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A turtle sequence is a word constructed from an alphabet of two letters: F , which
represents the forward motion of a turtle in the plane, and L, which represents a
counterclockwise turn. In this paper, we investigate such sequences and establish
links between the combinatoric properties of words and the geometric properties
of the curves they generate. In particular, we classify periodic turtle sequences in
terms of their closure (or lack thereof).
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1. Introduction. In [1], Abelson and diSessa wrote “A final important differ-

ence between turtle geometry and coordinate geometry is that turtle geometry

characteristically describes geometric objects in terms of procedures rather

than in terms of equations. In formulating turtle-geometric descriptions we

have access to an entire range of procedural mechanisms (such as iteration)

that are hard to capture in the traditional algebraic formalism (pages 14–15).”

In this note, we show that iteration is, in fact, fairly simple to capture using

algebraic formalism. Using the algebraic structure of words constructed from

an alphabet of turtle commands, we examine the geometry of the turtle trajec-

tories produced by repeated iteration of a given turtle program. In particular,

we provide a classification of periodic turtle sequences based on the closure

(or lack thereof) of the polygonal curves they encode. In doing so, we revisit

some previously known results from [1]: the Closed-Path theorem, the POLY

Closing theorem, and the Looping lemma. Such results fall out easily once the

algebraic formalism is in place.

A turtle trajectory can be encoded efficiently as a string of characters. Let

F represent a forward motion of the turtle by one unit and L a change in the

turtle’s heading by a fixed angle θ in the counterclockwise direction. For our

purposes, forward steps always have length one and the angle of rotation is

fixed at θ = 2π/N for some integer N. Then a string, or word, of F ’s and L’s

represents a succession of turtle commands and hence a polygonal curve in

the plane. Any curve described in this way is said to be a turtle trajectory.

Following the definition given in [1], a turtle trajectory is said to be closed if

its turtle program restores the turtle’s original heading and position.
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2. Preliminaries

2.1. Turtle sequences. Let Σ be the alphabet Σ = {L,F}. Define a turtle se-

quencew to be any word over Σ, that is, any finite sequence of letters of Σ. The

length of the turtle sequence, denoted by |w|, is the number of letters in w.

The set of all words over Σ, denoted by Σ∗, is a monoid under the operation

of concatenation of words, that is, for w1,w2 ∈ Σ∗, w1 ·w2 =w1w2. The word

that has no letters is the empty word and we denote it by ε. The empty word

signifies no change in the turtle’s heading or position. Clearly, ε is the identity

element of the monoid Σ∗ since ε ·w =w =w ·ε.
Each turtle sequence w in Σ∗ has a unique representation of the form

w =
k∏
i=1

LniFmi , (2.1)

where all mi and ni are positive, except perhaps n1 and mk, which may be

zero. Note that each factor LniFmi represents a linear segment of the turtle

trajectory of length mi, so that the word w encodes a curve composed of k
linear segments (or k−1 linear segments if mk = 0). By |w|L, we denote the

number of L’s inw, so that |w|L =
∑k
i=1ni. Similarly, |w|F denotes the number

of F ’s in w and |w|F =
∑k
i=1mi. The latter quantity, |w|F , measures the total

length of the turtle trajectory described by w, while |w|L measures the total

turning.

2.2. Turtle geometry and the turtle transformation group. A turtle state is

an ordered pair (�r ,v̂) consisting of a position vector �r ∈R2 and a unit vector

v̂ describing the turtle’s heading. The basic turtle commands F and L define

certain changes in the turtle’s state; the command F represents the transfor-

mation TF mapping the state (�r ,v̂) to the state (�r+v̂, v̂), and L represents the

transformation TL mapping (�r ,v̂) to (�r ,Rθv̂), where Rθ is the rotation matrix

Rθ =
[

cosθ −sinθ
sinθ cosθ

]
, θ = 2π

N
. (2.2)

A stringw of F ’s and L’s then describes the general turtle transformation Tw
consisting of compositions of these two basic transformations. As it turns out,

such transformation Tw can be expressed in the form Tw(�r ,v̂)= (�r+Mv̂,Rv̂),
whereM is a matrix of the form

