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A new sequence of eigenfunctions is developed and studied in depth. These theta
polynomials are derived from a recent analytic solution of the canonical Cauchy
problem for parabolic equations, namely, the inverse heat conduction problem. By
appealing to the methods of the operator calculus, it is possible to categorize the
new functions as polynomials of binomial and Sheffer types. The connection of the
new set with the classical polynomials of Laguerre is carefully examined. Some in-
tegral relations involving the Laguerre polynomials and the theta polynomials are
presented along with a number of binomial identities. The inverse heat conduction
problem is revisited and an analytic solution depending on the generalized theta
polynomials is presented.

2000 Mathematics Subject Classification: 05A40, 26C05, 35R25.

1. Introduction. In Pettigrew and Meredith [11], an alternative to the classi-

cal solution of the inverse heat conduction problem was derived. The classical

solution involves derivatives of all orders of the Cauchy data. By overspecify-

ing the problem with the imposition of knowledge of the initial values, and by

expanding the Cauchy data in a series of Laguerre polynomials, it was possible

to express the solution in a more tractable form for a numerical calculation.

The choice of a Laguerre expansion was a logical one for the heat equation

and gave rise to an interesting new set of special functions Θ±n(x). While those

functions were closely examined in that paper, their proper place within the

realm of special functions was not established.

In this paper, we explore the theta functions in more depth. They derive

in a natural way from the coefficients of a series expansion in powers of the

Laguerre operator. This pleasing result hints at their intimate connection with

the Laguerre polynomials. But it also indicates a fresh approach to the in-

verse Cauchy problem and suggests a host of new expansions of the operators

present in the classical solution of this important inverse problem.

And yet this is only part of the answer to the question of where these special

functions should reside. As we will see, the theta functions may be decomposed

into a pair of polynomial sequences of binomial type. One set of polynomials

is basic for a specific delta operator and the other forms a Sheffer sequence

for the first.
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When the theta functions are generalized, a wider class of Sheffer polynomi-

als emerges. This generalized set forms a cross sequence for the basic set in

a way completely analogous to the generalized Laguerre polynomials. Indeed,

the two generalized sets share a common shift invariant operator.

Key properties of the new polynomials, including a number of integral re-

lations, are derived. Section 6 concludes with a unifying observation: the gen-

eralized theta polynomials are the coefficients in a Laguerre series expansion

of the fundamental solution of the heat equation. This result is applied in

Section 7 to derive an analytic solution of an inverse problem.

2. Operator methods. The classical polynomials of Laguerrre, Hermite, Ber-

noulli, and many others may be neatly classified as polynomials of binomial

type. The literature abounds with examples of their use, in the theory of func-

tions, in probability theory and statistics, and of course, in combinatorics. A

complete discussion of their abundant properties may be found in the methods

of the finite operator calculus. Such developments not only provide a unified

approach to the study of each of the classical polynomials, but also admit an

effective means of relating two different polynomial sets. Sometimes referred

to as the Heaviside calculus, after an early proponent, operational methods

have been, over the years, both welcomed for their utility and derided for their

lack of rigour. The umbral calculus, as it came to be called, was provided a firm

foundation in the works of Rota et al. [10, 13, 14]. Further refinements may be

found in Loeb and Rota [9] and Di Bucchianico et al. [4].

In the pages that follow, we will make extensive use of the operational and

umbral calculi and, for the sake of completeness, we include a few basic defi-

nitions from the work of Rota et al. [13] and Loeb and Rota [9]. All operators,

unless otherwise stated, will be assumed to act on the vector space of polyno-

mials of degree less than or equal to n. The shift operator is defined by

Eyf(x)= f(x+y). (2.1)

The operator M is a delta operator if it commutes with the shift operator and

if it has the property that Mx = c ≠ 0. A polynomial sequence pn(x) is a

sequence of basic polynomials for the delta operator M if pn(0) = 0 for all

n> 0, p0(x)= 1, andMpn(x)=npn−1(x). Any basic sequence of polynomials

is also said to be a sequence of polynomials of binomial type, that is to say,

they satisfy the identities

Eypn(x)=
n∑
k=0

(
n
k

)
pk(x)pn−k(y). (2.2)

A polynomial sequence qn(x) is a Sheffer set for the delta operator M if

q0(x) = c ≠ 0 and Mqn(x) = nqn−1(x). The basic set pn(x) and a Sheffer

set qn(x) for M are related by a shift-invariant operator S such that qn(x) =
S−1pn(x).
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And finally, a cross-sequence p(λ)n (x) is a polynomial sequence derived from

the application of a one-parameter group P−λ of shift-invariant operators to a

sequence of polynomials of binomial type.

