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The existence and the global stability of positive periodic solutions of a discrete
competition model is studied. The model incorporates time delays and allows for a
fluctuating environment. By means of some standard procedures of the topological
degree method and the construction of a suitable Lyapunov function, sufficient
conditions are obtained to ensure the existence and the global stability of positive
periodic solutions of the above systems.
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1. Introduction. There has been quite a lot of excellent work on the study of

ecological competition systems (see [3, 4, 11, 16] and the references therein).

The classical two-species Lotka-Volterra autonomous competition model is de-

scribed by the following systems of differential equations:

u′(t)=u(t)[r1−au(t)−bv(t)
]
,

v′(t)= v(t)[r2−cu(t)−dv(t)
]
,

(1.1)

Though much progress has been seen in the competition systems (1.1), such

systems are not well studied in the sense that most results are continuous

time cases related. However, many authors [1, 2, 9, 17] have argued that the

discrete time models governed by difference equations are more appropriate

than the continuous ones when the populations have nonoverlapping genera-

tions. Discrete time models can also provide efficient computational models of

continuous models for numerical simulations. In [20], Saito et al. considered

the following discrete competition system with constant delays n1, n2, l1, and

l2:

u(k+1)=u(k)exp
[
r1−au

(
k−n1

)−bv(k−n2
)]
,

v(k+1)= v(k)exp
[
r2−cu

(
k−l1

)−dv(k−l2)], (1.2)

and they obtained a necessary and sufficient condition for the permanence of

(1.2). On the other hand, the variation of the environment plays an important
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role in many biological and ecological systems. In particular, the effects of a

periodically varying environment are important for the evolutionary theory as

the selective forces on systems in a fluctuating environment differ from those

in a stable environment. Thus, the assumption of periodicity of the parameters

(in a way) incorporates the periodicity of the environment (e.g., seasonal effects

of weather, food supplies, mating habits, etc.). In fact, it has been suggested

by Nicholson [18] that any periodic change of climate tends to impose its pe-

riod upon oscillations of internal origin or to cause such oscillations to have a

harmonic relation to periodic climatic changes. Therefore, it is physically rea-

sonable to assume that parameters in the models are periodic functions. We

remark that in recent years periodic population dynamics has become a very

popular subject. In fact, several different periodic models have been studied

in [14, 15, 21, 22, 23, 25].

Motivated by all of the above, the principal aim of this paper is to study the

global existence of periodic solutions of the following discrete delay competi-

tion system:

u(k+1)=u(k)exp
[
r1(k)−a(k)u

(
k−n1

)−b(k)v(k−n2
)]
,

v(k+1)= v(k)exp
[
r2(k)−c(k)u

(
k−l1

)−d(k)v(k−l2)], (1.3)

whereu(k), v(k) are the population sizes of the two competitors at generation

k, ri(k), i = 1,2, is the growth rate of population i at kth generation, a(k),
d(k) measure the intensity of intraspecific competition of two species, and

b(k), c(k)measure the intensity of interspecific competition of two species. It

is assumed that ri(k), i = 1,2, a(k), b(k), c(k), d(k) : Z→ R+ are ω periodic,

that is,

ri(k+ω)= ri(k), i= 1,2, c(k+ω)= c(k),
b(k+ω)= b(k), a(k+ω)= a(k), d(k+ω)= d(k), (1.4)

for any k ∈ Z, ni, li are nonnegative integers. For biological reasons, we only

consider the following initial condition:

u(−m)≥ 0, m= 1, . . . ,max
{
n1, l1

}
, u(0) > 0,

v(−m)≥ 0, m= 1, . . . ,max
{
n2, l2

}
, v(0) > 0.

(1.5)

The method used here will be the coincidence degree theory developed by

Gaines and Mawhin [10]. Such an approach was adopted in [5, 13, 14, 15, 23].

In mathematical biology, the global stability of a population model is of

great interest. There is extensive literature related to this topic for differen-

tial equation models (see [16, 19, 24] and the references therein). In contrast,
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the studies for many-species difference models focus their attention on the

permanence of models or extinction of populations (see [6, 7, 8, 12, 20] and

the references therein). Few papers investigate the global stability of positive

periodic solutions of these models. So the second purpose of this paper is to

study the global stability of the positive periodic solution of system (1.3).

The organization of this paper is the following. In Section 2, we obtain the

sufficient conditions to ensure the existence of positive periodic solution of

system (1.3). In Section 3, we study the global stability of the positive periodic

solution of system (1.3).

