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1. Introduction. In this paper, we study weighted Lp (0<p <∞)mean con-

vergence of Grünwald interpolation operators which was introduced in [3]. We

first consider the weighted convergence for the Grünwald interpolation opera-

tor when a general weight is used. We also consider in particular the weighted

Lp convergence for the Grünwald interpolation operator when a generalized Ja-

cobi weight is used. Necessary and sufficient conditions for such convergence

for a continuous function are presented. In Section 1, we briefly introduce the

Hermite-Fejér interpolation and Grünwald interpolation. In Section 2, we re-

view some known results that are closely related to the main results of this

paper and will be used in our proof later. We also establish several preliminary

results. In Section 3, we state and prove the main results of this paper.

We first introduce the Hermite-Fejér interpolation polynomials and the

Grünwald interpolation operator. Letw be a weight function of interval [−1,1]
and {Pn(w,x)} the orthonormal polynomials on [−1,1] with respect tow. As-

sume that we are given a system X of nodes

X :
(
x0 ≡ x0,n ≡

)
1≥ x1n > x2n > ···>xnn ≥−1

(≡ xn+1,n ≡ xn+1
)
,

n= 1,2, . . . .
(1.1)

The Hermite-Fejér interpolation polynomials of f ∈ C[−1,1] at X are defined

by

Hn(X,f ,x) :=
n∑
k=1

f
(
xk
)
vk(x)l2k(x), (1.2)
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where

vk(x)= 1−w
′′
n
(
xkn

)
w′
n
(
xkn

) (x−xkn), k= 1,2, . . . ,n,

lkn(x)= wn(x)(
x−xkn

)
w′
n
(
xkn

) , k= 1,2, . . . ,n, n= 1,2, . . . ,

wn(x)=
(
x−x1n

)(
x−x2n

)···(x−xnn), n= 1,2, . . . .

(1.3)

We use lkn(w,x) and Hn(w,f ,x) to denote lkn(X,x) and Hn(X,f ,x), respec-

tively, when the set X is chosen to be the zeros of the orthogonal polynomial

Pn(w,x). For simplicity, we substitute xk for xkn. The Christoffel function is

defined by

λn(w,x) :=

n−1∑
k=0

P2
k (w,x)



−1

=

 n∑
k=1

l2kn(w,x)
λkn



−1

, n= 1,2, . . . . (1.4)

The numbers λkn(w), defined by

λkn = λn
(
w,xkn

)=
∫ 1

−1
l2kn(w,x)w(x)dx, k= 1,2, . . . ,n, n= 1,2, . . . , (1.5)

are called the Cotes numbers. It is well known (see [2, page 113], [9]) that

Hn(w,f ,x)=
n∑
k=1

f
(
xkn

)[
1+ λ

′
n
(
w,xkn

)
λkn

(
x−xkn

)]
l2kn(x)

=
n∑
k=1

f
(
xkn

)[
1− P

′′
n
(
w,xkn

)
P ′n
(
w,xkn

) (x−xkn)
]
l2kn(x),

−P
′′
n
(
w,xkn

)
P ′n
(
w,xkn

) = λ′n
(
w,xkn

)
λkn

.

(1.6)

If P is a polynomial of degree at most 2n−1, then

P(x)=Hn(X,P,x)+
n∑
k=1

P ′
(
xkn

)(
x−xkn

)
l2kn(x). (1.7)

The Grünwald interpolation polynomial of f ∈ C[−1,1] at X is defined by

Gn(f ,x) :=Gn(X,f ,x) :=
n∑
k=1

f
(
xkn

)
l2kn(x), k= 1,2, . . . ,n, −1≤ x ≤ 1.

(1.8)

If u≥ 0 and 0<p <∞, then f ∈ Lpu provided that ‖f‖u,p <∞, where

‖f‖u,p :=
[∫ 1

−1

∣∣f(t)∣∣pu(t)dt
]1/p

. (1.9)
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Naturally, when 0<p < 1, ‖·‖u,p is not a norm. The function u(x) is called a

Jacobi weight function if u(x) can be written as u(a,b)(x) = (1−x)a(1+b)b,

−1≤ x ≤ 1, a,b >−1, and u(x)= 0 if |x|> 1. (The function u(x) is the simple

form of u(a,b)(x).) The function u(x) is a generalized Jacobi weight function

(u ∈ GJ) if u ∈ L1 and u can be written in the form u(x) = g(x)(1−x)a(1+
x)b, where g > 0 and g±1 ∈ L∞.

