+cos

(
mπ

2

)
.

(2.9)

3. Proof of main theorem. It is a well-known theorem of polynomial inter-

polation that there exists a unique polynomial of degree k or less that maps

k+1 distinct points in the domain to predefined points in the range. We refer

the reader to [1] for a natural proof. Thus, by presenting a polynomial of de-

gree less than the number of distinct values of some χ ∈ Irr(G), which matches

the values of the total character when considered as a class function on χ, we

immediately get that the polynomial is both minimal and unique.

Proof of Theorem 1.2(1). Let n= 2m−1, n≡ 1,3(mod8). Using Lemma

2.4, we have that P(x)= pm(x)−2Tm−1(x/2),

P
(
ψ1[1]

)= 2(m+1)−2= 2m=n+1= τ[1],

P
(
ψ1
[
ar
])= 1+(−1)r2cos

(
πr

2m−1

)
−2cos

(
πr(m−1)

2m−1

)

= 1= τ[ar ],
P
(
ψ1[b]

)= 1+sin
(
mπ

2

)
+cos

(
mπ

2

)
−2= 0= τ[b].

(3.1)

Let n= 2m−1, n≡ 5,7(mod8). Then P(x)= pm−1(x),

P
(
ψ1[1]

)= (2(m−1)+1
)= 2m=n+1= τ[1],

P
(
ψ1
[
ar
])= 2

m−1∑
k=0

cos
(

2πkr
2m−1

)

= 1+ sin(πr)
sin
(
πr/(2m−1)

) = 1= τ[ar ],
P
(
ψ1[b]

)= 1+sin
(
mπ

2

)
+cos

(
mπ

2

)
= 0= τ[b].

(3.2)
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Let n= 2m, m≡ 2,3(mod4). Then P(x)= pm(x),
P
(
ψ1[1]

)= 2(m+1)= τ[1],

P
(
ψ1
[
ar
])=


0, if r odd,

2, if r even,

= τ[ar ],
P
(
ψ1[b]

)= P(ψ1[ab]
)= 1+sin

(
mπ

2

)
+cos

(
mπ

2

)
= 0

= τ[b]= τ[ab].

(3.3)

Thus, in each of the above three cases, P(x) is minimal, and by Lemma 2.2 it

is monic with integer entries. By Lemma 2.1, we have that P(ψj) = τ for any

faithful ψj ∈ Irr(G).

Proof of Theorem 1.2(2). Let n = 2m and m ≡ 1(mod4). Then P(x) =
2Tm+1(x/2)+2pm(x)−2Tm−1(x/2),

P
(
ψ1[1]

)= 2
[
1+2(m+1)−1

]= 2τ[1],

P
(
ψ1
[
ar
])= 2

[
cos

(m+1)πr
m

+1+(−1)r −cos
(m−1)πr

m

]

=

0, if r odd,

4, if r even,

= 2τ
[
ar
]
,

P
(
ψ1[b]

)= P(ψ1[ab]
)

= 2
[

0+
(

1+sin
(
mπ

2

)
+cos

(
mπ

2

))
−0
]

= 0= 2τ[b]= 2τ[ab].

(3.4)

Again, we have that P(x) is minimal since it matches m+ 2 distinct values

with a polynomial of degreem+1. By Lemma 2.1, P(ψj)= 2τ for any faithful

character of G, and by Lemma 2.2 it is monic with integer entries. Thus, the

unique polynomial that maps the values of a faithful χ ∈ Irr(G) onto τ is

(1/2)P(x) and has noninteger coefficients.

Proof of Theorem 1.2(3). Letn= 2m andm≡ 0(mod4). When r =m/2,

we have that for any faithful character,ψj[am/2]=ψj(b)= 0, but τ[am/2]= 2

and τ(b)= 0; thus we have an inconsistent system.
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[1] Ȧ. Björck and G. Dahlquist, Numerical Methods, Prentice-Hall Series in Automatic
Computation, Prentice-Hall, New Jersey, 1974.

[2] H. F. Blichfeldt, A theorem concerning the invariants of linear homogeneous
groups, with some applications to substitution-groups, Trans. Amer. Math.
Soc. 5 (1904), no. 4, 461–466.

[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic
Press, Massachusetts, 1994.

[4] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge
Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.

[5] K. W. Johnson, private correspondence, 1997.
[6] M. Kiyota, An inequality for finite permutation groups, J. Combin. Theory Ser. A

27 (1979), no. 1, 119.
[7] E. Poimenidou and A. Cottrell, Total characters of dihedral groups and sharpness,

Missouri J. Math. Sci. 12 (2000), no. 1, 12–25.
[8] J. Soto-Andrade, Geometrical Gel’fand models, tensor quotients, and Weil represen-

tations, The Arcata Conference on Representations of Finite Groups (Arcata,
Calif., 1986), Proc. Sympos. Pure Math., vol. 47, American Mathematical So-
ciety, Rhode Island, 1987, pp. 305–316.

Eirini Poimenidou: Division of Natural Sciences, New College of Florida, 5700 North
Tamiami Trail, Sarasota, FL 34243, USA

E-mail address: poimenidou@ncf.edu

Homer Wolfe: Division of Natural Sciences, New College of Florida, 5700 North Tami-
ami Trail, Sarasota, FL 34243, USA

E-mail address: homer.wolfe@ncf.edu

mailto:poimenidou@ncf.edu
mailto:homer.wolfe@ncf.edu

