K-THEORY FOR CUNTZ-KRIEGER ALGEBRAS ARISING FROM REAL QUADRATIC MAPS

NUNO MARTINS, RICARDO SEVERINO, and J. SOUSA RAMOS

Received 20 September 2002

We compute the *K*-groups for the Cuntz-Krieger algebras $\mathbb{O}_{A_{\mathcal{H}}(f_{\mu})}$, where $A_{\mathcal{H}}(f_{\mu})$ is the Markov transition matrix arising from the kneading sequence $\mathcal{H}(f_{\mu})$ of the one-parameter family of real quadratic maps f_{μ} .

2000 Mathematics Subject Classification: 37A55, 37B10, 37E05, 46L80.

Consider the one-parameter family of real quadratic maps $f_{\mu} : [0,1] \rightarrow [0,1]$ defined by $f_{\mu}(x) = \mu x(1-x)$, with $\mu \in [0,4]$. Using Milnor-Thurston kneading theory [14], Guckenheimer [5] has classified, up to topological conjugacy, a certain class of maps, which includes the quadratic family. The idea of kneading theory is to encode information about the orbits of a map in terms of infinite sequences of symbols and to exploit the natural order of the interval to establish topological properties of the map. In what follows, *I* denotes the unit interval [0,1] and *c* the unique turning point of f_{μ} . For $x \in I$, let

$$\varepsilon_n(x) = \begin{cases} -1, & \text{if } f_{\mu}^n(x) > c, \\ 0, & \text{if } f_{\mu}^n(x) = c, \\ +1, & \text{if } f_{\mu}^n(x) < c. \end{cases}$$
(1)

The sequence $\varepsilon(x) = (\varepsilon_n(x))_{n=0}^{\infty}$ is called the itinerary of x. The itinerary of $f_{\mu}(c)$ is called the *kneading sequence* of f_{μ} and will be denoted by $\mathcal{H}(f_{\mu})$. Observe that $\varepsilon_n(f_{\mu}(x)) = \varepsilon_{n+1}(x)$, that is, $\varepsilon(f_{\mu}(x)) = \sigma\varepsilon(x)$, where σ is the shift map. Let $\sum = \{-1, 0, +1\}$ be the alphabet set. The sequences on $\sum^{\mathbb{N}}$ are ordered lexicographically. However, this ordering is not reflected by the mapping $x \to \varepsilon(x)$ because the map f_{μ} reverses orientation on [c, 1]. To take this into account, for a sequence $\varepsilon = (\varepsilon_n)_{n=0}^{\infty}$ of the symbols -1, 0, and +1, another sequence $\theta = (\theta_n)_{n=0}^{\infty}$ is defined by $\theta_n = \prod_{i=0}^n \varepsilon_i$. If $\varepsilon = \varepsilon(x)$ is the itinerary of a point $x \in I$, then $\theta = \theta(x)$ is called the *invariant coordinate* of x. The fundamental observation of Milnor and Thurston [14] is the monotonicity of the invariant coordinates:

$$x < y \Longrightarrow \theta(x) \le \theta(y). \tag{2}$$

We now consider only those kneading sequences that are periodic, that is,

$$\mathscr{K}(f_{\mu}) = \varepsilon_0(f_{\mu}(c)) \cdots \varepsilon_{n-1}(f_{\mu}(c))\varepsilon_0(f_{\mu}(c)) \cdots \varepsilon_{n-1}(f_{\mu}(c)) \cdots$$

= $(\varepsilon_0(f_{\mu}(c)) \cdots \varepsilon_{n-1}(f_{\mu}(c)))^{\infty} \equiv (\varepsilon_1(c) \cdots \varepsilon_n(c))^{\infty}$ (3)

for some $n \in \mathbb{N}$. The sequences $\sigma^i(\mathcal{K}(f_\mu)) = \varepsilon_{i+1}(c)\varepsilon_{i+2}(c)\cdots$, i = 0, 1, 2, ...,will then determine a Markov partition of I into n-1 line intervals $\{I_1, I_2, ..., I_{n-1}\}$ [15], whose definitions will be given in the proof of Theorem 1. Thus, we will have a Markov transition matrix $A_{\mathcal{K}(f_\mu)}$ defined by

$$A_{\mathcal{H}(f_{\mu})} := (a_{ij}) \quad \text{with } a_{ij} = \begin{cases} 1, & \text{if } f_{\mu}(\operatorname{int} I_{i}) \supseteq \operatorname{int} I_{j}, \\ 0, & \text{otherwise.} \end{cases}$$
(4)

