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Our objective is to study the structure of subweakly periodic rings with a particular
emphasis on conditions which imply that such rings are commutative or have a
nil commutator ideal. Related results are also established for weakly periodic (as
well as periodic) rings.
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Throughout, R represents a ring and �(R) denotes the commutator ideal

of R. For any x,y in R, [x,y] = xy −yx is the usual commutator. A word

w(x,y) is a product in which each factor is x or y . The empty word is defined

to be 1. We now state formally the definition of a subweakly periodic ring.

Definition 1. A ring R is called subweakly periodic if every x in R\J can

be written in the form x = a+b, where a is nilpotent and b is potent.

In the preparation for the proofs of the main theorems, we first prove the

following lemmas.

Lemma 2. Suppose that R is any ring with the property that for all x,y in R,

there exist words w(x,y), w′(x,y) depending on x and y such that

w(x,y)[xy,yx]= 0= [xy,yx]w′(x,y) (x,y ∈ R). (1)

Then the commutator ideal �(R) is contained in J. In particular, if R is also

semisimple, then R is commutative.

Proof. The semisimple ring R/J is isomorphic to a subdirect sum of prim-

itive rings Ri, i∈ Γ , each of which clearly satisfies (1).

Case 1. Suppose that Ri is a division ring. We claim that Ri must be commu-

tative. Suppose not. Let x,y ∈ Ri be such that [x,y]≠ 0. As x ≠ 0 and y ≠ 0,

we must havew(x,y)≠ 0, and so by (1), [xy,yx]= 0. Since [x,y]≠ 0 implies

that [x,y+1]≠ 0, we may repeat the above argument, with y+1 playing the

role of y , to conclude that [x(y+1),(y+1)x] = 0, and hence [xy+x,yx+
x] = 0. Combining this with [xy,yx] = 0, we obtain [xy,x]+ [x,yx] = 0,

and thus [xy−yx,x] = 0, that is, [x,y] commutes with x. Interchanging x
and y in the above argument, we see that [y,x] commutes with y , and hence

[x,y] commutes with both x and y. (2)
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Observe that [xy,x]= x[y,x], and hence

x = [xy,x][y,x]−1. (3)

By (2), [xy,x] commutes with both x and xy , and hence [xy,x] commutes

with x−1(xy)=y . Again, by (2), [y,x] commutes with y , and hence [y,x]−1

also commutes withy . The net result is that both factors of the right-hand side

of (3) commute with y , and hence [x,y]= 0, contradiction. This contradiction

proves that the division ring Ri is commutative.

Case 2. The primitive ring Ri is not a division ring. Since (1) is inherited by

all subrings and all homomorphic images of the ground ring R, it follows, by

Jacobson’s density theorem [4, page 33], that for somen> 1 and some division

ring D, the complete matrix ring Dn of all n×n matrices over D satisfies

(1). This, however, is false as can be seen by taking x = E11, y = E11 + E12

(x,y ∈ Dn). Indeed, in this case, any word w(x,y) must be x or y (since

x2 = x, y2 =y , xy =y , and yx = x), which implies that

w(x,y)[xy,yx]=w(x,y)[y,x]= x[y,x]= x−y ≠ 0 (4)

or

w(x,y)[xy,yx]=w(x,y)[y,x]=y[y,x]= x−y ≠ 0. (5)

This contradiction shows that each Ri must be a division ring, and hence must

be commutative (by Case 1). Therefore, R/J is commutative, and hence �(R)⊆
J. This proves Lemma 2.

Lemma 3. Suppose thatR is a ring which satisfies the “word” hypothesis (1) of

Lemma 2. Suppose, further, that J is commutative. Then the commutator ideal

of R is nil, and hence N is an ideal of R.

