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We present characterizations of connected graphs G of order n ≥ 2 for which
h+(G)= n. It is shown that for every two integers n and m with 1≤ n−1≤m ≤(
n
2

)
, there exists a connected graph G of order n and size m such that for each

integer k with 2≤ k≤n, there exists an orientation of G with hull number k.
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1. Introduction. The (directed) distance d(u,v) from a vertex u to a vertex

v in an oriented graph D is the length of a shortest directed u−v path in D. A

directed u−v path of length d(u,v) is referred to as a u−v geodesic. A vertex

w is said to lie in a u−v geodesic P if w is an internal vertex of P , that is, w
is a vertex of P distinct from u and v . The closed interval I[u,v] consists of u
and v together with all vertices lying in a u−v geodesic or in a v−u geodesic

in D. Hence, if there is neither a u−v geodesic nor a v−u geodesic in D, then

I[u,v]= {u,v}. For a nonempty subset S of V(D), define

I[S]=
⋃

u,v∈S
I[u,v]. (1.1)

Then certainly S ⊆ I[S]. A set S is convex if I[S]= S. The convex hull [S] of S is

the smallest convex set containing S. The set [S] is also the intersection of all

convex sets containing S. The convex hull [S] of S can also be formed from the

sequence {Ik[S]}, k ≥ 0, where I0[S]= S, I1[S] = I[S], and Ik[S] = I[Ik−1[S]]
for k ≥ 2. From some term on, this sequence must be constant. Let p be the

smallest number such that Ip[S]= Ip+1[S]. Then Ip[S] is the convex hull [S].
A set S of vertices of D is called a hull set of D if [S] = V(D). A hull set of

minimum cardinality is a minimum hull set ofD. The cardinality of a minimum

hull set in D is called the hull number h(D). Certainly, if D is a nontrivial

connected oriented graph of order n, then 2≤ h(D)≤n.

Concepts related to hull sets and hull numbers in oriented graphs were

studied in [7]. A set S of vertices in an oriented graph D is a geodetic set if

I[S]= V(D). A geodetic set of minimum cardinality is a minimum geodetic set,

and this cardinality is the geodetic number g(D).
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Figure 1.1. An oriented graph D with h(D)= 2 and g(D)= 3.

To illustrate these concepts, consider the oriented graph D of Figure 1.1.

Let S = {u,v}. Since I[S] = V(D)−{z} ≠ S, it follows that S is not convex.

However, [S] = I2[S] = V(G) and so S is a minimum hull set in D. Therefore,

h(D)= 2. On the other hand, the geodetic number of the oriented graph D of

Figure 1.1 is 3 and {u,v,z} is a minimum geodetic set in D.

If S is a hull set of an oriented graph D and u,v ∈ S, then each vertex

of every u−v geodesic of D belongs to I[S]. This observation implies the

following lemma.

Lemma 1.1. Let S be a minimum hull set of an oriented graph D and let

u,v ∈ S. If w lies in a u−v geodesic in D, then w ∉ S.

The degree degv of a vertex v in an oriented graph is the sum of its indegree

and outdegree, that is, degv = idv+odv . A vertex v is an endvertex if degv =
1. A transmitter is a vertex having positive outdegree and indegree 0, while a

receiver is a vertex having positive indegree and outdegree 0. For a vertex u
of D, let

N+(u)= {x : (u,x)∈ E(D)}, N−(u)= {x : (x,u)∈ E(D)}. (1.2)

So if u is a transmitter, then N−(u)=∅; while if v is a receiver, then N+(u)=
∅. A vertex u of D is a transitive vertex if (1) odu > 0 and idu > 0, (2) for

every v ∈N+(u) andw ∈N−(u), (w,v)∈ E(D). A vertex v of D is an extreme

vertex if v is a transmitter, receiver, or transitive vertex (see [2]). If v is an ex-

treme vertex, then v can only be the initial or the terminal vertex of a geodesic

containing v . This observation yields the following lemma.