The uniform convergence of the corresponding Grünwald interpolation was

investigated by several authors [3, 6], and Lp convergence for such interpo-

lation was studied in [5] with p = 1 only. Here, for convenience, we state the

theorem which was proved in [5].

If f ∈ C[−1,1], {xk} are zeros of Jacobi function Ja,bn (x) (−1 < a,b < 1),
then

lim
n→∞

∫ 1

−1

∣∣Gn(f ,x)−f(x)∣∣dx = 0. (1.10)

2. Auxiliary propositions. In this section, we obtain some preliminary re-

sults. First, we need the following notations. Here and later the symbols const

and C denote some positive constants, not necessarily having the same values

in different formulas. If A and B are two expressions depending on some vari-

ables and indices, then A ∼ B� |AB−1| ≤ const and |A−1B| ≤ const. Let w be

a generalized Jacobi weight function (w ∈ GJ). In the following, we summarize

some results from [8] that will be useful for our development in this paper.

Assume that

xkn = xkn(w)= cosθkn, x0n = cosθ0n = 1,

xn+1,n = cosθn+1,n =−1, 0≤ θkn ≤π,
(2.1)

∣∣x−xj∣∣= min
0≤k≤n+1

∣∣x−xk∣∣, 0≤ j ≤n+1. (2.2)

Then we have

θk+1,n−θkn ∼ 1
n
, k= 0,1, . . . ,n,

∣∣x−xkn∣∣∼ |k−j|min{k+j,2n+2−k−j}
n2

, 1≤ k≤n, k≠ j.
(2.3)

We also have the estimates for the orthonormal polynomial Pn(w,x):

P ′n
(
w,xkn

)∼nw(xkn)−1/2(
1−x2

kn
)−3/4,

∣∣Pn(w,x)∣∣≤ const




[
w(x)

(
1−x2

)1/2
]−1/2

, |x| ≤ 1−n−2,

n1/2w
(
1−n−2

)−1/2, 1−n−2 ≤ x ≤ 1,

n1/2w
(−1+n−2

)−1/2, −1≤ x ≤−1+n−2,

(2.4)
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uniformly for n≥ 2,

∣∣Pn(w,x)∣∣∼



n
∣∣x−xjn∣∣[w(x)(1−x2

)3/2
]−1/2

, −1+xn1 ≤ 2x ≤ 1+x1n,

n1/2w
(
1−n−2

)−1/2, 1+x1n ≤ 2x ≤ 2,

n1/2w
(−1+n−2

)−1/2, −2≤ 2x ≤ 1+xnn,
(2.5)

uniformly for n≥ 2.

For the Cotes numbers, there hold

λkn(w)∼ 1
n
w
(
xkn

)(
1−x2

kn
)1/2, (2.6)

uniformly for 1≤ k≤n, n∈N,

∣∣λ′n(w,xkn)∣∣≤ const
1
n
w
(
xkn

)(
1−x2

kn
)−1/2. (2.7)

The following inequality is also needed:

(|a|+|b|)p ≤ 2p
(|a|p+|b|p). (2.8)

Lemma 2.1. Let f(x)∈ C[a,b] and let Ln be a linear positive operator. Then

the following statements are equivalent:

(1) ‖Lnf −f‖u,p → 0, for every f ∈ C[a,b];
(2) ‖Lnf −f‖u,p → 0, f(x)= 1,x,x2;

(3) ‖Ln1−1‖u,p → 0 and ‖(Lnφt)(t)‖p → 0, where φt(x)≡ (t−x)2.

Proof. By using the proposition in [4, page 153] and the theorem on mono-

tone operators in [1, page 67], we know that this lemma holds.

Lemma 2.2 [8, Theorem 1, page 46]. Let w be a general weight function.

Then

lim
n→∞Hn(w,P)= P (2.9)

in L1
w for every polynomial P .