For example,

Q= D
D−I (2.3)

is a delta operator whose sequence of basic polynomials is the basic Laguerre

set

ln(t)= t(D−I)ntn−1 = tetDne−ttn−1. (2.4)

A cross-sequence for ln(t) relative to Q is the set of generalized Laguerre

polynomials lαn(t) = (I−D)α+1ln(t). For each choice of α, the cross-sequence

becomes a Sheffer set relative to the operator (I −D)−α−1. Note that these

Laguerre sets differ from the common usage of the term by a factor of n!. In

Lebedev [8], for example, the generalized Laguerre polynomials are defined by

Lαn(t)= et
t−α

n!
dn

dtn
(
e−ttn+α

)
, (2.5)

so that the basic set referred to above is related to the case α=−1:

ln(t)= l−1
n (t)=n!L(−1)

n (t). (2.6)

3. The theta functions. In Pettigrew and Meredith [11], the following theta

functions were derived:

Θ−n(x)=
∞∑
k=0

(
n+k−1
n

)
x2k

(2k)!
, n= 0,1,2, . . . ,

Θ+n(x)=
∞∑
k=0

(
n+k−1
n

)
x2k+1

(2k+1)!
, n= 0,1,2, . . . .

(3.1)

They possess the corresponding generating functions:

G−(x,s)= cosh
(

x√
1−s

)
=

∞∑
n=0

Θ−n(x)sn, |s|< 1,

G+(x,s)=
√

1−s sinh
(

x√
1−s

)
=

∞∑
n=0

Θ+n(x)sn, |s|< 1.
(3.2)

The following theorem is required [9].
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Theorem 3.1. Any shift-invariant operator T may be expanded as

T =
∞∑
n=0

cn
n!
Qn (3.3)

for some delta operator Q and its basic set pn(t), where cn = [Tpn(t)]t=0. (Of

course, the sum is finite when applied to polynomials.)

Now the theta functionsΘ±n(x) are closely connected with the Laguerre poly-

nomials in the following way.

Proposition 3.2. The theta functions Θ±n(x) are the coefficients in the ex-

pansion in powers of Q = D/(D − I) of the shift-invariant operators

cosh(x
√
I−D) and sinh(x

√
I−D)/√I−D.

Proof. The result follows at once from (3.2) upon writing

G−
(
x,

D
D−I

)
= cosh

(
x
√
I−D),

G+
(
x,

D
D−I

)
=
√
I− D
D−I sinh

(
x
√
I−D).

(3.4)

Alternatively, we could take as our starting point Theorem 3.1 and use the

umbral calculus to derive the theta functionsΘ±(x) from scratch. For example,

consider the shift-invariant operator T = cosh(x
√
I−D) and the delta operator

Q=D/(D−I) of the Laguerre polynomials ln(t). Then Theorem 3.1 yields

cosh
(
x
√
I−D)= ∞∑

n=0

cn(x)
n!

(
D
D−I

)n
, (3.5a)

where

cn(x)=
[
cosh

(
x
√
I−D)ln(t)]t=0

=
[ ∞∑
k=0

x2k

(2k)!
(I−D)kln(t)

]
t=0

=n!
∞∑
k=0

x2k

(2k)!

(
n+k−1
n

)

=n!Θ−n(x).

(3.5b)

In a like manner, we find that Θ+n(x) as defined in (3.1) emerge as coefficients

in the operator expansion

sinh
(
x
√
I−D)√

I−D =
∞∑
n=0

Θ+n(x)
(
D
D−I

)n
. (3.6)
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4. Polynomials of binomial type. We have Theorems 4.1 and 4.3 and Lemma

4.2 from Rota et al. [13].

Theorem 4.1. Let M be a delta operator. The ring of formal power series

is isomorphic to the ring of shift-invariant operators so that
∑∞
n=0(cn/n!)tn is

carried into
∑∞
n=0(cn/n!)Mn.

Lemma 4.2. A shift-invariant operator M is a delta operator if and only if

its corresponding formal power series m(t) has the properties m(0) = 0 and

m′(0)≠ 0.

Theorem 4.3. Let M be a delta operator with basic set pn(x) and let S be

a shift-invariant operator for the corresponding Sheffer set qn(x). Let s(t) and

m(t) be the formal power series associated with S and M , respectively, where

m−1(t) denotes the formal power series inverse to m(t). Then the generating

function for the sequence qn(x) is given by

exm−1(t)

s
(
m−1(t)

) = ∞∑
n=0

qn(x)
n!

tn. (4.1)

We are thus in a position to derive our main result for this section as follows.