It is easy to see that the matrix $A_{\mathcal{H}(f_{\mu})}$ is not a permutation matrix and no row or column of $A_{\mathcal{H}(f_{\mu})}$ is zero. Thus, for each one of these matrices and following the work of Cuntz and Krieger [3], one can construct the Cuntz-Krieger algebra $\mathbb{O}_{A_{\mathcal{H}(f_{\mu})}}$. In [2], Cuntz proved that

$$K_0(\mathbb{O}_A) \cong \mathbb{Z}^r / (1 - A^T) \mathbb{Z}^r, \qquad K_1(\mathbb{O}_A) \cong \ker \left(I - A^t : \mathbb{Z}^r \longrightarrow \mathbb{Z}^r \right), \tag{5}$$

for an $r \times r$ matrix A that satisfies a certain condition (I) (see [3]), which is readily verified by the matrices $A_{\mathcal{H}(f_{\mu})}$. In [1], Bowen and Franks introduced the group $BF(A) := \mathbb{Z}^r / (1-A)\mathbb{Z}^r$ as an invariant for flow equivalence of topological Markov subshifts determined by A.

We can now state and prove the following theorem.

THEOREM 1. Let $\mathscr{K}(f_{\mu}) = (\varepsilon_1(c)\varepsilon_2(c)\cdots\varepsilon_n(c))^{\infty}$ for some $n \in \mathbb{N} \setminus \{1\}$. Thus,

$$K_0\left(\mathbb{O}_{A_{\mathcal{H}}(f_{\mu})}\right) \cong \mathbb{Z}_a \quad \text{with } a = \left|1 + \sum_{l=1}^{n-1} \prod_{i=1}^{l} \varepsilon_i(c)\right|,$$

$$K_1\left(\mathbb{O}_{A_{\mathcal{H}}(f_{\mu})}\right) \cong \begin{cases} \{0\}, & \text{if } a \neq 0, \\ \mathbb{Z}, & \text{if } a = 0. \end{cases}$$

$$(6)$$

PROOF. Set $z_i = \varepsilon_i(c)\varepsilon_{i+1}(c)\cdots$ for $i = 1, 2, \dots$ Let $z'_i = f^i_\mu(c)$ be the point on the unit interval [0,1] represented by the sequence z_i for $i = 1, 2, \dots$ We have $\sigma(z_i) = z_{i+1}$ for $i = 1, \dots, n-1$ and $\sigma(z_n) = z_1$. Denote by ω the $n \times n$ matrix representing the shift map σ . Let C_0 be the vector space spanned by the formal basis $\{z'_1, \dots, z'_n\}$. Now, let ρ be the permutation of the set $\{1, \dots, n\}$, which allows us to order the points z'_1, \dots, z'_n on the unit interval [0, 1], that is,

$$0 < z'_{\rho(1)} < z'_{\rho(2)} < \dots < z'_{\rho(n)} < 1.$$
⁽⁷⁾

Set $x_i := z'_{\rho(i)}$ with i = 1, ..., n and let π denote the permutation matrix which takes the formal basis $\{z'_1, ..., z'_n\}$ to the formal basis $\{x_1, ..., x_n\}$. We will denote by C_1 the (n-1)-dimensional vector space spanned by the formal basis $\{x_{i+1} - x_i : i = 1, ..., n-1\}$. Set

$$I_i := [x_i, x_{i+1}] \quad \text{for } i = 1, \dots, n-1.$$
(8)

Thus, we can define the Markov transition matrix $A_{\mathcal{X}(f_{\mu})}$ as above. Let φ denote the incidence matrix that takes the formal basis $\{x_1, \ldots, x_n\}$ of C_0 to the formal basis $\{x_2 - x_1, \ldots, x_n - x_{n-1}\}$ of C_1 . Put $\eta := \varphi \pi$. As in [7, 8], we obtain an endomorphism α of C_1 , that makes the following diagram commutative:

We have $\alpha = \eta \omega \eta^T (\eta \eta^T)^{-1}$. Remark that if we neglect the negative signs on the matrix α , then we will obtain precisely the Markov transition matrix $A_{\mathcal{H}(f_{\mu})}$. In fact, consider the $(n-1) \times (n-1)$ matrix

$$\boldsymbol{\beta} := \begin{bmatrix} \boldsymbol{1}_{n_L} & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{1}_{n_R} \end{bmatrix},\tag{10}$$

where 1_{n_L} and 1_{n_R} are the identity matrices of ranks n_L and n_R , respectively, with n_L (n_R) being the number of intervals I_i of the Markov partition placed on the left- (right-) hand side of the turning point of f_{μ} . Therefore, we have

$$A_{\mathcal{H}(f_{\mu})} = \beta \alpha. \tag{11}$$

Now, consider the following matrix:

$$\gamma_{\mathcal{H}(f_{\mu})} := (\gamma_{ij}) \quad \text{with} \begin{cases} \gamma_{ii} = \varepsilon_i(c), & i = 1, \dots, n, \\ \gamma_{in} = -\varepsilon_i(c), & i = 1, \dots, n, \\ \gamma_{ij} = 0, & \text{otherwise.} \end{cases}$$
(12)