Proof. By Lemma 2, every commutator [x,y] is in J. Since, by hypothesis,

J is commutative,

[
[x,y],[z,w]

]= 0 ∀x,y,z,w ∈ R. (6)

Observe that (6) represents a polynomial identity which is satisfied by all the

elements of the ground ring R. Moreover, the greatest common divisor of all

the coefficients of this polynomial is 1. Furthermore, (6) is not satisfied by

any 2×2 matrix ring over GF(p) for any prime p, as a consideration of the

following commutators shows:

[x,y]= [E11,E12
]
, [z,w]= [E22,E21

]
. (7)

It follows from [1] that the commutator ideal �(R) is nil, and hence N is an

ideal of R. This proves Lemma 3.
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Lemma 4. Suppose that R is a subweakly periodic ring which satisfies all the

hypotheses of Lemma 3. Then for any x in R,

x ∈ J or x−xn ∈N for some integer n> 1. (8)

Proof. Let x ∈ R, x ∉ J. Then, by Definition 1,

x = a+b, a∈N, bn = b, where n=n(b) > 1. (9)

Now, by Lemma 3, N is an ideal of R, and since a∈N,

xn = (a+b)n = a0+bn, a0 ∈N. (10)

Thus,

x−xn = a+b−a0−bn = a−a0
(
since bn = b), (11)

and hence x−xn ∈N. This proves Lemma 4.

Lemma 5. Suppose that R is a subweakly periodic ring which satisfies all the

hypotheses of Lemma 4. Suppose that σ : R → S is a homomorphism of R onto

a ring S. Then the set N′ of nilpotents of S is contained in σ(J), and hence N′

is a commutative set.

Proof. Suppose that s ∈ N′ with sk = 0. Let d ∈ R such that σ(d) = s. If

d ∈ J, then s = σ(d) ∈ σ(J), and the lemma follows. So, suppose that d ∉ J.

Then by Lemma 4,

d−dn ∈N for some integer n> 1. (12)

It is readily verified that

d−dk+1dk(n−2) = (d−dn)+dn−1(d−dn)+···+(dn−1)k−1(d−dn). (13)

Combining (12), (13), and the fact that N is an ideal of R, we see that

d−dk+1dk(n−2) ∈N, (14)

and hence

s−sk+1sk(n−2) = σ(d−dk+1dk(n−2))∈ σ(N). (15)

This implies (since sk = 0) that s ∈ σ(N). Thus, N′ ⊆ σ(N). By Lemma 3, N
is an ideal of R, and hence N ⊆ J, which implies N′ ⊆ σ(N) ⊆ σ(J). Finally,

since J is commutative,σ(J) is commutative, and thusN′ is a commutative set.
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Lemma 6. Suppose that R is any ring which satisfies the “word” hypothesis

(1) of Lemma 2. Then the set E of all idempotents of R is contained in the center

of R.

Proof. Suppose that e2 = e∈ R, x ∈ R, and f = e+ex−exe. Then

f 2 = f , ef = f , fe= e, [e,f ]= ex−exe. (16)

By the “word” hypothesis (1) of Lemma 2, there exists a wordw(e,f ) such that

w(e,f )[ef ,fe]= 0. (17)

By (16), we see that w(e,f )= e or w(e,f )= f , and hence (17) is equivalent to

e[ef ,fe]= 0 or f[ef ,fe]= 0. (18)

These two equations, in turn, are equivalent to e−f = 0, and hence

ex = exe. (19)

Now, let f ′ = e+xe−exe. Again, by the second part of the “word” hypothesis

(1) of Lemma 2, there exists a word w′(e,f ′) such that

[ef ′,f ′e]w′(e,f ′)= 0. (20)

An argument similar to the one above shows that (20) is equivalent to e−f ′ = 0,

and hence

xe= exe. (21)

Combining (19) and (21), we obtain the lemma.

Lemma 7. Suppose that R is a subweakly periodic ring which satisfies all the

hypotheses of Lemma 4. Then, for any x in R, x is in J or xq = xqe for some

idempotent e and some q ≥ 1.

Proof. Let x ∈ R. By Lemma 4,

x ∈ J or x−xn ∈N for some integer n> 1. (22)

Suppose that x ∉ J. Then, (x−xn)q = 0 for some positive integer q, and hence

xq = xq+1g(x) for some polynomial g(λ)∈ Z[λ]. (23)

By reiterating, we see that

xq = xq(xg(x))= xq(xg(x))2 = ··· = xq(xg(x))q. (24)



WEAKLY PERIODIC AND SUBWEAKLY PERIODIC RINGS 2101

Let e= (xg(x))q. It is readily verified that e2 = e, and thus by (24), the lemma

is proved.