Lemma 2.3 [7, Theorem 6.3.14, page 113]. For every 0 < p <∞ and every

Jacobi weight function u, there exists a constant σ = σ(p,u) > 0 such that, for

every polynomial P of degree less than 2n,

∫ 1

−1

∣∣P(x)∣∣pu(x)dx ≤ 2
∫ 1−σn−2

−1+σn−2

∣∣P(x)∣∣pu(x)dx. (2.10)



MEAN CONVERGENCE OF GRÜNWALD INTERPOLATION OPERATORS 2087

Lemma 2.4 [8, Theorem 4, page 53]. Letw ∈ GJ, letu,v be two Jacobi weight

functions, and let p > 0. Then

lim
n→∞Hn(w,R)= R, (2.11)

in Lpu for every polynomial R satisfying the condition |R(x)| ≤ constv(x), −1≤
x ≤ 1 if and only if w−1 ∈ Lpu, in particular, p is independent of v .

Lemma 2.5. Let w ∈ GJ and 0<σ < 1. Then there hold

n∑
k=1

∣∣λ′n(w,xk)∣∣
λk(w)

∣∣x−xk∣∣l2k(x)
≤ const

[
1

n2α+2
+ 1
n2β+2

+ lnn
n

]
1

w(x)
(
1−x2

)
(2.12)

uniformly for n≥ 2 and |x| ≤ 1−σn−2 and

n∑
k=1

∣∣λ′n(w,xk)∣∣
λk(w)

∣∣x−xk∣∣l2k(x)
≤ const

[
1

n2α+1
+ 1
n2β+1

+ lnn
n

]
1

w(x)
(
1−x2

)1/2

(2.13)

uniformly for n≥ 2 and |x| ≤ 1−σn−2.

Proof. Let 0≤ x ≤ 1−σn−2. Then j ≤n/2.

First, by (2.6) and (2.7), we get

∣∣λ′n(xk)∣∣
λk

≤ C (1/n)w
(
xk
)(

1−x2
k
)−1/2

(1/n)w
(
xk
)(

1−x2
k
)1/2 ≤ C 1

1−x2
k
, (2.14)

which implies that

∣∣λ′n(xj)∣∣
λj

∣∣x−xj∣∣l2j (x)≤ C 1

1−x2
j

P2
n(x)

P ′n
(
xj
)2∣∣x−xj∣∣ . (2.15)

Next, using (2.4) and (2.5) yields

∣∣λ′n(xj)∣∣
λj

∣∣x−xj∣∣l2j (x)≤ Cw
(
xj
)(

1−x2
j
)1/2

nw(x)
(
1−x2

j
) . (2.16)

Because xj is the nearest point to x (according to the definition of xj ), we have

1−x2 ∼ 1−x2
j , w(x)∼w(xj). Hence,

∣∣λ′n(xj)∣∣
λj

∣∣x−xj∣∣l2j (x)≤ C
(
1−x2

j
)−1/2

n
≤ C. (2.17)
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By using (2.14) and (2.4), we get

S :=
∑
k≠j

∣∣λ′n(xk)∣∣
λk

∣∣x−xk∣∣l2k(x)≤ C∑
k≠j

1

1−x2
k

∣∣x−xk∣∣l2k(x)

≤ C
∑
k≠j

w
(
xk
)(

1−x2
k
)1/2

n2
∣∣x−xk∣∣w(x)(1−x2

)1/2 .
(2.18)

Further, we use (2.1) and (2.3) to obtain

S ≤ C
∑
k≠j

(
1−xk

)α+1/2(
1+xk

)β+1/2

n2
∣∣x−xk∣∣(1−xj)α+1/2(

1+xj
)β+1/2

≤ C
∑
k≠j

(k/n)2α+1
(
(n+1−k)/n)2β+1

|k−j|min{k+j,2n+2−k−j}(j/n)2α+1

≤ C 1
n2β+1j2α+1

∑
k≠j

k2α+1(n+1−k)2β+1

|k−j|min{k+j,2n+2−k−j} .

(2.19)

For j ≤n/2, we have k+j ≤ 3n/2, and hence

2n+2−k−j ≥ 2n+2−n− n
2
≥ n

2
≥ 1

3
(k+j), (2.20)

which implies that

min{k+j, 2n+2−k−j} ≥ 1
3
(k+j). (2.21)

Thus,

S ≤ C

 1
n2β+1j2α+1

∑
k≤3n/4
k≠j

n2β+1k2α+1∣∣k2−j2
∣∣

+ 1
n2β+1j2α+1

∑
k>3n/4

n2α+1(n+1−k)2β+1∣∣k2−j2
∣∣




≤ C

 1
j2α+1

∑
k≤3n/4
k≠j

k2α+1∣∣k2−j2
∣∣ + n2α

j2α+1


.