[a −b
b a

]
and R = Rkθ for some a,b ∈R and some

positive integer k [2]. To illustrate, if w = LF , then Tw(�r ,v̂) = TF(TL(�r ,v̂)) =
TF(�r ,Rθv̂)= (�r +Rθv̂,Rθv̂). Hence, if M2(R) is the set

M2(R)=
{[
a −b
b a

]
| a,b ∈R

}
(2.3)

and 〈Rθ〉 = {Rkθ | k ∈ Z}, then every turtle transformation can be described

using a pair of matrices (M,R)∈M2(R)×〈Rθ〉. For example, F corresponds to
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the pair (I,I), L corresponds to (0,Rθ), and LF corresponds to (Rθ,Rθ), where

I is the 2×2 identity matrix and 0 the 2×2 zero matrix. Equipped with the

right binary operation, the set of pairs (M,R) forms a group � called the turtle

transformation group.

Theorem 2.1. The set � =M2(R)×〈Rθ〉 is a group under the binary opera-

tion

(
M1,R1

)(
M2,R2

)= (M1+R1M2,R1R2
)
. (2.4)

Proof. To see that the given operation is a binary operation, note that

M2(R) is closed under matrix addition and multiplication and that 〈Rθ〉 is a

subgroup of M2(R). Hence, M1 +R1M2 ∈ M2(R) for all M1,M2 ∈ M2(R) and

R1 ∈ 〈Rθ〉. The identity in the group is (0, I), and the inverse of (M,Rkθ) in � is

(−R−kθ M,R−kθ ). The associativity follows from a straightforward computation.

The reader may recognize � as the semidirect product of M2(R) and 〈Rθ〉
with respect to the group actionφ : 〈Rθ〉 →Aut(M2(R)) defined byφ(Rkθ)(M)=
RkθM , M ∈M2(R) [3]. As it turns out, this group is a very useful computational

tool. Indeed, � provides an efficient way of computing the turtle’s new position

and heading following a succession of motions defined by a string in Σ∗. Given

a word w =∏k
i=1LniFmi ∈ Σ∗, define the mapping ψ : Σ∗ → � by

ψ(w)=

 k∑
j=1

mjR
∑j
i=1ni

θ ,R
∑k
i=1ni

θ


. (2.5)

Theorem 2.2. The function ψ : Σ∗ → � is a homomorphism.

Proof. Letw1 =
∏k
i=1LniFmi andw2 =

∏l
i=1LsiFri be two words in Σ∗, and

consider ψ(w1 ·w2). Set nk+i = si and mk+i = ri for 1≤ i≤ l, and compute

ψ
(
w1 ·w2

)=ψ

 k∏
i=1

LniFmi ·
l∏
i=1

LsiFri


=ψ


k+l∏
i=1

LniFmi




=

 k+l∑
j=1

mjR
∑j
i=1ni

θ ,R
∑k+l
i=1ni

θ




=

 k∑
j=1

mjR
∑j
i=1ni

θ +
l∑
j=1

rjR
(
∑k
i=1ni)+

∑j
i=1 si

θ ,R
(
∑k
i=1ni)+

∑l
i=1 si

θ




=

 k∑
j=1

mjR
∑j
i=1ni

θ ,R
∑k
i=1ni

θ




 l∑
j=1

rjR
∑j
i=1 si

θ ,R
∑l
i=1 si

θ




=ψ(w1
)
ψ
(
w2
)
.

(2.6)
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Next, let π1 : � → M2(R) and π2 : � → 〈Rθ〉 be, respectively, the projection

mappings

π1
(
(M,R)

)=M, π2
(
(M,R)

)= R. (2.7)

Then, for any given turtle program in Σ∗, the projection π1 ◦ψ : Σ∗ →M2(R)
describes the turtle’s change of position, while π2 ◦ψ describes the change in

heading. Sequences inΣ∗ encoding closed turtle trajectories are precisely those

elements in the kernel of ψ, while sequences encoding turtle trajectories that

restore the turtle’s position are identified with the kernel of π1 ◦ψ. Similarly,

the kernel of π2 ◦ψ contains those sequences representing trajectories that

restore the turtle’s heading.