Theorem 4.4. The theta functions Θ−n(x) have the decomposition

Θ−n(x)=
[
ex

2
pn(−x)
n!

+ e
−x

2
pn(x)
n!

]
, (4.2)

where the pn(x) are polynomials of degree n, basic for the delta operator

M(D)= D
2−2D
(D−I)2 . (4.3)

Proof. We have

∞∑
n=0

Θ−n(x)tn = cosh
(

x√
1−t

)
= 1

2

(
exe−x(1−1/

√
1−t)+e−xex(1−1/

√
1−t)

)
. (4.4)

Writing m−1(t)= (1−1/
√

1−t), s(t)= 1, we have

m(t)= t2−2t
(t−1)2

. (4.5)

Now,m(0)= 0 andm′(0)≠ 0 . By Lemma 4.2,m(t) has a formal power series

that corresponds, under the isomorphism of Theorem 4.1, to the delta operator

M(D)= (D2−2D)/(D−I)2 if t corresponds to the delta operator D. Thus, by

Theorem 4.3, there exists a sequence of polynomials pn(x), which are basic
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for M(D), having the generating function

e±x(1−1/
√

1−t) =
∞∑
n=0

pn(±x)
n!

tn. (4.6)

Equation (4.2) follows upon comparing (4.6) and (4.4).

An immediate consequence is the identification of pn(x) as a sequence of

polynomials of binomial type for the operator M . That is, the defining charac-

teristic of these polynomials is (2.2). An explicit form for the new polynomials

will be provided in Section 5. It will suffice for the moment to give the form of

the first few polynomials:

po(x)= 1, p1(x)=−x
2
, p2(x)=−3

4
x+ 1

4
x2. (4.7)

Now turning to an examination of the functions Θ+n(x), we write

Θ+n(x)=
ex

2
qn(−x)
n!

− e
−x

2
qn(x)
n!

(4.8)

for some polynomials qn(x). Now, the qn(x) do not form a basic set, but rather

form a Sheffer set. That is,

Θ−n(x)=DΘ+n(x)=D
[
ex

2
qn(−x)
n!

− e
−x

2
qn(x)
n!

]
(4.9)

so that

pn(x)= Sqn(x) where S = I−D. (4.10)

Thus, qn(x) is a Sheffer set relative to the operatorM(D)= (D2−2D)/(D−I)2
and basic polynomials pn(x). We immediately have the binomial relation

qn(x+y)=
∑
k≥0

(
n
k

)
qk(x)pn−k(y). (4.11)

The first few Sheffer polynomials are

q0(x)= 1, q1(x)=−1
2
− 1

2
x, q2(x)=−1

4
− 1

4
x+ 1

4
x2. (4.12)

In the following sections, the functions pn and qn and their subsequent

generalizations will be simply referred to as theta polynomials. An extensive

review of the literature on binomial type polynomials and their related Sheffer

sets is provided in [13]. However, no mention is given to functions which are

the product of exponentials and Sheffer polynomials, the class to which our

theta functions belong. Yet there are a number of exceptional special functions

that belong to this category. We draw the reader’s attention to the Laguerre
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functions and the Sturmian functions. The former are a natural set of orthogo-

nal functions based on the Laguerre polynomials and the reader is directed to

the work of Lanczos [7], for example. The Sturmian functions are also closely

linked to the Laguerre polynomials and have seen extensive application in re-

cent years. Rotenberg first coined the term Sturmians as the functions in ques-

tion are the solutions to a Sturm-Liouville type equation (see [15]). Sturmians

are most notable for their application to atomic scattering problems, owing to

their obvious relationship to solutions of the hydrogenic equation. The reader

is directed to Avery [1] for an overview of the theory and application of these

remarkable special functions.

Both the Laguerre functions and Sturmians represent complete orthogonal

sets with discrete eigenvalues. In this regard, the theta functions and poly-

nomials of the present work do not possess the usual integral orthogonality

relations since they represent solutions to a third-order differential equation,

as we will see in Section 5.

5. Generalized theta polynomials. The binomial coefficient
(
n+k−1
n

)
appear-

ing in each of the expressions for Θ±n(x) has an interesting combinatorial in-

terpretation. It enumerates the number of free distributions of n identical el-

ements to k different labels. (In our case, the reader will recall the coefficient

derives from the zero condition of the Laguerre polynomials L(k−1)
n (0).) It is

of considerable interest to examine the impact of the more general binomial

coefficient
(
n+k−α
n

)
(5.1)

on the theory of the theta functions already considered. If α is an integer, then

the combinatorial interpretation represents an adjustment to the number of

distinguishable labels. For arbitrary α, it may be considered to derive from the

zero condition of the Laguerre polynomials L(k−α)n (0), in which case we may

define a generalized set of theta functions as follows:

Θ−n(x,α)=
∑
k≥0

(
n+k−α
n

)
x2k

(2k)!
,

Θ+n(x,α)=
∑
k≥0

(
n+k−α
n

)
x2k+1

(2k+1)!
.