The following three lemmas are well known and are stated without proofs.

Lemma 8. If [x,y] commutes with x, then for all positive integers k,

[
xk,y

]= kxk−1[x,y]. (25)

Lemma 9. Let R be a subdirectly irreducible ring. Then the only central idem-

potent elements of R are 0 and 1 (if 1∈ R).

Lemma 10. Let R be a weakly periodic ring. Then the Jacobson radical J of

R is nil(J ⊆N).
This lemma was proved in [2].

We are now in a position to prove our main theorems.

Theorem 11. Let R be a subweakly periodic ring such that the following two

conditions hold:

(i) for all x,y in R, there exist words w(x,y) and w′(x,y) depending on

x and y such that w(x,y)[xy,yx]= 0= [xy,yx]w′(x,y);
(ii) the Jacobson radical J is commutative.

Then R is commutative. (In particular, this theorem holds if R is weakly periodic

(or periodic).)

Proof. By Lemma 7, we have for any x in R,

x ∈ J or xq = xqe, e2 = e, q ≥ 1. (26)

As is well known, the ground ring R can be written as

R � a subdirect sum of subdirectly irreducible rings Ri (i∈ Γ). (27)

Let σi : R → Ri be the natural homomorphism of R onto Ri. Let xi ∈ Ri, and

suppose that x ∈ R such that σi(x)= xi. By (26), we see that

xi ∈ σi(J) or xiq = xiqei with ei = σi(e), e2 = e∈ R, q ≥ 1. (28)

Moreover, by the proof of Lemma 7, we see that we can take e= (xg(x))q for

some polynomial g(λ) ∈ Z[λ]. Also, by Lemma 6, e is a central idempotent

of R, and hence

ei =
(
xig

(
xi
))q

is a central idempotent of Ri. (29)

We now distinguish two cases.

Case 1. The ring Ri does not have an identity. Suppose that there is an

xi ∉ σi(J). Then by (28), (29), and Lemma 9, xiq = 0 for some q ≥ 1. Thus, xi
is nilpotent, and hence by Lemma 5, xi ∈ σi(J). This contradiction shows that
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xi ∈ σi(J) for all xi ∈ Ri. By hypothesis, J is commutative, and consequently,

Ri = σi(J) is commutative as well.

Case 2. The ring Ri has an identity 1. Let xi ∉ σi(J). By (28) and (29), xiq =
xiqei, where ei = (xig(xi))q is a central idempotent of Ri. Now, by Lemma 9,

ei = 0 or ei = 1. If ei = 1, then (xig(xi))q = 1, which implies that xi is a

unit of Ri. On the other hand, if ei = 0, then xiq = 0, and hence, by Lemma 5,

xi ∈ σi(J). The net result is

∀xi ∈ Ri, xi ∈ σi(J) or xi is a unit in Ri. (30)

Next, we claim that the set Ni of nilpotents of Ri is an ideal of Ri. To prove

this, first recall that by Lemma 5, Ni is a commutative set, and hence Ni is

closed with respect to subtraction. Now, suppose that ai ∈ Ni, xi ∈ Ri. By

Lemma 5, ai ∈ σi(J), and therefore, ai = σi(j) for some j ∈ J. Suppose that

x ∈ R is such that xi = σi(x). Then aixi = σi(j)σi(x) = σ(jx) ∈ σi(J) since

j ∈ J. Since J is commutative, σi(J) is commutative, and hence

[
aixi,ai

]= 0
(
ai ∈Ni, xi ∈ Ri

)
. (31)

An easy induction shows that (31) implies that (aixi)q = aiqxiq for all positive

integers q, and hence aixi is nilpotent. Similarly, xiai ∈Ni, and thus

Ni is a commutative ideal of Ri. (32)

Our next goal is to show that

[[
ai,ui

]
,ui
]= 0 for all units ui in Ri and all ai ∈ σi(J). (33)

To prove this, suppose that ai = σi(j) for some j ∈ J. Then j is quasiregular,

and hence σi(j) is quasiregular as well, that is, ai is quasiregular. Therefore,

ui′ = 1+ai is a unit in Ri. By hypothesis (i), there exists a word w(ui,ui′)
such that w(ui,ui′)[uiui′,ui′ui] = 0. Since both ui and ui′ are units in Ri,
w(ui,ui′)must also be a unit, and hence [uiui′,ui′ui]= 0, which is equivalent

to

[
ui
(
1+ai

)
,
(
1+ai

)
ui
]= 0. (34)