Definition 2.3. Letw be a nonempty turtle sequence. Thenw is defined to

be a closed sequence ifw ∈ kerψ;w is position-preserving (PP) ifw ∈ ker(π1◦
ψ), and w is heading-preserving (HP) if w ∈ ker(π2 ◦ψ).

Note that the definition of a closed sequence is consistent with the definition

of a closed turtle trajectory. Certainly, w ∈ ker(ψ) if and only if w ∈ ker(π1 ◦
ψ) and w ∈ ker(π2 ◦ψ), so w is a closed sequence if and only if w is both PP

and HP. The theorems to follow illustrate the benefit of reformulating closure

in this algebraic way.

We will start by proving the Closed-Path theorem of Abelson and diSessa,

which states that the total turning along any closed turtle path is an integer

multiple of 2π [1]. Since L represents a counterclockwise rotation of 2π/N,

where N is an integer, the quantity |w|L · 2π/N measures the total turning

of a turtle following the trajectory defined by w. Clearly, |w|L ·2π/N is an

integer multiple of 2π if and only if |w|L is an integer multiple of N. Hence,

the Closed-Path theorem of Abelson and diSessa translates into the following

theorem.

Theorem 2.4. If w ∈ Σ∗ is a closed sequence, then |w|L = kN for some

positive integer k.

Proof. Ifw =∏k
i=1LniFmi ∈ Σ∗ encodes a closed turtle path, thenw must

preserve the turtle’s heading, meaning that w ∈ ker(π2 ◦ψ). But w ∈ ker(π2 ◦
ψ) if and only if R|w|Lθ = I, and R|w|Lθ = I if and only if |w|L = kN for some

k∈ Z.

3. Periodic turtle sequences and the classification theorem. Our purpose

now is to examine those turtle trajectories produced by the repeated iteration

of a given turtle program w in Σ∗. Iterations of w correspond to products of

the form wn in Σ∗, where n is the number of iterations. That is, iterations

correspond to certain periodic turtle sequences.
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A word w = ∏n
i=1ai ∈ Σ∗ is said to be periodic if there exists a positive

integer p such that

ap+i = ai for i= 1,2, . . . ,n−p. (3.1)

Such an integer p is called a period of w. The smallest period p of w is

called the period, and it is denoted by p(w), and the positive rational num-

ber |w|/p(w), denoted by ord(w), is called the order of w. Finally, a word

u∈ Σ∗ is said to be a prefix of w ∈ Σ∗ if w =ux for some w ∈ Σ∗.

Because the turtle program w is applied in full with each iteration, it makes

sense to consider only those periodic turtle sequences having integer-valued

orders. Indeed, every iterated turtle program will have the form z =wn, where

w ∈ Σ∗ and n is a positive integer. We think of w, in this situation, as the

generating sequence of the turtle trajectory.

Definition 3.1. A nonempty turtle sequencew is said to generate a closed

curve if there exists a positive integer n such that wn is a closed sequence,

that is, if for some n, wn ∈ kerψ.

Clearly, a closed turtle sequence will generate a closed curve. The theorem

to follow classifies all the turtle sequences in terms of the closure of their

encoded turtle trajectories. As the theorem indicates, most turtle sequences

will generate closed curves.

Theorem 3.2 (classification of turtle sequences). Any nonempty turtle se-

quence w will generate a closed curve except for those sequences that are HP

but not PP. If w is HP and not PP, then the turtle trajectory generated by w is

not closed.

Proof. Let w ∈ Σ∗, w ≠ ε. If w is itself a closed sequence, then we are

done;w will generate a closed curve. Ifw ∉ kerψ, then we consider two cases:

w is HP (but not PP) and w is not HP.

Case 1. If w is HP but not PP, then ψ(w) = (M,I) for some M ≠ 0. Hence,

ψ(wj) = (ψ(w))j = (M,I)j = (jM,I). Since jM = 0 only when j = 0, wj ∉
kerψ for all j > 0. Hence, w does not generate a closed curve.