2. Existence of positive periodic solutions. In this section, we use the

Mawhin’s continuation theorem of the coincidence degree theory to investi-

gate the existence of at least one positive periodic solution of system (1.3).

Let X, Y be real Banach spaces, L : DomL ⊂ X → Y a Fredholm mapping

of index zero (indexL = dimkerL− codimImL), and P : X → X, Q : Y → Y
continuous projectors such that ImP = KerL, KerQ = ImL, X = KerL⊕KerP ,

and Y = ImL⊕ ImQ. Denote by Lp the restriction of L to DomL∩KerP , Kp :

ImL→ KerP∩DomL the inverse (to Lp), and J : ImQ→ KerL an isomorphism

of ImQ onto KerL. For convenience, we introduce a continuation theorem [10,

page 40] as follows.

Lemma 2.1. Let Ω ⊂ X be an open bounded set, N : X → Y a continuous

operator which is L-compact on Ω (i.e., QN : Ω → Y and Kp(I−Q)N : Ω → Y
are compact), and L : DomL ⊂ X → Y a Fredholm mapping of index zero with

Ω open bounded in X. Assume that

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL,

Lx ≠ λNx, (2.1)

(b) for each x ∈ ∂Ω∩KerL,

QNx ≠ 0,

deg{JQNx,Ω∩KerL,0}≠ 0.
(2.2)

Then Lx =Nx has at least one solution in Ω∩DomL.

For convenience, we will introduce the notations

Iω = {0,1, . . . ,ω−1}, u= 1
ω

ω−1∑
k=0

u(k), (u)M =max
k∈Iω

u(k), (2.3)

where {u(k)} is anω-periodic sequence of real numbers defined for k∈ Z and

ω is a fixed positive integer.
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Lemma 2.2 [5]. Let u : Z→ R be ω periodic, that is, u(k+ω) = u(k). Then,

for any fixed k1,k2 ∈ Iω, and for any k∈ Z,

u(k)≤u(k1
)+ω−1∑

s=0

∣∣u(s+1)−u(s)∣∣,

u(k)≥u(k2
)−ω−1∑

s=0

∣∣u(s+1)−u(s)∣∣.
(2.4)

Define

l2 =
{
x = {x(k)} : x(k)∈R2, k∈ Z}. (2.5)

For a = (a1,a2)T ∈ R2, define |a| = max{a1,a2}. Let lω ⊂ l2 denote the sub-

space of all ω periodic sequences equipped with the usual supremum norm

‖·‖, that is,

‖x‖ =max
k∈Iω

∣∣x(k)∣∣, for any x = {x(k) : k∈ Z}∈ lω. (2.6)

We can show that lω is a finite-dimensional Banach space.

Let

lω0 =

x = {x(k)}∈ lω :

ω−1∑
k=0

x(k)= 0


,

lωc =
{
x = {x(k)}∈ lω : x(k)= h∈R2, k∈ Z},

(2.7)

then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕lωc , dimlωc = 2. (2.8)

Now we state our fundamental theorem about the existence of a positive

ω-periodic solution of system (1.3).

Theorem 2.3. Assume that the following conditions hold:

(i) r 1−b(r 1/a)exp2r 2ω> 0;

(ii) r 2−c(r 1/b)exp2r 1ω> 0;

(iii) the system of equations

r 1−av1−bv2 = 0, r 2−cv1−dv2 = 0, (2.9)

has a unique positive solution (v1,v2)∈R2.

Then system (1.3) has at least one positive ω-periodic solution, say x∗(k) =
{u∗(k),v∗(k)} and there exist positive constants αi and βi, i= 1,2, such that

α1 ≤u∗(k)≤ β1, α2 ≤ v∗(k)≤ β2, k∈ Z. (2.10)



DISCRETE DELAY COMPETITION SYSTEMS 2405

Proof. Let

u(k)= exp
{
x1(k)

}
, v(k)= exp

{
x2(k)

}
. (2.11)

Consider the system

x1(k+1)−x1(k)= r1(k)−a(k)expx1
(
k−n1

)−b(k)expx2
(
k−n2

)
,

x2(k+1)−x2(k)= r2(k)−c(k)expx1
(
k−l1

)−d(k)expx2
(
k−l2

)
.

(2.12)

In order to apply Lemma 2.1 to system (2.12), we take X = Y = lω, (Lx)(k) =
x(k+1)−x(k), and

(Nx)(k)=
[
r1(k)−a(k)expx1

(
k−n1

)−b(k)expx2
(
k−n2

)
r2(k)−c(k)expx1

(
k−l1

)−d(k)expx2
(
k−l2

)
]
, (2.13)

for any x ∈X and k∈ Z. It is trivial to see that L is a bounded linear operator

and

KerL= lωc , ImL= lω0 , (2.14)

as well as

dimKerL= 2= codimImL, (2.15)

then it follows that L is a Fredholm mapping of index zero.