Note that σi(J) is a commutative ideal of Ri, and hence [uiai,aiui] = 0. So,

(34) implies that [ui,aiui]+[uiai,ui]=0, which is equivalent to [ui,[ai,ui]]=
0. This proves (33). Next, we prove that

σi(J) is contained in the center of Ri. (35)
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Suppose not. Then

[
ai,bi

]
≠ 0 for some ai ∈ σi(J), bi ∈ Ri. (36)

By (30), bi ∈ σi(J) or bi is a unit of Ri. As σi(J) is commutative, (36) implies

that bi ∉ σi(J). Therefore,

bi is a unit of Ri. (37)

Moreover, by (36), we cannot have both [ai,2bi] = 0 and [ai,3bi] = 0. We

assume, without loss of generality, that [ai,2bi]≠ 0. Letting 2bi play the role

of bi in the argument which led to (37), we see that

2bi is a unit of Ri. (38)

Let b ∈ R such that σi(b) = bi. By Lemma 4, b ∈ J or b−bn ∈ N for some

integer n> 1. Since bi ∉ σi(J), b ∉ J, and hence

b−bn ∈N for some integer n> 1. (39)

Applying a similar argument to 2bi yields

2b−(2b)m ∈N for some integer m> 1. (40)

Now, by (39) and (40),

bi−bin ∈Ni, 2bi−
(
2bi

)m ∈Ni. (41)

For any xi ∈ Ri, let xi = xi+Ni ∈ Ri/Ni. Then (41) implies that

(
bi
)n = bi,

(
2bi

)m = 2bi, (n > 1, m > 1). (42)

Observe that by (42),

(
2bi

)(m−1)(n−1)+1 = (2bi
)m = 2bi,

(
2bi

)(m−1)(n−1)+1 = 2(m−1)(n−1)+1(bi
)n = 2(m−1)(n−1)+1bi.

(43)

Hence,

(
2(m−1)(n−1)+1−2

)
bi = 0. (44)

Also, by (37), bi is a unit of Ri/Ni, and hence the above equation implies that

(
2(m−1)(n−1)+1−2

)
1= 0. (45)
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Therefore, (2(m−1)(n−1)+1−2)·1∈ Ri is nilpotent, and hence Ri is not of char-

acteristic zero. Since Ri is subdirectly irreducible, we have

characteristic of Ri is pk, p prime , k≥ 1. (46)

Now, using (37), (42), and (46), we see that the subring 〈bi〉 generated by the

unit bi is a finite commutative ring with identity which has no nonzero nilpo-

tents, and hence

〈
bi
〉�

t⊕

j=1

GF
(
pkj

)
, t finite, each kj ≥ 1. (47)

Let α= k1k2 ···kt , then by (47), (bi)p
kα = bi. Thus

bip
kα−bi ∈Ni ⊆ σi(J). (48)

Now, since ai ∈ σi(J) and σi(J) is commutative, (48) yields [bip
kα−bi,ai]= 0.

Thus

[
bip

kα
,ai
]
= [bi,ai

]
. (49)

Combining (37), (33), Lemma 8, and (46), we see that (49) implies that [bi,ai]=
0, which contradicts (36). This contradiction proves (35). To complete the proof

of the theorem, let xi ∈ Ri and let x ∈ R be such that σi(x)= xi. By Lemma 3,

N is an ideal of R, and therefore N ⊆ J. Now, by Lemma 4, x ∈ J, in which case,

x−xn ∈ J for any integer n or x−xn ∈ N ⊆ J for some integer n > 1, and

hence, by (35), xi−xin ∈ σi(J)⊆ Center of Ri. Thus, by a well-known Herstein

[3, Theorem 21], Ri is commutative. Therefore, R is commutative, and this

proves the theorem.

Theorem 12. Let R be a subweakly periodic ring such that the following two

conditions hold:

(i) for all x and y in R, there exist relatively prime positive integers m =
m(x,y) and n=n(x,y) such that

(xy)m−(yx)m ∈ C, (xy)n−(yx)n ∈ C, (50)

where C is the center of R;

(ii) the Jacobson radical J is commutative.