The matrix $\gamma_{\mathcal{H}(f_{\mu})}$ makes the diagram

commutative. Finally, set $\theta_{\mathcal{X}(f_{\mu})} := \theta_{\mathcal{X}(f_{\mu})} \omega$. Then, the diagram

is also commutative. Now, notice that the transpose of η has the following factorization:

$$\eta^T = Y i X, \tag{15}$$

where *Y* is an invertible (over \mathbb{Z}) $n \times n$ integer matrix given by

$$Y := \begin{pmatrix} 1 & 0 & \cdots & & & 0 \\ 0 & 1 & 0 & \cdots & & & 0 \\ \vdots & 0 & \ddots & \ddots & & \vdots \\ & \vdots & & & 0 & \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ -1 & -1 & \cdots & & -1 & 1 \end{pmatrix},$$
(16)

i is the inclusion $C_1 \hookrightarrow C_0$ given by

$$i := \begin{pmatrix} 1 & 0 & & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & & 0 \\ 0 & \cdots & & 0 \end{pmatrix},$$
(17)

and *X* is an invertible (over \mathbb{Z}) $(n-1) \times (n-1)$ integer matrix obtained from the $(n-1) \times n$ matrix η^T by removing the *n*th row of η^T . Thus, from the commutative diagram

we will have the following commutative diagram with short exact rows:

$$0 \longrightarrow C_{1} \xrightarrow{i} C_{0} \xrightarrow{p} C_{0}/C_{1} \longrightarrow 0 \qquad (19)$$

$$\downarrow_{A'} \qquad \qquad \downarrow_{\theta'} \qquad \qquad \downarrow_{0} \qquad \qquad (19)$$

$$0 \longrightarrow C_{1} \xrightarrow{i} C_{0} \xrightarrow{p} C_{0}/C_{1} \longrightarrow 0,$$

where the map p is represented by the $1 \times n$ matrix $[0 \cdots 01]$ and

$$A' = X A_{\mathcal{H}(f_{\mu})}^T X^{-1}, \qquad \theta' = Y^{-1} \theta_{\mathcal{H}(f_{\mu})}^T Y, \tag{20}$$

that is, A' is similar to $A_{\mathcal{H}(f_{\mu})}^{T}$ over \mathbb{Z} and θ' is similar to $\theta_{\mathcal{H}(f_{\mu})}^{T}$ over \mathbb{Z} . Hence, for example, by [10] we obtain, respectively,

$$\mathbb{Z}^{n-1}/(1-A')\mathbb{Z}^{n-1} \cong \mathbb{Z}^{n-1}/(1-A_{\mathcal{H}(f_{\mu})})\mathbb{Z}^{n-1},$$
$$\mathbb{Z}^{n}/(1-\theta')\mathbb{Z}^{n} \cong \mathbb{Z}^{n}/(1-\theta_{\mathcal{H}(f_{\mu})})\mathbb{Z}^{n}.$$
(21)

Now, from the last diagram we have, for example, by [9],

$$\theta' = \begin{bmatrix} A' & * \\ 0 & 0 \end{bmatrix}.$$
 (22)

Therefore,

$$\mathbb{Z}^{n-1}/(1-A')\mathbb{Z}^{n-1} \cong \mathbb{Z}^n/(1-\theta')\mathbb{Z}^n,$$

$$\mathbb{Z}^{n-1}/(1-A_{\mathcal{H}(f_{\mu})})\mathbb{Z}^{n-1} \cong \mathbb{Z}^n/(1-\theta_{\mathcal{H}(f_{\mu})})\mathbb{Z}^n.$$
(23)

Next, we will compute $\mathbb{Z}^n/(1 - \theta_{\mathcal{H}(f_{\mu})})\mathbb{Z}^n$. From the previous discussions and notations, the $n \times n$ matrix $\theta_{\mathcal{H}(f_{\mu})}$ is explicitly given by

$$\theta_{\mathcal{H}(f_{\mu})} := \begin{pmatrix} -\varepsilon_{1}(c) & \varepsilon_{1}(c) & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ & \vdots & \ddots & & 0 \\ -\varepsilon_{n-1}(c) & & & \varepsilon_{n-1}(c) \\ 0 & 0 & \cdots & & 0 \end{pmatrix}.$$
 (24)

Notice that the matrix $\theta_{\mathcal{H}(f_{\mu})}$ completely describes the dynamics of f_{μ} . Finally, using row and column elementary operations over \mathbb{Z} , we can find invertible