(5.2)

The corresponding generating functions are

(1−s)α−1 cosh
x√
1−s =

∞∑
n=0

Θ−n(x,α)sn,

(1−s)α−1/2 sinh
x√
1−s =

∞∑
n=0

Θ+n(x,α)sn.
(5.3)
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That is, the generalized functions remain the coefficients in the expansion in

powers of Q = D/(D − I) of certain shift-invariant operators. In particular,

Θ±n(x,α) derive from the operator expansions

(I−D)1−α cosh
(
x
√
I−D)= ∞∑

n=0

Θ−n(x,α)
(
D
D−I

)n
,

(I−D)1/2−α sinh
(
x
√
I−D)= ∞∑

n=0

Θ+n(x,α)
(
D
D−I

)n
.

(5.4)

Now, as for the polynomials that comprise the generalized theta functions,

we proceed as follows. We define

∆±n(x,α)=Θ−n
(
x,
α
2
+1

)
±Θ+n

(
x,
α
2
+ 1

2

)
. (5.5)

In particular, we may express

∆−n(x,α)= e−x
p(α)n (x)
n!

(5.6)

for some polynomials p(α)n (x). The power series for ∆−n can be determined as

follows:

∆−n(x,α)=Θ−n
(
x,
α
2
+1

)
−Θ+n

(
x,
α
2
+ 1

2

)

=
∑
keven


n+ k−α2

−1

n


 xk
k!
−
∑
kodd


n+ k−α2

−1

n


 xk
k!

=
∞∑
k=0


n+ k−α2

−1

n


 (−x)k

k!
.

(5.7)

The binomial coefficient appearing in (5.7) will be examined in more detail in

the next section.

Proposition 5.1. The functions p(α)n (x) represent a cross-sequence associ-

ated with the basic set pn(x) and p(α)n (x)= (I−D)−αpn(x).
Proof. From (5.3), the generating function for ∆−n(x,α) is

(1−s)α/2e−x/
√

1−s =
∞∑
n=0

∆−n(x,α)sn = e−x
∞∑
n=0

p(α)n (x)
n!

sn. (5.8)

That is,

1
(1−t)α e

xt =
∞∑
n=0

p(α)n (x)
n!

(
m(t)

)n, m(t)= t2−2t
(t−1)2

. (5.9)
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Under the isomorphism of Theorem 4.1,

(
I−Dt

)−αexDt = ∞∑
n=0

p(α)n (x)
n!

(
M
(
Dt
))n

(5.10)

and by Theorem 3.1,

p(α)n (x)= [(I−Dt)−αexDtpn(t)]t=0 = (I−D)−αpn(x). (5.11)

For each choice of α, a particular Sheffer set of the basic polynomials is

generated. The case α = 1 reproduces the Sheffer set qn(x) of an earlier sec-

tion. The case α=−1 generates a Sheffer set closely linked to the fundamental

solution of the heat conduction equation, as we will see shortly.

It is worth noting at this stage the remarkable similarities shared by the

cross-sequences of the new polynomials and the familiar Laguerre polynomi-

als. Note thatp(α)n (x)= (I−D)−αpn(x)= S−1pn(x) and recall that l−(α+1)
n (x)=

(I−D)−αln(x)= S−1ln(x). In other words, the generalized theta polynomials

p(α)n (x) and the associated Laguerre polynomials l−(α+1)
n (x) share the same

invertible operator S = (I −D)α, but applied to a different basic set in each

case.

We explore these new polynomials in more depth. To this point, then, we

have that pn(x) is a basic set of polynomials of binomial type relative to the

delta operator M = (D2−2D)/(D−I)2 and therefore satisfies the identity

pn(x+y)=
n∑
k=0

(
n
k

)
pk(x)pn−k(y). (5.12)

The generalized set p(α)n (x) represents a Sheffer sequence for each fixed α rel-

ative to the basic set pn(x) and the invertible operator S = (I−D)α. Applying(
I−Dx

)−α(I−Dy)−β to each side of (5.12), we obtain the interesting binomial

identity

p(α+β)n (x+y)=
n∑
k=0

(
n
k

)
p(α)k (x)p(β)n−k(y). (5.13)

As already mentioned, the apparatus of the operational calculus effectively

permits the expression of one polynomial sequence in terms of another. If we

examine the operator M more closely, we observe the following:

M(D)= D2−2D(
D2−2D

)+I =
A
A+I , (5.14)

where A=D2−2D and, recalling the Laguerre operatorQ=D/(D−I), we find

thatM =Q(−A), which expresses the delta operatorM as the umbral composi-

tion (to use the language of [13]) of the Laguerre operatorQ and another delta
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operator A. It is noteworthy that the binomial properties of both these opera-

tors have been extensively studied in the literature. In the case of the operator

−A/2, the corresponding polynomial set has been investigated by Carlitz [2].