Lemma 1.2. Every hull set of a connected oriented graph D must contain

the extreme vertices of D. In particular, every hull set of D must contain its

endvertices. Moreover, if the set of the extreme vertices of D is a hull set, then it

is the unique minimum hull set.

The closed intervals I[u,v] in a connected graph were studied and charac-

terized by Nebeský [12, 13] and were also investigated extensively in Mulder



THE HULL NUMBER OF AN ORIENTED GRAPH 2267

Figure 1.2. An oriented graph in which every pair of vertices is a
hull set.

[10], where it was shown that these sets provide an important tool for study-

ing metric properties of connected graphs. The sequential construction of a

convex hull of a set of vertices in a graph was utilized in [9]. The hull num-

ber of a graph was introduced by Everett and Seidman [8] who characterized

graphs having some particular hull numbers and who obtained a number of

bounds for the hull numbers of graphs. The hull numbers of median graphs

was determined by Mulder [11]. (A connected graph G is a median graph if

for every three vertices u, v , and w of G, there is a unique vertex lying on a

geodesic between each pair of u, v , and w.) The hull number of a graph was

studied further in [3]. Convexity in graphs and digraphs was studied in [2, 6].

The geodetic number of a graph was introduced in [1] and studied further in

[4], while the geodetic number of an oriented graph was studied in [7]. We refer

to [1] for concepts and results on distance in graphs.

We have seen that if D is a nontrivial connected oriented graph of order n,

then

2≤ h(D)≤n. (1.3)

The upper and lower bounds in (1.3) are sharp for all n≥ 2. For example, the

directed path
���������������→
Pn : v1,v2, . . . ,vn of order n≥ 2 has hull number 2, where the set

{v1,vn} is its unique minimum geodetic set. Obviously, the hull number of the

directed cycle
���������������������→
Cn is 2 as well, but in this case every pair of vertices in

���������������������→
Cn is a

hull set of
���������������������→
Cn. It was shown in [7] that

���������������������→
Cn is the only connected oriented graph

of order n such that every pair of its vertices forms a geodetic set. However,

this is not true for hull sets. It can be shown that every pair of vertices of the

oriented graph in Figure 1.2 is a hull set.

At the other extreme are oriented graphs D of order n for which h(D)=n.

We need an additional definition. An oriented graph D is transitive if when-

ever (u,v) and (v,w) are arcs of D, then (u,w) is an arc of D. We can now

characterize oriented graphs of order n having hull number n.

Proposition 1.3. Let D be a nontrivial oriented graph of order n. Then

h(D)=n if and only if D is transitive.
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Proof. Assume first that h(D) < n. Then there exists a vertex v in D such

that S = V(D)−{v} is a hull set of D. Then odv > 0 and idv > 0. This implies

that v lies in some u−w geodesic u, v , w in D, where u,w ∈ S. Therefore,

(u,w) ∉ E(D) and D is not transitive.

Conversely, assume that D is an oriented graph that is not transitive. Then

there exist distinct vertices u, v , and w such that (u,v),(v,w) ∈ E(D), but

(u,w) ∉ E(D). Then S = V(D)−{v} is a hull set and so h(D) < n.

Next we show that for a given integer n ≥ 2, every integer k with 2 ≤ k ≤ n
is the hull number of some oriented graph of order n.

Proposition 1.4. For every two integers k andnwith 2≤ k≤n, there exists

an oriented graph of order n and hull number k.

Proof. We show, in fact, that there exists an oriented graph with this prop-

erty having the path Pn of ordern as its underlying graph. Let Pn : v1,v2, . . . ,vn.

We construct an oriented graph D from Pn by directing the two edges incident

with vi towards vi for all even i with i < k. If k is odd, then each edge vivi+1

with i≥ k is directed as (vi+1,vi). If k is even, then each edgevivi+1 for i≥ k−1

is directed as (vi,vi+1). In each case, the set {v1,v2, . . . ,vk−1,vn} of extreme

vertices is a hull set, so h(D)= k.