Define

Px = 1
ω

ω−1∑
s=0

x(s), x ∈X, Qz = 1
ω

ω−1∑
s=0

z(s), z ∈ Y . (2.16)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL= KerQ= Im(I−Q). (2.17)

Furthermore, the generalized inverse (to L) Kp : ImL→ KerP ∩domL has the

form

Kp(z)=
k−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω−s)z(s). (2.18)

By the Lebesgue theorem, we can prove that QN and Kp(I−Q)N are contin-

uous. Since X is a finite-dimensional Banach space, using the Arzela-Ascoli
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theorem, we can also show thatQN(Ω) and Kp(I−Q)N(Ω) are relatively com-

pact for any open bounded set Ω ⊂ X. Hence, N is L-compact on Ω, here Ω is

any open bounded set in X.

Now we reach the position to search for an appropriate open bounded subset

Ω for the application of Lemma 2.1. Corresponding to the equation Lx = λNx,

λ∈ (0,1), we have

x1(k+1)−x1(k)= λ
[
r1(k)−a(k)expx1

(
k−n1

)
−b(k)expx2

(
k−n2

)]
,

x2(k+1)−x2(k)= λ
[
r2(k)−c(k)expx1

(
k−l1

)
−d(k)expx2

(
k−l2

)]
.

(2.19)

Suppose that x(k) = (x1(k),x2(k)) ∈ X is a solution of system (2.12) for a

certain λ∈ (0,1). Summing up both sides of (2.19) from 0 to ω−1, we obtain

ω−1∑
k=0

[
r1(k)−a(k)expx1

(
k−n1

)−b(k)expx2
(
k−n2

)]

=
ω−1∑
k=0

[
x1(k+1)−x1(k)

]= 0,

ω−1∑
k=0

[
r2(k)−c(k)expx1

(
k−l1

)−d(k)expx2
(
k−l2

)]

=
ω−1∑
k=0

[
x2(k+1)−x2(k)

]= 0.

(2.20)

Thus

ω−1∑
k=0

[
a(k)expx1

(
k−n1

)+b(k)expx2
(
k−n2

)]= r 1ω, (2.21)

ω−1∑
k=0

[
c(k)expx1

(
k−l1

)+d(k)expx2
(
k−l2

)]= r 2ω. (2.22)

From (2.19), (2.21), and (2.22), it follows that

ω−1∑
k=0

[
x1(k+1)−x1(k)

]

= λ
ω−1∑
k=0

[
r1(k)−a(k)expx1

(
k−n1

)−b(k)expx2
(
k−n2

)]

< r 1ω+
ω−1∑
k=0

[
a(k)expx1

(
k−n1

)+b(k)expx2
(
k−n2

)]

= 2r 1ω,
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ω−1∑
k=0

[
x2(k+1)−x2(k)

]

= λ
ω−1∑
k=0

[
r2(k)−c(k)expx1

(
k−l1

)−d(k)expx2
(
k−l2

)]

< r 2ω+
ω−1∑
k=0

[
c(k)expx1

(
k−l1

)+d(k)expx2
(
k−l2

)]

= 2r 2ω.

(2.23)

That is

ω−1∑
k=0

[
x1(k+1)−x1(k)

]
< 2r 1ω,

ω−1∑
k=0

[
x2(k+1)−x2(k)

]
< 2r 2ω.

(2.24)

Note that (x1(k),x2(k))T ∈X, then there exists ξi,ηi ∈ Iω, i= 1,2,3, such that

xi
(
ξi
)=min

k∈Iω
xi(k), xi

(
ηi
)=max

k∈Iω
xi(k), i= 1,2. (2.25)

From (2.21), (2.22), and (2.25), we have

x2
(
ξ2
)
< ln

(
r 1

b

)
, x1

(
ξ1
)
< ln

(
r 1

a

)
. (2.26)

Then, by (2.26) and Lemma 2.2, we have

x1(k)≤ x1
(
ξ1
)+ω−1∑

s=0

[
x1(s+1)−x1(s)

]
< ln

(
r 1

b

)
+2r 1ω :=M1,

x2(k)≤ x2
(
ξ1
)+ω−1∑

s=0

[
x2(s+1)−x2(s)

]
< ln

(
r 1

a

)
+2r 2ω :=M2.