(2.22)

Put

k1 =
{
k : k≤ j

2

}
, k2 =

{
k :
j
2
< k≤ 3j

2
, k≠ j

}
,

k3 =
{
k :

3j
2
< k≤ 3n

4

}
, Si =

∑
k∈ki

k2α+1∣∣k2−j2
∣∣ , i= 1,2,3.

(2.23)
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We estimate Si individually as follows:

S1 =
∑
k∈k1

k2α+1∣∣k2−j2
∣∣ ≤ C

∑
k∈k1

k2α+1

j2
≤ Cj2α,

S2 =
∑
k∈k2

k2α+1∣∣k2−j2
∣∣ ≤ C

∑
k∈k2

j2α+1

j|k−j| = C
∑
k∈k2

j2α

|k−j| ≤ Cj
2α lnj.

(2.24)

Since k∈ k3 implies k−j > k/3, one has

S3 =
∑
k∈k3

k2α+1∣∣k2−j2
∣∣ ≤ C

∑
k∈k3

k2α+1

|k+j|k ≤ Cj
−1
∑
k∈k3

k2α

=




Cj−1, α <−1
2
,

Cj−1 lnn, α=−1
2
,

Cj−1n2α+1, α >−1
2
,

(2.25)

that is,

S3 ≤



Cj−1, α <−1

2
,

Cj−1n2α+1 lnn, α≥−1
2
.

(2.26)

Thus we have, for α<−1/2,

S ≤ Cj−2α−2 = C 1
n2α+2

(
n
j

)2α+2

≤ C 1
n2α+2w(x)

(
1−x2

) (2.27)

and, for α≥−1/2,

S ≤ C lnn
n

(
n
j

)2α+2

≤ C lnn
nw(x)

(
1−x2

) . (2.28)

It follows that, for 0≤ x ≤ 1−σn−2,

S ≤ C
[

1
n2α+2

+ lnn
n

]
1

w(x)
(
1−x2

) . (2.29)

The proof for −1+σn−2 ≤ x ≤ 0 is similar. Finally, we get

S ≤ C
[

1
n2β+2

+ lnn
n

]
1

w(x)
(
1−x2

) . (2.30)
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Hence,

n∑
k=1

∣∣λ′n(xk)∣∣
λk

∣∣x−xk∣∣l2k(x)
≤ const

[
1

n2α+2
+ 1
n2β+2

+ lnn
n

]
1

w(x)
(
1−x2

) .
(2.31)

This proves (2.12).

The proof of (2.13) is similar to that of (2.12) with a slight modification for

the estimate of S3 (0≤ x ≤ 1−σn−2). A direct computation leads to

S3 =
∑
k∈k3

k2α+1∣∣k2−j2
∣∣ ≤ C

∑
k∈k3

k2α+1

|k+j|k ≤ C
∑
k∈k3

k2α+1

k2

= C
∑
k∈k3

k2α−1 ≤

C, α < 0,

Cn2α lnn, α≥ 0.

(2.32)

Thus, we obtain, for α< 0,

S ≤ Cj−2α−1 = C 1
n2α+1

(
n
j

)2α+1

≤ C 1

n2α+1w(x)
(
1−x2

)1/2 , (2.33)

and, for α≥ 0,

S ≤ C lnn
n

(
n
j

)2α+1

≤ C lnn
nw(x)

(
1−x2

)1/2 . (2.34)

Combining these two cases gives

S ≤ const
[

1
n2α+1

+ lnn
n

]
1

w(x)
(
1−x2

)1/2 . (2.35)

The proof for the case−1+σn−2 ≤ x ≤ 0 is also similar. Finally, we conclude

n∑
k=1

∣∣λ′n(xk)∣∣
λk

∣∣x−xk∣∣l2k(x)
≤ const

[
1

n2α+1
+ 1
n2β+1

+ lnn
n

]
1

w(x)
(
1−x2

)1/2 .
(2.36)

This proves (2.13).