The differential equation. It is also possible to derive the connection

between the theta polynomials and the set xn, which is basic for the delta

operator D. It is a simple matter to show that

xn =Wn,αp(α)n (x), where Wn,α = (M′)−1Pn+1S, (5.15)

with M =DP and M′ denoting differentiation with respect to D. Then,

Wn,α = (−1)α

2
(D−2I)n+1

(D−I)2n−α−1
. (5.16)

This connection can be used to derive the differential equation and its associ-

ated eigenvalue problem. Rota et al. [13] take a different approach and establish

the following general result.

Theorem 5.2. For any Sheffer sequence sn(x)with delta operatorQ and op-

erator S, there exists an essentially selfadjoint operator A having integer eigen-

values n= 0,1,2, . . . for the eigenfunctions sn(x), where

A=
∑
k≥1

ak+xbk
k!

Rk (5.17)

with

ak =−
[
(logS)′Q(Q′)−1rk(x)

]
x=0
,

bk =
[
Q(Q′)−1rk(x)

]
x=0
.

(5.18)

The operator R is any delta operator possessing basic set rk(x).

If we choose R = D with basic set xk, it is a simple matter to establish the

following theorem.

Theorem 5.3. The Sheffer set p(α)n (x), relative to the delta operatorM(D)=
(D2−2D)/(D− I)2 and shift-invariant operator S = (I−D)α, represents a se-

quence of eigenfunctions for the operator

L(D)= x
2
D3−

(
α+3x

2

)
D2+(α+x)D (5.19)

with eigenvalues n= 0,1,2, . . . .

At this point, we observe a significant departure from the usual second-

order ordinary differential equations satisfied by the classical sets of orthog-

onal polynomials, including the Laguerre polynomials. Nevertheless, the case
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remains that the new polynomial set forms a complete sequence of eigenfunc-

tions with integer eigenvaluesn, as is the situation with the classical polynomi-

als, albeit this time relative to an essentially selfadjoint third-order differential

equation.

A study of this differential equation would provide an alternative route to

the development of the new polynomials. Such an investigation could prove to

be as rich as the current approach. After all, third-order ordinary differential

equations have received scant attention over the years, especially in compar-

ison to equations of first, second, and fourth order. Such is the dearth that

it is possible to find concise, yet comprehensive surveys of the literature on

third-order equations (see, e.g., [6, 16]).

We conclude this section with a derivation of the recurrence formula re-

quired for generating the theta polynomials, which will be needed in Section 7.

From (5.8), the generating function for the theta polynomials satisfies the dif-

ferential equation

gss+ (α−3/2)
(1−s) gs+

[
α(α−1)
4(1−s)2 −

x2

4(1−s)3
]
g = 0. (5.20)

Substituting (5.8) into (5.20) and collecting like powers of s, we find

p(α)n+3+αnp(α)n+2+βnp(α)n+1+γnp(α)n = 0,

αn =
(
α− 3

2

)
−3(n+1),

βn = 3n(n+1)−2(n+1)
(
α− 3

2

)
+ α(α−1)−x2

4
,

γn =−(n−1)n(n+1)+n(n+1)
(
α− 3

2

)
− α(α−1)(n+1)

4
,

p(α)0 (x)= 1, p(α)1 (x)=− (α+x)
2

,

p(α)2 (x)= α(α−2)
4

+ (2α−3)x
4

+ x
2

4
.

(5.21)

Alternatively, an explicit expression for the polynomials follows from a re-

arrangement of the power series (5.7):

p(α)n (x)
n!

=
n∑
m=0


 m∑
k=0

(
m
k

)n+ k−α2
−1

n


(−1)k


xm
m!
. (5.22)

6. Integral relations. In this section, we employ the operational calculus

to derive a number of new integral relations involving Laguerre polynomials.