(2.27)

By virtue of (2.21) and assumption (i), we obtain that

ω−1∑
k=0

[
a(k)expx1

(
k−n1

)]= r 1ω−
ω−1∑
k=0

[
b(k)expx2

(
k−n2

)]

> r 1ω−bωr 1

a
exp2r 2ω> 0,

(2.28)

which implies that there exist a point k1 ∈ Iω and a constant M3 > 0 such that

x(k1−n1) >−M3, denote k1−n1 = k∗1 +m1ω, k∗1 ∈ Iω, m1 is an integer, then

x1
(
k∗1
)
>−M3. (2.29)
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Similarly, from (2.22) and assumption (ii), we also obtain that there exist a

point k∗2 ∈ [0,ω] and a constant M4 > 0 such that

x2
(
k∗2
)
>−M4. (2.30)

By (2.24), (2.29), (2.30), and Lemma 2.2, it is easy to see that

x1(k) >−
(
M3+2r 1ω

)
, x2(k) >−

(
M4+2r 2ω

)
. (2.31)

It follows from (2.27) and (2.31) that
∣∣x1(k)

∣∣<max
{
M1,M3+2r 1ω

}=M5,∣∣x2(k)
∣∣<max

{
M2,M4+2r 2ω

}=M6.
(2.32)

Clearly, Mi (i= 1,2,3,4,5,6) are independent of λ, and under assumption (iii)

of the theorem, the system of the algebraic equations

r 1−av1−bv2 = 0, r 2−cv1−dv2 = 0, (2.33)

has a unique solution (v∗1 ,v
∗
2 ) which satisfies v∗1 > 0 and v∗2 > 0. Denote

M =M5+M6+K, (2.34)

where K > 0 is taken sufficiently large so that the unique solution of system

(2.33) satisfies

∥∥(v∗1 ,v∗2 )∥∥= ∣∣v∗1 ∣∣+∣∣v∗2 ∣∣<M. (2.35)

Now we take

Ω = {x = (x1(k),x2(k)
)T ∈X :

∥∥(x1,x2
)∥∥<M}. (2.36)

This satisfies condition (a) of Lemma 2.1. When

x ∈ ∂Ω∩KerL= ∂Ω∩R2, (2.37)

x is a constant vector in R2 with ‖x‖ =M . Then

QN
[
x1

x2

]
=
[
r 1−aexpx1−bexpx2

r 2−c expx1−dexpx2

]
≠

[
0

0

]
. (2.38)

Furthermore, it can easily be seen that

deg
{
JQN

(
x1,x2

)T ,Ω∩KerL,(0,0)T
}= sign

[(
ad−bc)v∗1 v∗2 ]≠ 0, (2.39)

where J is the identity mapping since ImQ = KerL. By now we know that Ω
verifies all the requirements of Lemma 2.1, and then (2.12) has at least one

ω-periodic solution. The proof is complete.
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In view of Theorem 2.3, we can easily obtain the following corollary.

Corollary 2.4. Assume that Theorem 2.3(i) and (ii) hold and that

r 1d−r 2b > 0, ar 2−cr 1 > 0, ad−bc > 0. (2.40)

Then system (1.3) has at least one positive ω-periodic solution.

Remark 2.5. The continuous counterpart of (1.3) under the assumption of

Corollary 2.4 is

u′(t)=u(t)[r1(t)−a(t)u
(
t−n1

)−b(t)v(t−n2
)]
,

v′(t)= v(t)[r2(t)−c(t)u
(
t−l1

)−d(t)v(t−l2)], (2.41)

where r1(t), a(t), b(t), r2(t), c(t), and d(t) are positive periodic continuous

functions with periodω> 0, and τ(t), σ(t) are periodic continuous functions

with period ω> 0. Huo and Li [13] have shown that if

r 1−br 1

a
exp2r 2ω> 0, r 2−c r 1

b
exp2r 1ω> 0,

r 1d−r 2b > 0, ar 2−cr 1 > 0, ad−bc > 0,
(2.42)

where

f = 1
ω

∫ω
0
f(t)dt, (2.43)

then (2.41) has a positive periodic solution. Clearly, the criteria established

above are similar to those for corresponding continuous systems.

Remark 2.6. Theorem 2.3 remains valid if some or all terms are replaced

by terms with variable delays.