3. Main results. In this section, we present two results about weighted Lp

convergence for Grünwald interpolation with the special case in which we ob-

tain a sufficient and necessary condition.
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Theorem 3.1. Let w be a weight function. Then

lim
n→∞

∥∥Gn(f ,x)−f∥∥w,1 = 0, for every f ∈ C[−1,1], (3.1)

if and only if

lim
n→∞

∥∥∥∥∥∥
n∑
k=1

l2k(x)−1

∥∥∥∥∥∥
w,1

= 0. (3.2)

Proof. (1) It is easy to see that

∥∥Gn(1,x)−1
∥∥
w,1 �→ 0⇐⇒

∥∥∥∥∥∥
n∑
k=1

l2k(x)−1

∥∥∥∥∥∥
w,1

�→ 0, (n �→∞). (3.3)

(2) For φx(t)= (x−t)2, we have

Gn
(
φx(x),x

)= n∑
k=1

(
x−xk

)2l2k(x). (3.4)

By Hermite interpolation, we know that

Hn
(
φx(x),x

)= 2
n∑
k=1

(
x−xk

)2l2k(x). (3.5)

Using Lemma 2.2, we find that (3.5) converges to 0. Thus (3.4) converges to 0.

According to Lemma 2.1, (3.1) holds if and only if

lim
n→∞

∥∥Gn(x,f )−f∥∥w,1 = lim
n→∞

∥∥∥∥∥∥
n∑
k=1

l2k(x)−1

∥∥∥∥∥∥
w,1

= 0. (3.6)

Theorem 3.2. Let f ∈ C[−1,1]. Let w ∈ GJ with parameters α,β, and u be

Jacobi weight function with parameters a,b, where a,b,α,β >−1. If

pα−a−1<min{0,pβ},
pβ−b−1<min{0,pα}, (3.7)

then

lim
n→∞

∥∥Gn(w,f ,x)−f(x)∥∥u,p = 0. (3.8)
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Conversely, if (3.8) holds, then

pα−a−1< 0,

pβ−b−1< 0.
(3.9)

Proof. Assume that (3.7) holds.

Let f be a polynomial of degree < 2n. By definitions, we have

f(x)−Gn(w,f ,x)= f(x)−Hn(w,f ,x)

+
n∑
k=1

f
(
xk
)λ′n(xk)

λk

(
x−xk

)
l2k(x).

(3.10)

Then

I := ∥∥Gn(w,f ,x)−f(x)∥∥pu,p =
∫ 1

−1

∣∣f(x)−Gn(w,f ,x)∣∣pu(x)dx
=
∫ 1

−1

∣∣∣∣∣f(x)−Hn(w,f ,x)+
n∑
k=1

f
(
xk
)λ′n(xk)

λk

(
x−xk

)
l2k(x)

∣∣∣∣∣
p

u(x)dx.

(3.11)

It follows from (2.8) and (2.10) that

I ≤ C
∫ 1

−1

∣∣f(x)−Hn(w,f ,x)∣∣pu(x)dx
+C

∫ 1

−1

∣∣∣∣∣
n∑
k=1

f
(
xk
)λ′n(xk)

λk

(
x−xk

)
l2k(x)

∣∣∣∣∣
p

u(x)dx,

≤ C∥∥f −Hn(f)∥∥pu,p
+C‖f‖p∞

∫ 1−σn−2

−1+σn−2


 n∑
k=1

∣∣∣∣∣λ
′
n
(
xk
)

λk

(
x−xk

)
l2k(x)

∣∣∣∣∣


p

u(x)dx

:= I1+I2.

(3.12)

We next estimate I1 and I2.

By Lemma 2.4, we know that w−1 ∈ Lpu implies I1 → 0 (n→∞). Obviously,

w−1 ∈ Lpu is equivalent to (3.9). According to Lemma 2.5 and (2.12), we get

I2 = C
∫ 1−σn−2

−1+σn−2


 n∑
k=1

∣∣λ′n(xk)∣∣
λk

∣∣x−xk∣∣l2k(x)


p

u(x)dx

≤ C
[

1
n2α+2

+ 1
n2β+2

+ lnn
n

]p ∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)]pu(x)dx.
(3.13)
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It can be shown that

I3 :=
∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)]pu(x)dx
≤ C[1+n2pα−2a+2p−2+n2pβ−2b+2p−2].