Some binomial identities stemming from the foregoing theory are also pre-

sented. We conclude with an intriguing result that ties the theory of the theta

polynomials to the fundamental solution of the heat equation.
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It is often convenient to express a differential operator in integral form. In

fact, Di Bucchianico [3] has shown that every linear shift-invariant operator

has a corresponding integral representation with respect to a complex Borel

measure on the real line. We will derive the following result which generalizes

a class of operators found in the literature.

Theorem 6.1. Let a,b ∈R with b > 0. Then,

(D−aI)n
(D−bI)n+ν φ(x)=

(−1)νn!
Γ(n+ν)

∫∞
0
tν−1e−btL(ν−1)

n
(
(b−a)t)φ(x+t)dt, (6.1)

where ν > 0 and n= 0,1,2, . . . .

Proof. Denote the integral operator by K. Then K is clearly shift invariant

since

KEyφ(x)= (−1)νn!
Γ(n+ν)

∫∞
0
tν−1e−btL(ν−1)

n
(
(b−a)t)φ(x+y+t)dt

= EyKφ(x).
(6.2)

Therefore, we may expand, by Theorem 3.1,

K =
∞∑
m=0

am
m!
Dm, (6.3a)

where

am
m!

= 1
m!

[
Kxm

]
x=0

= (−1)νn!
m!Γ(n+ν)

∫∞
0
tm+ν−1e−btL(ν−1)

n
(
(b−a)t)dt

= (−1)νn!
bm+νm!Γ(n+ν)

∫∞
0
τm+ν−1e−τL(ν−1)

n (ξτ)dτ, where ξ = b−a
b

= (−1)νn!
bm+νm!Γ(n+ν)

∫∞
0
τm+ν−1e−τ

n∑
k=0

Γ(n+ν)
Γ(k+ν)

(−1)kξkτk

k!(n−k)! dτ

=
n∑
k=0

(−1)k+ν

bm+ν

(
m+k+ν−1

m

)(
n
k

)
ξk.

(6.3b)

Therefore,

∞∑
m=0

am
m!
sm =

∞∑
m=0

n∑
k=0

(−1)k+ν
(b−a)k
bm+ν+k

(
n
k

)(
m+ν+k−1

m

)
sm

=
n∑
k=0

(
n
k

)
(b−a)k (−1)k+ν

bk+ν

∞∑
m=0

(
m+ν+k−1

m

)(
s
b

)m

=
n∑
k=0

(
n
k

)(
b−a
s−b

)k( 1
s−b

)ν
= (s−a)n
(s−b)n+ν ,

(6.4)
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where the interchange of summations in (6.4) is valid as the infinite sum is

absolutely convergent for all s. The conclusion of the proof follows once again

from an application of the isomorphism Theorem 4.1.

In a form reminiscent (yet again) of the familiar Laguerre operator

D
D−I φ(x)=−

∫∞
0
e−tφ′(x+t)dt, (6.5)

we have the following corollary.

Corollary 6.2. The operators M and Pn take the integral forms

Mφ(x)= D(D−2I)
(D−I)2 φ(x)=−

∫∞
0
e−tL1(−t)φ′(x+t)dt,

Pnφ(x)= (D−2I)n

(D−I)2n φ(x)=
(−1)nn!
Γ(2n)

∫∞
0
tn−1e−tL(n−1)

n (−t)φ(x+t)dt.
(6.6)

The polynomials p(α)n (x) can be expressed in integral form using the above

integral operator K. First, recall (5.16) and the relation

xn = (−1)n
I

(I−D)β+n l
(β)
n (x), where l(β)n (x)=n!L(β)n (x). (6.7)

Then, using our result (6.1), we have

p(α)n (x)= 2n!
(−1)α+β

(D−I)n−(α+β+1)

(D−2I)n+1
L(β)n (x)

= 2(n−µ)!
(−1)µ

∫∞
0
tµe−2tL(µ)n−µ(t)L

(β)
n (x+t)dt,

(6.8)

where µ = α+β+1 is an integer such that µ ≤ n, n = 0,1,2, . . . . In particular,

the special case of α = −1 and β = 0 yields the remarkably simple integral

relation in the following corollary.

Corollary 6.3. The theta polynomial of order α = −1 obeys the integral

relation

p(−1)
n (x)
n!

= 2
∫∞

0
e−2tLn(t)Ln(x+t)dt, n≥ 0. (6.9)

We would be remiss if we did not comment on the binomial coefficient ap-

pearing in (5.7). In this regard, the integral relation (6.8) permits us to expose

yet another integral relation and an associated binomial identity. We begin by

noting that

p(α)n (0)
n!