Next we provide an upper bound for the hull number of an oriented graph

in terms of its order and diameter (the length of a longest geodesic).

Proposition 1.5. If D is a connected oriented graph of order n and diam-

eter d, then

h(D)≤n−d+1. (1.4)

Proof. Let u and v be vertices of D for which d(u,v) = d and let u =
v0,v1, . . . ,vd = v be a u−v geodesic. Let S = V(D)−{v1,v2, . . . ,vd−1}. Then

[S]= V(D) and so h(D)≤ |S| =n−d+1.

Note that, in the proof of Proposition 1.4, the oriented graph D constructed

there has order n, diameter d = n− k+ 1, and hull number k = n−d+ 1.

Therefore, the upper bound for h(D) presented in Proposition 1.5 is sharp.

2. Relating hull number to geodetic number. IfD is a nontrivial connected

oriented graph with h(D) = a and g(D) = b, then necessarily 2 ≤ a ≤ b. We

now show that every pair a, b of integers with 2 ≤ a ≤ b is realizable as the

hull number and geodetic number, respectively, of some oriented graph. The

following lemma is analogous to Lemma 1.2.

Lemma 2.1. Every geodetic set of a connected oriented graphDmust contain

the extreme vertices of D. In particular, every geodetic set of D must contain its

endvertices. Moreover, if the set of the extreme vertices of D is a geodetic set,

then it is the unique geodetic set.
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Figure 2.1. An oriented graph D with h(D)= a and g(D)= b = a+3.

Theorem 2.2. For every pair a, b of integers with 2 ≤ a ≤ b, there exists a

connected oriented graph D such that h(D)= a and g(D)= b.

Proof. Assume first that a = b ≥ 2. Let D be the oriented graph whose

underlying graph is the star K1,a, where V(D)= {v,v1,v2, . . . ,va} and degv =
a, and such that (v1,v)∈ E(D) and (v,vi)∈ E(D) for 2≤ i≤ a. Then V(D)−
{v} is the set of extreme vertices of D. Since V(D)−{v} is both a hull set and

a geodetic set, it follows by Lemmas 1.2 and 2.1 that h(D) = g(D) = |V(D)−
{v}| = a.

Assume next that 2 ≤ a < b. We construct an oriented graph D with the

required hull and geodetic numbers. For each integer i with 1 ≤ i ≤ b−a, let

Fi be the oriented graph whose underlying graph is the 6-cycle xi, yi, zi, wi,

si, ti, xi and such that Fi contains the two directed xi−wi paths xi, yi, zi,
wi and xi, ti, si, wi. The oriented graph Di is produced by adding the vertex

vi and the two arcs (ti,vi) and (vi,zi) to Fi. Therefore, Di is isomorphic to

the oriented graph of Figure 1.1. The oriented graph D is then obtained from

the oriented graphs Di (1 ≤ i ≤ b−a) by adding (1) the a− 1 new vertices

uj (1 ≤ j ≤ a−1), (2) the arcs (wb−a,uj) for 1 ≤ j ≤ a−1, and (3) the arcs

(xi,xi+1) and (wi,wi+1) for 1 ≤ i ≤ b−a−1. The oriented graph D is shown

in Figure 2.1 for b−a= 3.

Let U = {u1,u2, . . . ,ua−1} and V = {v1,v2, . . . ,vb−a}. Then {x1}∪U is the

set of extreme vertices of D. Since I[{x1}∪U] = V(D)−V and [{x1}∪U] =
I2[{x1}∪U] = V(D), it follows that {x1}∪U is a hull set of D and so h(G) =
|{x1}∪U| = a by Lemma 1.2.

Next we show that g(G) = b. Since {x1}∪U ∪V is a geodetic set, g(G) ≤
|{x1}∪U ∪V | = b. It remains to show that g(G) ≥ b. Let W be a minimum

geodetic set of D. Certainly, {x1}∪U ⊂ W by Lemma 2.1. Of course, W con-

tains the vertex x1 in D1. We claim that W contains at least one vertex in each
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Figure 3.1. An oriented graph D of K2,4 with h(D)= 2.