(3.14)

Then,

I2 ≤ C
[

1
n2α+2

+ 1
n2β+2

+ lnn
n

]p ∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)]pu(x)dx

≤ C
[
n−2p(α+1)+n−2p(β+1)+

[
lnn
n

]p
+n−2(a+1)+n−2(b+1)

+n2pα−2a+p−2(lnn)p+n2pβ−2b−2pα−2

+n2pα−2a−2−2pβ+n2pβ−2b+p−2(lnn)p
]
.

(3.15)

Recall that α+1> 0, β+1> 0, a+1> 0, and b+1> 0. Therefore, when

pα−a−1<min
{
− p

2
,pβ

}
,

pβ−b−1<min
{
− p

2
,pα

}
,

(3.16)

we have I2 → 0 (as n→∞). Obviously, (3.16) implies (3.9).

On the other hand, for I2, if we use (2.13) in Lemma 2.5, we can get

I2 ≤ C
[

1
n2pα+p +

1
n2pβ+p +

(lnn)p

np

]∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)1/2

]p
u(x)dx.

(3.17)

Again we need to estimate the integral

I4 :=
∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)1/2

]p
u(x)dx

≤ C[1+n2pβ−2b−2+p+n2pα−2a−2+p].
(3.18)
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Thus

I2 ≤ C
[

1
n2pα+p +

1
n2pβ+p +

(lnn)p

np

]∫ 1−σn−2

−1+σn−2

[
1

w(x)
(
1−x2

)1/2

]p
u(x)dx

≤ C
[
n−p(2α+1)+n−p(2β+1)+

(
lnn
n

)p
+n−2a−2+n−2b−2+n2pβ−2b−2pα−2

+n2pα−2a−2−2pβ+n2pβ−2b−2(lnn)p+n2pα−2a−2(lnn)p
]
.

(3.19)

Similarly when

α,β >−1
2
,

pα−a−1<min{0,pβ},
pβ−b−1<min{0,pα},

(3.20)

we have I2 → 0 (as n→∞). We have proved that when

pα−a−1<min{0,pβ}, pβ−b−1<min{0,pα}, if α,β >−1
2
,

pα−a−1<min
{
− p

2
,pβ

}
, pβ−b−1<min

{
− p

2
,pα

}
, otherwise,

(3.21)

(3.8) holds.

It remains to prove that (3.21) is equivalent to (3.7). If (3.7) is true, we only

need to prove that when α ≤ −1/2 or β ≤ −1/2, (3.21) holds. Let α ≤ −1/2.

Then,

pα−a−1<pα≤−p
2
. (3.22)

This inequality with pα−a−1<pβ in (3.7) gives

pα−a−1<min
{
− p

2
,pβ

}
. (3.23)

On the other hand, from pβ−b−1<min{0,pα} in (3.7), we obtain that

pβ−b−1<min{0,pα} = pα=min
{
− p

2
,pα

}
. (3.24)

Conversely, if (3.21) is true, it is obvious that (3.7) is true because

pα−a−1<min
{
− p

2
,pβ

}
≤min{0,pβ},

pβ−b−1<min
{
− p

2
,pα

}
≤min{0,pα}.

(3.25)

Now we can show the second part of the theorem.

Assume that (3.8) is true. To this end, we put f0 := 1 and f1 := x. Then, by
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[8, Theorem 3, page 51], we have

∣∣f1−Hn
(
f1
)∣∣=

∣∣∣∣∣
n∑
k=1

(
x−xk

)
l2k(x)

∣∣∣∣∣
= ∣∣xGn(f0

)−Gn(f1
)∣∣

= ∣∣x[Gn(f0
)−f0

]+[f1−gn
(
f1
)]∣∣

≤ ∣∣Gn(f0
)−f0

∣∣+∣∣Gn(f1
)−f1

∣∣.

(3.26)

By (2.8), we have

∥∥Hn(f1
)−f1

∥∥p
u,p

≤ 2p
(∥∥Gn(f0

)−f0

∥∥p
u,p+

∥∥Gn(f1
)−f1

∥∥p
u,p

)
�→ 0, 0<p <∞.

(3.27)

By using [8, Theorem 3, page 51], we prove w−1 ∈ Lpu. This is equivalent to

saying that (3.9) is true.

This completes the proof.

As an immediate consequence of Theorem 3.2, we state the following

corollary.

Corollary 3.3. Let α,β≥ 0. Then (3.8) is equivalent to condition (3.9).
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