Case 2. If w is not HP, ψ(w) = (M,Rβθ), where β = |w|L, θ = 2π/N, and

Rβθ ≠ I. Consider ψ(wN), where

ψ
(
wN

)= (ψ(w))N = ((M,Rβθ))N
= (MRβθ+MR2β

θ +MR3β
θ +···+MRNβθ ,RNβθ

)

= (M(Rβθ+R2β
θ +R3β

θ +···+RNβθ
)
, I
)
.

(3.2)
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To show thatwN ∈ kerψ, it suffices to show that Rβθ+R2β
θ +R3β

θ +···+RNβθ =
0. Compute

N∑
j=1

Rjβθ =
N∑
j=1


cos(jβθ) −sin(jβθ)

sin(jβθ) cos(jβθ)




=




N∑
j=1

cos(jβθ) −
N∑
j=1

(
sin(jβθ)

)

N∑
j=1

sin(jβθ)
N∑
j=1

cos(jβθ)



.

(3.3)

The result then follows from the two identities

N∑
j=1

cos(jβθ)= 0,
N∑
j=1

sin(jβθ)= 0, (3.4)

which can be proved by entering the realm of complex numbers. Note that, for

θ = 2π/N, Euler’s formula produces

(
eiβθ

)N = cos(Nβθ)+isin(Nβθ)= 1, (3.5)

and hence

(
eiβθ

)N−1
eiβθ−1

= 0. (3.6)

Since

(
eiβθ

)N−1
eiβθ−1

=
N−1∑
j=0

(
eiβθ

)j, (3.7)

the identities emerge after applying De Moivre’s theorem:

0=
N−1∑
j=0

(
eiβθ

)j = N−1∑
j=0

(
cos(jβθ)+isin(jβθ)

)

=
N∑
j=1

cos(jβθ)+i
N∑
j=1

sin(jβθ).

(3.8)

Thus, ψ(wN)= (0, I) and w generates a closed curve. Note that, in general,

N will not be the smallest integer to produce an element in the kernel. Indeed,

as Theorem 4.1 indicates, α=N/gcd(N,β) is the most efficient choice.

Case 1 of the classification theorem shows that the converse of the Closed-

Path theorem is false. If w ∈ Σ∗ is such that |w|L = kN for some integer k,
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then w will not generate a closed sequence unless w is PP. More interesting,

however, is the fact that any sequence w with |w|L ≠ kN, for any integer k,

will generate a closed trajectory.

Corollary 3.3. Let w ∈ Σ∗. If |w|L ≠ kN, for any integer k, then w gener-

ates a closed curve.

Proof. The corollary follows directly from Case 2 of the previous proof

because |w|L = kN if and only if w ∈ ker(π2 ◦ψ).

Our discussion thus far has focused on the classification of periodic se-

quences generated by a given sequencew ∈ Σ∗. More generally, to classify any

periodic sequence v , we simply locate the generating sequence w of v . The

theorem to follow illustrates how this can be done. Again, we will assume that

the periodic sequences have integer-valued orders.

Theorem 3.4. Assume thatw ∈ Σ∗ is periodic and that ord(w) is an integer.

If u is the prefix of w of length p(w), then w generates a closed curve if and

only if u generates a closed curve.

Proof. Assume that w ∈ Σ∗ is periodic with w =un, where u is the prefix

of w of length p(w) and n = ord(w). Then wk ∈ kerψ implies that unk ∈
kerψ. Hence, if w generates a closed curve, then u does also. Conversely, if

uk ∈ kerψ for some positive integer k, then ψ(wk) = ψ(unk) = ψ(uk)n =
(0, I). Thus, wk ∈ kerψ and w generates a closed curve.

4. Other results. If w generates a closed curve, then wn ∈ kerψ for some

n. But, what is the most efficient choice for n? That is, what is the smallest

possible integer n to yield a closed sequence? Theorem 4.1 answers this ques-

tion.

Theorem 4.1. Assume that w ∈ Σ∗ generates a closed curve and that α =
N/gcd(N,β), where β= |w|L. Thenwα ∈ kerψ andwk ∉ kerψ for all integers

0< k<α. That is,α is the smallest positive integer to produce a closed sequence.