=

n− α2 −1

n


 (6.10)

as follows from (5.7). Setting µ = 0 and x = 0 in (6.8) and replacing α by α−k,

we have the following result for the binomial coefficient of (5.7).
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Corollary 6.4. The binomial coefficient of (5.7) obeys the integral relation

2
∫∞

0
e−2tLn(t)L(k−α−1)

n (t)dt =

n+ k−α2

−1

n


 , (6.11)

where k is a nonnegative integer.

If we expand

L(k−α−1)
n (t)=

n∑
m=0

Γ(k+m−α−1)
Γ(k−α−1)m!

Ln−m(t), (6.12)

substitute into (6.11), and integrate, we find the following result.

Corollary 6.5. The binomial coefficient of (5.7) satisfies the identity

n∑
m=0

(
m+k−α−2

m

)(
2n−m
n

)
1

22n−m =

n+ k−α2

−1

n


 , (6.13)

where again k and n are nonnegative integers.

The binomial identity (6.13), expressed in a slightly altered form, is listed in

the compendium by Gould [5, Table 3, Identity #3.53].

Finally, here we take the opportunity to express the connection between

the new polynomials for the special case α = −1 and the basic Laguerre set

L(−1)
n (x). From (6.8), it is a simple matter to verify the following corollary.

Corollary 6.6. The connection formula relating the theta polynomial of

order α=−1 to the Laguerre polynomial of order α=−1 is given by

p(−1)
n (x)
n!

=
n∑
k=0

(
n+k
n

)
1

2n+k
L(−1)
n−k (x). (6.14)

More Integral Relations and the Fundamental Solution of the

Heat Equation. Returning now to the generating function of the Sheffer

polynomials p(α)n (x), we derive some important integral representations. Re-

call that

(1−s)α/2e−x/
√

1−s = e−x
∞∑
n=0

p(α)n (x)
n!

sn, (6.15)

which converges uniformly and absolutely for each x ≥ 0 and |s| < 1. Under

the bilinear mapping u = 1/(1− s), the interior of the unit circle transforms

conformally to the right half-plane Re(u) > 1/2, so that the transformed series

(u)−α/2−1e−x(
√
u−1) =

∞∑
n=0

p(α)n (x)
n!

1
u

(
u−1
u

)n
(6.16)



ON POLYNOMIALS OF SHEFFER TYPE ARISING FROM . . . 2133

converges uniformly and absolutely in the half-plane Re(u) > 1/2. If we treat

u as the variable in a Laplace transform, then the left-hand side has an inverse

and the right-hand side may be inverted term by term to yield a convergent

Laguerre series. (See, e.g., [17].) We have

e−x2/8tD−(α+1)(x/
√

2t)√
π/2(2t)−α/2

=
∞∑
n=0

e−x
p(α)n (x)
n!

Ln(t), (6.17)

where D−(α+1)(x/
√

2t) is a parabolic cylinder function. (See [12].)

Thus the Sheffer polynomialsp(α)n (x) appear as coefficients in the expansion

in Laguerre polynomials of parabolic cylinder functions and, as such, may be

expressed in the following integral form.

Proposition 6.7. The theta polynomial of order α obeys the integral rela-

tion

p(α)n (x)=n!ex
∫∞

0
e−te−x

2/8t D−(α+1)
(
x/
√

2t
)

2−((α+1)/2)√πt−α/2 Ln(t)dt. (6.18)

The caseα=−1 is of particular interest, as the polynomialsp(−1)
n (x) become

coefficients in the Laguerre expansion of the fundamental solution of the heat

equation, which after all was our starting point. Indeed, as

D0

(
x√
2t

)
= e−x2/8t , (6.19)

we have

e−x2/4t
√
πt

=
∞∑
n=0

e−x
p(−1)
n (x)
n!

Ln(t), x ≥ 0, t > 0, (6.20)

and, in integral form,

p(−1)
n (x)=n!ex

∫∞
0

e−t−x2/4t
√
πt

Ln(t)dt. (6.21)

This last relation expresses the new polynomials as an integral involving the

Laguerre functions and whose kernel is the source solution of the heat equa-

tion.

7. The inverse heat equation revisited. The canonical Cauchy problem for

parabolic equations is the inverse heat conduction problem:

uxx =ut, u(0, t)=φ(t), ux(0, t)=ψ(t). (7.1)
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The classical solution is given as

u(x,t)= cosh
(
x
√
D
)
φ(t)+ sinh

(
x
√
D
)

√
D

ψ(t)

=
∞∑
n=0

x2n

(2n)!
φ(n)(t)+

∞∑
n=0

x2n+1

(2n+1)!
ψ(n)(t).