Di for all i with 2 ≤ i ≤ b−a. Otherwise, V(Di)∩W = ∅ for some i with

2 ≤ i ≤ b−a. Observe that vi does not lie on any x −y geodesic in G for

x,y ∉ V(Di). This implies that vi ∉ I[W], which contradicts the fact that W
is a geodetic set. Therefore, as claimed, W contains at least one vertex from

each Di (2 ≤ i ≤ b−a) and so |W | ≥ |{x1}∪U|+ (b−a−1) = b−1. On the

other hand, if |W | = b−1, then W contains exactly one vertex from each Di
(1 ≤ i ≤ b−a). In particular, x1 is the only vertex of D1 belonging to W . Since

each vertex vi (2 ≤ i ≤ b−a) only lies on those geodesics having vi as one

of its endvertices or having both endvertices belonging to Di, it follows that

vi ∈W . This implies that W = {x1}∪U∪(V −{v1}). However, then v1 ∉ I[W],
which is a contradiction. Therefore, g(D)= b.

3. Orientable hull numbers of graphs. For a connected graph G of order

n≥ 2, the lower orientable hull number h−(G) of G is defined as the minimum

hull number among the orientations ofG and the upper orientable hull number

h+(G) as the maximum hull number, that is,

h−(G)=min
{
h(D) :D is an orientation of G

}
,

h+(G)=max
{
h(D) :D is an orientation of G

}
.

(3.1)

Hence, for every connected graph G of order n ≥ 2, we have 2 ≤ h−(G) ≤
h+(G) ≤ n. First, we present a lemma that gives a sufficient condition for a

graph to have lower hull number 2. Observe that if a graph G contains a Hamil-

tonian path, then there exists an orientation D of G in which the Hamiltonian

path in G is oriented as a Hamiltonian path in D such that h(D)= 2. Thus we

have the following lemma.

Lemma 3.1. Let G be a connected graph of order n ≥ 2. If G contains a

Hamiltonian path, then h−(G)= 2.

The sufficient condition given in Lemma 3.1 for a graph to have lower ori-

entable hull number 2 is not necessary. For example, the graph K2,4 contains

no Hamiltonian path. Since the orientationD ofK2,4 of Figure 3.1 has h(D)= 2,

it follows that h−(G)= 2.
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Certainly, if G contains a Hamiltonian path, then G contains a spanning tree

with two endvertices. More generally, we have the following lemma.

Lemma 3.2. Let µ be the minimum number of endvertices among all span-

ning trees of a connected graph G. Then h−(G)≤ µ.

Proof. Let T be a spanning tree of G with µ endvertices, say, v1,v2, . . . ,vµ .

We orient the edges of T so that T is rooted at v1, that is, so that there is a

directed path in T from v1 to every other vertex of T . For each edge uv of

G not in T , if dT (v1,u) ≤ dT (v1,v), then orient uv as (v,u), and otherwise,

orient uv as (u,v). We denote the resulting digraph by D.

Let S = {v1,v2, . . . ,vµ}. For distinct integers i,j ∈ {1,2, . . . ,µ}, the only vi−
vj geodesics in D are the unique v1 − vj paths in T with 2 ≤ j ≤ µ. Thus

I[v1,vj] contains all vertices of the unique v1−vj path in T . Hence V(D) =
∪µj=2I[v1,vj]⊆ I[S] and so I[S]= V(D). Therefore, h(D)≤ |S| = µ.