(over $\mathbb Z)$ matrices U_1 and U_2 with integer entries such that

$$1 - \theta_{\mathcal{K}(f_{\mu})} = U_1 \begin{pmatrix} 1 + \sum_{l=1}^{n-1} \prod_{i=1}^{l} \varepsilon_i(c) & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} U_2.$$
(25)

Thus, we obtain

$$K_0\left(\mathbb{O}_{A_{\mathcal{H}}(f_{\mu})}\right) \cong \mathbb{Z}^{n-1} / \left(1 - A_{\mathcal{H}}^T(f_{\mu})\right) \mathbb{Z}^{n-1} \cong \mathbb{Z}_a,\tag{26}$$

where

$$a = \left| 1 + \sum_{l=1}^{n-1} \prod_{i=1}^{l} \varepsilon_i(c) \right|, \quad n \in \mathbb{N} \setminus \{1\}.$$

$$(27)$$

EXAMPLE 2. Set

$$\mathscr{K}(f_{\mu}) = (RLLRRC)^{\infty}, \qquad (28)$$

where R = -1, L = +1, and C = 0. Thus, we can construct the 5×5 Markov transition matrix $A_{\mathcal{H}(f_{\mu})}$ and the matrices $\theta_{\mathcal{H}(f_{\mu})}$, ω , φ , and π :

$$A_{\mathcal{H}(f\mu)} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}, \qquad \theta_{\mathcal{H}(f\mu)} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \varphi = \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & & -1 & 1 \\ & & & & -1 & 1 \\ & & & & & -1 & 1 \end{pmatrix}, \quad (29)$$
$$\pi = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

We have

$$K_0\left(\mathbb{O}_{A_{\mathcal{H}(f_{\mu})}}\right) \cong \mathbb{Z}_2, \qquad K_1\left(\mathbb{O}_{A_{\mathcal{H}(f_{\mu})}}\right) \cong \{0\}.$$
(30)

REMARK 3. In the statement of Theorem 1 the case a = 0 may occur. This happens when we have a star product factorizable kneading sequence [4]. In this case the correspondent Markov transition matrix is reducible.

REMARK 4. In [6], Katayama et al. have constructed a class of C^* -algebras from the β -expansions of real numbers. In fact, considering a semiconjugacy from the real quadratic map to the tent map [14], we can also obtain Theorem 1 using [6] and the λ -expansions of real numbers introduced in [4].

REMARK 5. In [13] (see also [12]) and [11], the BF-groups are explicitly calculated with respect to another kind of maps on the interval.

REFERENCES

- [1] R. Bowen and J. Franks, *Homology for zero-dimensional nonwandering sets*, Ann. of Math. (2) **106** (1977), no. 1, 73-92.
- [2] J. Cuntz, A class of C*-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C*-algebras, Invent. Math. 63 (1981), no. 1, 25-40.
- [3] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268.
- [4] B. Derrida, A. Gervois, and Y. Pomeau, *Iteration of endomorphisms on the real axis and representation of numbers*, Ann. Inst. H. Poincaré Sect. A (N.S.) 29 (1978), no. 3, 305-356.
- [5] J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160.
- [6] Y. Katayama, K. Matsumoto, and Y. Watatani, *Simple C*-algebras arising from* β *-expansion of real numbers*, Ergodic Theory Dynam. Systems **18** (1998), no. 4, 937-962.
- [7] J. P. Lampreia and J. Sousa Ramos, *Trimodal maps*, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3 (1993), no. 6, 1607–1617.
- [8] _____, Symbolic dynamics of bimodal maps, Portugal. Math. 54 (1997), no. 1, 1-18.
- [9] S. Lang, *Algebra*, Addison-Wesley, Massachusetts, 1965.
- [10] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
- [11] N. Martins, R. Severino, and J. Sousa Ramos, *Bowen-Franks groups for bimodal matrices*, J. Differ. Equations Appl. 9 (2003), no. 3-4, 423–433.
- [12] N. Martins and J. Sousa Ramos, *Cuntz-Krieger algebras arising from linear mod* one transformations, Differential Equations and Dynamical Systems (Lisbon, 2000), Fields Inst. Commun., vol. 31, American Mathematical Society, Rhode Island, 2002, pp. 265–273.
- [13] _____, Bowen-Franks groups associated with linear mod one transformations, to appear in Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003.

NUNO MARTINS ET AL.

- [14] J. Milnor and W. Thurston, On iterated maps of the interval, Dynamical Systems (College Park, Md, 1986-87), Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563.
- [15] P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), no. 3, 237– 248.

Nuno Martins: Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

E-mail address: nmartins@math.ist.utl.pt

Ricardo Severino: Departamento de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

E-mail address: ricardo@math.uminho.pt

J. Sousa Ramos: Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

E-mail address: sramos@math.ist.utl.pt

2146