(7.2)

The problem is severely ill posed in that the solution may not depend continu-

ously on the data. This is usually dealt with by some form of regularization, a

process that relegates the Cauchy data to a well-posedness class of functions,

but which nevertheless leaves an infinite series of derivatives of the mollified

data. In Pettigrew and Meredith [11], the authors overspecified the problem

with the imposition of the initial condition u(x,0)= f(x). In this way, a series

solution that did not require derivatives of the Cauchy data was derived.

In this regard, the operator methods of the current paper may be used to

express the classical solution in a variety of formats, each more suitable for

practical calculation than an infinite series of derivatives.

In this section, we consider two applications of the foregoing theory. In the

first, we present an operator expansion alternative to that of the classical so-

lution (7.2) and in the second, we construct an analytic solution to an inverse

problem using the theta polynomials.

Application 1. An interesting alternative to the classical expansion (7.2)

is the following:

coshx
√
Dφ(t)=

∞∑
n=0

Bn(x)
n!

∆nφ(t), (7.3)

where

Bn(x)=
[
coshx

√
D(t)n

]
t=0 =

n∑
k=0

x2k

(2k)!
s(n,k)k!, (7.4)

with a similar representation for the hyperbolic sine function. The s(n,k) are

the Stirling numbers of the first kind. While the substitution of differences for

derivatives is not new, it does appear to have been overlooked in application

to such Cauchy problems. The class of functions for which the given series

converges must be supplied, but we do not pursue this matter here as the

polynomials Bn(x) are not basic for a delta operator since the corresponding

operator representation fails to possess a formal inverse power series.

Application 2. Consider the following one-dimensional heat conduction

problem:

uxx =ut, x > 0, t > 0, −ux(0, t)=ψ(t), t ≥ 0,

u(x,0)= 0, x ≥ 0,
(7.5)
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and where it is assumed that u(x,t) is bounded for large x. This may be con-

sidered a forward problem and is well posed. It has solution

u(x,t)=
∫ t

0
γ(x,t−τ)ψ(τ)dτ, (7.6)

where γ(x,t) is the fundamental solution of the heat equation, namely,

γ(x,t)= 1√
πt
e−x

2/4t . (7.7)

Suppose, instead, that we solve an inverse problem by specifying

u(1, t)= F(t) (7.8)

and that we wish to solve forψ(t). Thenψ is a solution of the Volterra integral

equation of the first kind

F(t)=
∫ t

0
γ(1, t−τ)ψ(τ)dτ, (7.9)

well known to be ill posed.

We proceed as follows. We will suppose that u(x,t) has a Laguerre expan-

sion

u(x,t)=
∞∑
n=0

cn(x)Ln(t). (7.10)

The fundamental solution has a Laguerre expansion given in terms of the theta

polynomials by (6.20). Denote cn(1) = an and −cn′(0) = bn. Then an may be

assumed known and we must solve for bn from

∞∑
n=0

anLn(t)=
∫ t

0

( ∞∑
n=0

p(−1)
n (1)
en!

Ln(t−τ)
)( ∞∑

m=0

bmLm(τ)
)
dτ

=
∞∑
n=0

∞∑
m=0

p(−1)
n (1)
en!

bm
(
Lm+n(t)−Lm+n+1(t)

)

= p
(−1)
0 (1)b0

e
L0

+
∞∑
n=1

{
p(−1)

0 (1)bn
e

+
n∑
j=1

[
p(−1)
j (1)
ej!

− p
(−1)
j−1 (1)
e(j−1)!

]
bn−j

}
Ln.

(7.11)

Hence, we have the recurrence

b0 = a0e
p(−1)

0 (1)
,

bn = 1

p(−1)
0 (1)


ean−

n∑
j=1


p(−1)

j (1)
j!

− p
(−1)
j−1 (1)
(j−1)!


bn−j


.

(7.12)
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The recurrence (7.12) is readily solved by generating functions. Multiplying

both sides of (7.12) by tn and summing, we find

∞∑
n=0

bntn = e
1/
√

1−t
√

1−t
∞∑
n=0

antn. (7.13)

It follows from (5.8) that the bn are given by the convolution sum

bn = e
n∑
k=0

p(−1)
k (−1)
k!

an−k, (7.14)

which completely solves the inverse problem.

Both of the above applications are amenable to a regularization process and

the second application may be readily adapted to multidimensional problems.

These considerations will be addressed in future work.

This provides a fitting conclusion to our investigation of the theta func-

tions, whose origins were a Laguerre series solution of the Cauchy problem

of inverse heat conduction. It is deeply satisfying that the new polynomials

should emerge from such a practical problem, and that the operational calcu-

lus should provide “a local habitation and a name.”
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