We now turn to those connected graphs G of order n≥ 2 for which h+(G)=
n. Recall that a vertex v is an extreme vertex in an oriented graph if v is a

transmitter, a receiver, or a transitive vertex. Hence if there exists an orienta-

tion D of a connected graph G of order n≥ 2 such that every vertex of D is an

extreme vertex, then h+(G) = n. The converse is also true for assume that G
is a connected graph of order n≥ 2 for which every orientation of G has some

vertex that is not an extreme vertex. Let D be an orientation of G. Then D con-

tains a vertex v that is not an extreme vertex. Hence v is neither a transmitter,

a receiver, nor a transitive vertex. Therefore, there exist two vertices u and w
distinct from v such that (u,v) and (v,w) are arcs of D but (u,w) is not an

arc of D. Consequently, v lies in a u−w geodesic in D and V(D)−{v} is a

hull set. Thus h(D)≤n−1. Since D is an arbitrary orientation of G, it follows

that h+(G)≤n−1. We summarize these observations.

Proposition 3.3. Let G be a connected graph of order n≥ 2. Then h+(G)=
n if and only if there exists an orientation D of G such that every vertex of D is

an extreme vertex.

For example, it is not difficult to show that there exists an orientation of any

bipartite graph and any complete multipartite graph in which every vertex is

an extreme vertex. Thus if G is a bipartite graph or a complete multipartite

graph of order n≥ 2, then h+(G)=n.

There is yet another characterization of those connected graphs G of order

n≥ 2 for which h+(G)=n. Let S be a finite nonempty set of positive integers.

The divisor graph G(S) of S has S as its vertex set and two vertices i and j are

adjacent if either i | j or j | i. A graph G is a divisor graph if G =G(S) for some

finite nonempty set S of positive integers. The following theorem was proved

in [5].

Theorem 3.4. LetG be a graph. ThenG is a divisor graph if and only if there

exists an orientation D of G such that every vertex of D is an extreme vertex.
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Combining Proposition 3.3 and Theorem 3.4, we have the following charac-

terization which relates two concepts that, at the outset, would appear to be

unrelated.

Theorem 3.5. Let G be a connected graph of order n≥ 2. Then h+(G)=n
if and only if G is a divisor graph.

There exist connected graphs G and an integer k with h−(G) < k < h+(G)
such that G has no orientation with hull number k. In order to show this, we

first determine the hull number of an orientation of a cycle.

Proposition 3.6. Let D be an orientation of Cn for n ≥ 3. Then h(D) = 3

or h(D)= 2t for some integer t with 1≤ t ≤n/2.

Proof. Let Cn : v1,v2, . . . ,vn,v1 be a cycle of order n and let D be an

orientation of Cn. Then the number t of transmitters of D equals the num-

ber of receivers of D. If t = 0, then D is a directed cycle and so h(D) = 2.

For t ≥ 1, let vi1 ,vi2 , . . . ,vit be the transmitters of D and let vj1 ,vj2 , . . . ,vjt
be the receivers of D, where 1 ≤ i1 < i2 < ··· < it ≤ n and 1 ≤ j1 < j2 <
···< jt ≤n. By Lemma 1.2, h(D)≥ 2t. We assume, without loss of generality,

that these transmitters and receivers appear around the cycle Cn clockwise as

vi1 ,vj1 ,vi2 ,vj2 , . . . ,vit ,vjt .
Case 1 (t = 1). If dD(vi1 ,vj1) = n/2, then {vi1 ,vj1} is a hull set and so

h(D)= 2. If dD(vi1 ,vj1) < n/2, then {vi1 ,vj1} is not a hull set and so h(D)≥ 3

by Lemma 1.2. On the other hand, {vi1 ,vi1+1,vj1} or {vi1−1,vi1 ,vj1} is a hull

set. Thus h(D)= 3.

Case 2 (t ≥ 2). Since {vi1 ,vi2 , . . . ,vit ,vj1 ,vj2 , . . . ,vjt} is a hull set of D, it

follows by Lemma 1.2 that h(D)= 2t.