Proof. Following the argument presented in Case 2 of the proof of Theorem

3.2, we find that wk ∈ kerψ if and only if Rβθ +R2β
θ +R3β

θ +···+Rαβθ = 0 and

Rkβθ = I. The latter two equalities hold true if and only if kβ is a multiple of

N, andα=N/gcd(N,β) is the smallest positive integer to yield a multiple ofN.

Next, we revisit Abelson and diSessa’s POLY Closing theorem. A POLY pro-

gram is the simplest of programs; it consists of the repeated iteration of a

forward motion followed by a rotation. The POLY Closing theorem states that

a turtle path drawn by a POLY program closes precisely when the total turning
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reaches a multiple of 360 degrees [1]. The result can be reformulated using

turtle sequences and proved using Theorems 3.2 and 4.1. The word w = FLβ
corresponds to the turtle program consisting of a forward motion followed

by a rotation of β/N ·2π radians. Hence, considering w = FLβ, we allow for

a rotation of any rational amount. One could also consider w = FkLβ to allow

for forward motions of any integer-valued length.

Theorem 4.2. If 1≤ β <N, then the wordw = FLβ generates a closed curve.

This curve closes precisely when the total turning reaches an integer multiple

of 2π radians.

Proof. Note that ψ(FLβ) = ψ(L0FLβF0) = (R0
θ + 0 ·Rβθ,Rβθ) = (I,Rβθ), so

π1◦ψ(FLβ)= I and π2◦ψ(FLβ)= Rβθ . Assuming that θ = 2π/N and 1≤ β <N,

we conclude that FLβ ∉ ker(π1 ◦ψ) and FLβ ∉ ker(π2 ◦ψ). Hence, w = FLβ is

neither PP nor HP, and Case 2 of the classification theorem applies. If α =
N/gcd(N,β), then α is the smallest positive integer having the property that

wα ∈ kerψ. The total turning of wα is

∣∣wα∣∣L · 2π
N
=αβ· 2π

N
=
(

N
gcd(N,β)

)
β· 2π

N

= lcm(N,β)· 2π
N
=
(

lcm(N,β)
N

)
·2π.

(4.1)

Our final theorem is a translation of Abelson and diSessa’s Looping lemma,

which states that “any program that is just a repetition of some basic loop

of turtle instructions has precisely the structure of POLY with an angle input

equal to T , the total turning in the loop.” The language of turtle sequences

clarifies both the statement and the proof of this nice result.

Theorem 4.3. Assume thatw1 ∈ Σ∗,w1 ∉ ker(π1◦ψ), and letw2 = L|w1|LF .

Then wn1 is a closed sequence if and only if wn2 is a closed sequence.

Proof. Assume that ψ(w1)= (M,Rβθ), where β= |w1|L. Then

ψ
(
wn1

)= (ψ(w1
))n = ((M,Rβθ

))n
=
(
MRβθ+MR2β

θ +MR3β
θ +···+MRnβθ ,Rnβθ

)
=
(
M
(
Rβθ+R2β

θ +R3β
θ +···+Rnβθ

)
,Rnβθ

)
,

(4.2)

and because ψ(LβF)= (Rβθ,Rβθ),

ψ
(
wn2

)= (ψ(w2
))n = ((Rβθ,Rβθ

))n
=
(
Rβθ+R2β

θ +R3β
θ +···+Rnβθ ,Rnβθ

)
.

(4.3)

Hence, if M ≠ 0, then ψ(wn1 )= (0, I) if and only if ψ(wn2 )= (0, I).
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5. Further exploration. In this note, we examined turtle sequences rep-

resenting forward motions of fixed length (one) and rotations of the form

θ = 2π/N for some integer N. Further exploration could address the more

general situation, where forward motions can vary in length and θ might be

irrational.

Further exploration could also address more complicated turtle trajectories,

including curves that are defined by iterating a set of rewriting rules on {F,L}.
In particular, it would be interesting to apply the formalism presented here to

fractal curves encoded by Lindenmayer systems.
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