Then R is commutative. (In particular, this theorem holds if R is weakly peri-

odic (or periodic).)

Proof. Since m and n are relatively prime integers, there exist positive

integers k and l such that km−ln= 1. Let γ = ln. Then km= γ+1. Moreover,
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by (50),

[
xy,(yx)m

]= 0,
[
xy,(yx)n

]= 0, (51)

which implies

[
xy,(yx)km

]= 0,
[
xy,(yx)ln

]= 0. (52)

Thus

[
xy,(yx)γ+1]= 0,

[
xy,(yx)γ

]= 0. (53)

Hence

(yx)γ+1xy = xy(yx)γ+1 = xy(yx)γ(yx)= (yx)γ(xy)(yx), (54)

and hence

(yx)γ+1xy−(yx)γ(xy)(yx)= 0. (55)

Thus

(yx)γ{yx ·xy−xy ·yx} = 0, (56)

and hence

(yx)γ[xy,yx]= 0. (57)

A similar argument shows that [xy,yx](yx)γ = 0, and so

(yx)γ[xy,yx]= 0= [xy,yx](yx)γ. (58)

Theorem 12 now follows from (58) and Theorem 11 as well.

Theorem 13. Let R be a weakly periodic ring and suppose that the following

conditions hold:

(i) for all x,y in R, there exist words w(x,y) and w′(x,y) such that

(x,y)[xy,yx]= 0= [xy,yx]w′(x,y);
(ii) every commutator [a,b], with a and b nilpotent, is potent (i.e., [a,b]k =

[a,b] for some integer k > 1).

Then R is commutative. (In particular, this theorem holds if R is periodic.)

Proof. In view of Theorem 11, it suffices to show that J is commutative.

By Lemma 2, the commutator idea �(R)⊆ J. Also, by Lemma 10, J ⊆N. Hence,

�(R) ⊆ N, and thus N is an ideal of R. This implies that N ⊆ J, and hence

J = N. Suppose that a and b are any elements of N. Then, [a,b] is also in N
sinceN is an ideal. Also, [a,b] is potent by hypothesis (ii), and hence [a,b]= 0
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(since the only element which is both potent and nilpotent is zero). Therefore,

N = J is commutative. The theorem now follows from Theorem 11.

Theorem 14. Let R be a weakly periodic ring such that the following condi-

tions hold:

(i) for all x,y in R, there exist relatively prime positive integers m, n such

that (xy)n−(yx)n ∈ C and (xy)m−(yx)m ∈ C ;

(ii) for all a,b in N, [a,b] is potent.

Then R is commutative. (In particular, this theorem holds if R is periodic.)

Proof. A careful examination of the proof of Theorem 12 shows that hy-

pothesis (i) above implies that the “word” hypothesis stated in condition (i)

of Theorem 13 holds here as well (see (58)). Thus, all of the hypotheses of

Theorem 13 are satisfied, and hence R is commutative.

We conclude by considering the special case where the “words” involved

in the above theorems happen to be the empty words. As an illustration, we

consider the status of Theorem 11 when w(x,y) and w′(x,y) are the empty

words. The result is the following corollary.

Corollary 15. Let R be a subweakly periodic ring (in particular, R may be

chosen to be weakly periodic (or periodic)) satisfying the following conditions:

(i) [xy,yx]= 0 for all x,y in R;

(ii) J is commutative.

Then R is commutative.

A similar corollary may be obtained by taking the “words” in Theorem 13 to

be the empty words.

Finally, we have the following corollary of Corollary 15.

Corollary 16. Let R be a subweakly periodic ring (in particular, R may be

chosen to be weakly periodic or (periodic)) satisfying the following conditions:

(i) [x,y] commutes with x for all x in R;

(ii) J is commutative.

Then R is commutative.

Proof. Let x,y ∈ R. By hypothesis (i) (interchanging x and y), it follows

that [y,x] commutes with y , and hence [x,y] commutes with y . Thus, [x,y]
commutes with both x and y , and hence with xy . Thus, yx commutes with

xy , and Corollary 16 now follows from Corollary 15.
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