By Lemma 3.1 and Proposition 3.3, it is easy to verify that (1) h−(Cn) = 2

for all n ≥ 3 and (2) h+(Cn) = n if n = 3 or n is even, while h+(Cn) = n−1 if

n≥ 5 is odd. Thus, by Proposition 3.6, if n≥ 6 and 5≤ k < n, where k is odd,

then there exists no orientation of Cn with hull number k. Therefore, there are

connected graphs G such that G has no orientation with hull number k for

some integer k with h−(G) < k < h+(G).
On the other hand, for every two integers n andm with 1≤n−1≤m≤

(
n
2

)
,

there exists a connected graph G of order n and size m such that, for each

integer k with 2 ≤ k ≤ n, there exists an orientation of G with hull number k.

In order to show this, we first present three lemmas. The converse D∗ of an

oriented graph D has the same vertex set as D and the arc (u,v) in D∗ if and

only if the arc (v,u) is in D. Since the reversal of the edge directions on any

u−v geodesic in D yields a v−u geodesic in D∗ and vice versa, we have the

following lemma.

Lemma 3.7. IfD∗ is the converse of an oriented graphD, thenh(D)= h(D∗).
Lemma 3.8. Let D be an oriented graph obtained from an oriented graph D′

by adding a new vertex and joining it to all vertices ofD′. Thenh(D)= h(D′)+1.
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Proof. Let v be the vertex of D that is not in D′. Since idD v = 0, it follows

that v belongs to every hull set of D by Lemma 1.2. Let S′ be a minimum

hull set of D′. Then [S′]D′ = V(D′). Since [S′ ∪{v}] = V(D′)∪{v} = V(D), it

follows that S∪{v} is a hull set of D and so h(D) ≤ |S′|+1 = h(D′)+1. On

the other hand, let S =A∪{v} be a minimum hull set of D, where A⊆ V(D′).
Since every geodesic of D is either a geodesic of D′ or an arc (v,v′) for some

vertex v′ in D′, it follows that V(D) = [S] = [A]∪{v}. Thus [A] = V(D′) and

soA is a hull set ofD′. So, h(D′)≤ |A| = |S|−1= h(D)−1 or h(D)≥ h(D′)+1.

Therefore, h(D)= h(D′)+1.

Lemma 3.9. Let D be an oriented graph obtained from an oriented graph D′

by adding a new vertex v and joining it to a vertex v′ of D′.
(a) If v′ is a transmitter of D′, then h(D)= h(D′).
(b) If v′ is a receiver of D′, then h(D)= h(D′)+1.

Proof. First, assume that v′ is a transmitter of D′. Let S′ be a minimum

hull set of D′. Then v′ ∈ S′ and [S′]D′ = V(D′). Since every geodesic of D is

a geodesic in D′ or a geodesic starting with v followed by v′, it follows that

(S′ − {v′})∪{v} is a hull set of D. Thus h(D) ≤ |S′| = h(D′). On the other

hand, let S be a minimum hull set of D. Since v is a transmitter of D, it follows

by Lemma 1.2 that v ∈ S. Thus S = {v} ∪A, where A ⊆ V(D′). Since every

v−x geodesic of D, where x ∈ V(D′), has v′ as its second vertex, it follows

that A∪{v′} is a hull set of D′. Thus h(D′) ≤ |A∪{v′}| ≤ |A∪{v}| = h(D).
Therefore, h(D)= h(D′) and so (a) holds.

Next assume that v′ is a receiver of D′. Then v′ is also a receiver of D and

so v′ belongs to every hull set of D. Let S′ be a minimum hull set of D′. Then

v′ ∈ S′. Since S′ ∪ {v} is a hull set of D, it follows that h(D) ≤ |S′ ∪ {v}| =
h(D′)+1. On the other hand, let S be a minimum hull set of D. Since v is a

transmitter of D, it follows by Lemma 1.2 that v ∈ S. Thus S = {v}∪A, where

A ⊆ V(D′). Since v is on no geodesic joining two vertices of V(D′), it follows

that A is a hull set of D′. Thus h(D′) ≤ |A| ≤ h(D)−1 or h(D′)+1 ≤ h(D).
Therefore, h(D)= h(D′)+1 and so (b) holds.