3. Global stability of positive periodic solutions. In this section, we derive

sufficient conditions which guarantee that the positive ω-periodic solution of

(1.3) is globally stable. Our strategy in the proof of the global stability of the

positive ω-periodic solution of (1.3) is to construct suitable Lyapunov func-

tions

Theorem 3.1. In addition to the assumptions in Theorem 2.3, assume fur-

ther that

(i) there exist positive constant ν and positive constants ci such that for all

large k,

min
{
c1a(k)−c2c(k), c2d(k)−c1d(k)

}
> ν, (3.1)
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(ii) a(k)β1 ≤ 1, d(k)β2 ≤ 1, for all large k, where βi are given in Theorem

2.3,

(iii) li = 0, ni = 0, i= 1,2.

Then the positive ω-periodic solution of (1.3) is globally stable.

Proof. The existence of the positive ω-periodic solution of (1.3) follows

from Theorem 2.3. Let {u∗(k),v∗(k)} be a positive ω-periodic solution of

(1.3). We prove below that it is uniformly asymptotically stable. To this end,

we introduce the change of variables

u1(k)=u(k)−u∗(k), u2(k)= v(k)−v∗(k). (3.2)

System (1.3) is then transformed into

u1(k+1)=u(k)exp
[
r1(k)−a(k)u(k)−b(k)v(k)

]
−u∗(k)exp

[
r1(k)−a(k)u∗(k)−b(k)v∗(k)

]
,

u2(k+1)= v(k)exp
[
r2(k)−c(k)u(k)−d(k)v(k)

]
−v∗(k)exp

[
r2(k)−c(k)u∗(k)−d(k)v∗(k)

]
,

(3.3)

which can be rewritten as

u1(k+1)= exp
[
r1(k)−a(k)u∗(k)−b(k)v∗(k)

]
×((1−a(k)u∗(k))u1(k)−b(k)u∗(k)u2(k)+f1

(
k,u(k)

))
,

u2(k+1)= exp
[
r2(k)−c(k)u∗(k)−d(k)v∗(k)

]
×((1−d(k)v∗(k))u2(k)+c(k)v∗(k)u1(k)+f2

(
k,u(k)

))
,

(3.4)

where |fi(k,u)|/‖u‖ converges, uniformly with respect to k ∈ N, to zero as

‖u‖→ 0. In view of system (1.3), it follows from (3.4) that

u1(k+1)

=u∗(k+1)
((

1−a(k)u∗(k))u1(k)
u∗(k)

−b(k)u2(k)+ f1
(
k,u(k)

)
u∗(k)

)
,

u2(k+1)

= v∗(k+1)
((

1−d(k)v∗(k))u2(k)
v∗(k)

+c(k)u1(k)+ f2
(
k,u(k)

)
v∗(k)

)
.

(3.5)

We define the function V by

V
(
u(k)

)= c1

∣∣∣∣u1(k)
u∗(k)

∣∣∣∣+c2

∣∣∣∣u2(k)
v∗(k)

∣∣∣∣, (3.6)
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where cj are positive constants given in (i). Calculating the difference of V
along the solution of system (3.5) and using (ii), we obtain

∆V ≤−(c1a(k)−c2c(k)
)
x∗1 (k)

∣∣∣∣u1(k)
x∗1 (k)

∣∣∣∣
−(c2d(k)−c1b(k)

)
x∗2 (k)

∣∣∣∣u2(k)
x∗2 (k)

∣∣∣∣
+c1

∣∣f1
(
k,u(k)

)∣∣
u∗(k)

+c2

∣∣f2
(
k,u(k)

)∣∣
u∗(k)

.

(3.7)

Since |fi(k,u)|/‖u‖ converges uniformly to zero as ‖u‖ → 0, it follows from

condition (i) and Theorem 2.3 that there is a positive constant γ such that if k
is sufficiently large and ‖u(k)‖< γ,

∆V ≤−ν
∥∥u(k)∥∥

2
. (3.8)

By [1], we see that the trivial solution of (3.5) is uniformly asymptotically stable,

and so is the solution {u∗(k),v∗(k)} of (1.3). Note that the positive solution

{u(k),v(k)} is chosen in an arbitrary way. Proceeding exactly as in [24], we

conclude that the positive periodic solution {u∗(k),v∗(k)} of (1.3) is globally

stable. The proof is complete.

Remark 3.2. Theorem 3.1 indicates that diagonally dominant interaction

matrices, together with small growth rates and strong persistence, ensure that

the positive periodic solution of system (1.3) is globally asymptotically stable.

Remark 3.3. There are still many interesting and challenging mathematical

questions to be studied for system (1.3). For example, we did not discuss the

bifurcations that occur when conditions of stability are violated. We will leave

this for future work.
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