We are now prepared to present the following result.

Theorem 3.10. For every two integers n and m with 1 ≤ n−1 ≤m ≤
(
n
2

)
,

there exists a connected graph G of order n and size m such that for each

integer k with 2≤ k≤n there exists an orientation of G with hull number k.

Proof. We prove the more general statement: for every two integers n and

m with 1≤ n−1≤m ≤
(
n
2

)
, there exists a connected graph G of order n and

sizem having a vertexv such that (a)G contains a Hamiltonian path with initial

vertex v and (b) for each 3 ≤ k ≤ n, there exists an orientation of G having v
as a transmitter and hull number k. By Lemma 3.1, (a) and (b) imply that for

each 2≤ k≤n, there exists an orientation of G having v as a transmitter and

hull number k.
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We proceed by induction on n. Since the statement is certainly true if n≤ 3,

we assume thatn≥ 4. Suppose that the statement is true forn−1. We consider

two cases.

Case 1
(
2n−3 ≤m ≤

(
n
2

))
. Then (n−1)−1 ≤m−(n−1) ≤

(
n−1

2

)
. By the

induction hypothesis, there exists a connected graph G′ of order n− 1 and

size m−(n−1) having a vertex v′ such that G′ contains a Hamiltonian path

starting at v′ and for each 3 ≤ k ≤ n− 1, there exists an orientation of G′

having v′ as a transmitter and hull number k.

LetG =G′+K1 withV(K1)= {v}. ThenG is a connected graph of ordern and

size m. Since G′ contains a Hamiltonian path starting at v′, it follows that G
contains a Hamiltonian path starting at v . Thus G has an orientation with hull

number 2 by Lemma 3.1. We now assume that 3≤ k≤n. Then 2≤ k−1≤n−1.

By the induction hypothesis, there exists an orientation D′ of G′ having v′ as

a transmitter and hull number k−1. We extend the orientation D′ of G′ to an

orientation D of G by directing each edge incident with v in G away from v .

Then v is a transmitter of D. Since h(D′)= k−1, it then follows by Lemma 3.8

that h(D)= k.

Case 2 (n− 1 ≤ m ≤ 2n− 4). Then (n− 1)− 1 ≤ m− 1 ≤ 2n− 5. By the

induction hypothesis, there exists a connected graph G′ of order n−1 and size

m−1 having a vertex v′ such thatG′ contains a Hamiltonian path starting at v′

and for each 3≤ k≤n−1, G′ has an orientation having v′ as a transmitter and

hull number k. Let G be the graph obtained from G′ by adding a new vertex v
and the pendant edge vv′. Then G has order n and sizem. Since G′ contains a

Hamiltonian path starting at v′, it follows that G contains a Hamiltonian path

starting at v . So, G has an orientation with hull number 2 by Lemma 3.1. For

3≤ k≤n, we consider two subcases.

Subcase 2.1 (3 ≤ k ≤ n−1). Let D′ be an orientation of G′ having v′ as a

transmitter and h(D′) = k. We extend D′ to an orientation of G by directing

the edge vv′ as (v,v′). Then v is a transmitter of D. By Lemma 3.9, h(D) =
h(D′)= k.

Subcase 2.2 (k=n). Let D′ be an orientation of G′ having v′ as a transmit-

ter and h(D′) = n−1 and let D∗ be the converse of D′. Then v′ is a receiver

of D∗ and h(D∗)= h(D′)=n−1 by Lemma 3.7. We now extend D∗ to an ori-

entation D of G by directing the edge vv′ as (v,v′). Then v is a transmitter

of D. It then follows by Lemma 3.9 that h(D)= h(D∗)+1=n.

There is reason to believe that if G is any connected graph of order n ≥ 3,

then h−(G)≠ h+(G). Consequently, we conclude this paper with the following

conjecture.

Conjecture 3.11. For every connected graphG of order at least 3, h−(G)≠
h+(G).
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