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An analysis is provided for a model of the blood production system based on a cell
population structured by a continuous variable corresponding to the maturity of
individual cells. Cell maturity is viewed as an indicator of increasing morphologi-
cal development, ranging from the most primitive stem cells to the most mature
differentiated cells. The analysis distinguishes two fundamental behaviors based
on the nature of the initial state of the system: the first is a normal production of
cells, when the initial state contains a sufficient supply of the least mature cells;
the second is an abnormal production, when the initial state is deficient in the
population of the least mature cells.
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1. Introduction. In this paper, we investigate a singular transport equation

which arises as a model of the blood production system. Similar models have

been investigated in [1, 4, 5, 6, 7, 8, 9]. In the model we study here, which was

developed by Rey and Mackey in [10], the blood production system is viewed as

a population of cells with individual cells distinguished by a maturity variable

x. The maturity value x ranges from 0 to 1, with maturity level corresponding

to an increasingly developed level of cell type. In this model cells of all matu-

rity values are capable of dividing. By successive divisions cell lines progress

through increasingly mature cell types, which finally enter into the blood cir-

culation. The division process is not modeled directly, but is accounted for

by a nonlinear term which allows for a feedback control of cell production

dependent upon the total cell population size.

We model these biological processes by a nonlinear partial differential equa-

tion for the cell population density which has cell maturity and time as inde-

pendent variables. The equation of the model is a simplification of a more gen-

eral model of cell population transport based upon cell maturity, time, and cell

age. An idealized reduction of the 2-variable maturity-age structured model to

the 1-structure variable maturity model yields an equation with a delay in the

time variable and a scaling of the maturity variable (see [10]). The resulting

equation has a novel character which is amenable to the theory of abstract

functional differential equations. In [2], the authors made an investigation of

this equation for the case that the nonlinear production term has a logistic

form.
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Here we generalize our earlier results to the case that the nonlinear produc-

tion term has a more general form, that is, we consider the equation

ut(x,t)+
(
g(x)u(x,t)

)
x = f

(
u(αx,t−τ)), 0≤ x ≤ 1, t > 0,

u(x,t)=φ(x,t)∈ Y , 0≤ x ≤ 1, −τ ≤ t ≤ 0,
(1.1)

where the delays α and τ are such that 0<α< 1 and τ ≥ 0 and Y is the space

of real continuous functions on [0,1]×[−τ,0].
Our main goal is to distinguish abnormal behavior dependent upon prop-

erties of the linear maturation process (g(x)u(x,t))x , the nonlinear prolifer-

ation process f(u(αx,t−τ)), and the initial values for the equation φ(x,t).
If there is a sufficient supply of the least mature cell types (the initial matu-

rity density of blood cells is strictly positive at the maturity value x = 0), then

there is a normal production of blood cells. If there is an insufficient supply

of the least mature cell types (the initial maturity density of cells is 0 at the

maturity value x = 0), then there is an abnormal production of blood cells.

In this situation we show that either every initial value is unstable or every

initial value leads to extinction over time. Although the model contains many

simplifying assumptions for the complex biological processes, it describes a

destabilization of a process that occurs when its starting value is defective. It

is believed that the pathology of aplastic anemia, a disease of the blood pro-

duction system, is due to injury or destruction of a common pluripotential

stem cell, which affects all subsequent cell populations (see [3]).

2. The semigroup generated by −(g(x)u(x))′. In this section, we study

the semigroup generated by the operator (Au)(x) = −(g(x)u(x))′, where g
satisfies the following hypothesis:

(Hg) g ∈ C1[0,1], g(0)= 0 and g(x) > 0 for 0<x ≤ 1, and
∫ 1
0 (ds/g(s))=∞.

The function g in hypothesis (Hg) controls the maturation rate of individual

cells, which all mature in exactly the same way. The time required for a cell to

mature from x1 to x2 is given by
∫ x2
x1
(ds/g(s)), where 0≤ x1 <x2 ≤ 1.

We prove the following proposition.

Proposition 2.1. Suppose that g satisfies (Hg). Then the operatorA, defined

by

DA =
{
u∈ C[0,1], u is differentiable on (0,1],

u′ ∈ C(0,1], lim
x→0
g(x)u′(x)= 0

}
,

(Au)(x)=−(g(x)u(x))′, if 0<x ≤ 1, (Au)(0)=−g′(0)u(0),
(2.1)

is the infinitesimal generator of the semigroup

(
S(t)ψ

)
(x)= exp

(
−
∫ t

0
g′
(
h−1(h(x)e−s))ds)ψ(h−1(h(x)e−t)), (2.2)

where h(x)= exp(
∫ x
1 (1/g(s))ds).
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Before proving Proposition 2.1, we first consider the operator B : DB ⊂
C[0,1]→ C[0,1] defined by

DB =
{
u∈ C[0,1], u is differentiable on (0,1],

u′ ∈ C(0,1], lim
x→0
g(x)u′(x)= 0

}
,

(Bu)(x)=−g(x)u′(x), if 0<x ≤ 1, (Bu)(0)= 0.

(2.3)

We prove the following proposition.

Proposition 2.2. Suppose that g satisfies (Hg). Then the operator B is the

infinitesimal generator of a linear contraction semigroup on C[0,1].

Proof. We have to prove that, given w ∈ C[0,1] and λ > 0, there exists a

unique u∈DB such that

(I−λB)u=w (2.4)

and that |u|∞ ≤ |w|∞, where |u|∞ = sup0≤x≤1 |u(x)|.
To solve (2.4) we have to find u∈ C[0,1] which is a solution of the differen-

tial equation

u(x)+λg(x)u′(x)=w(x), 0<x ≤ 1, (2.5)

and satisfies u(0)=w(0).
The solutions of (2.5) are the functions

u(x)=exp
(
−
∫ x

1

1
λg(s)

ds
)(
k+

∫ x
1

w(t)
λg(t)

exp
(∫ t

1

1
λg(σ)

dσ
)
dt
)
, 0<x ≤ 1,

(2.6)

for each k∈R. Set

hλ(x)= exp
(∫ x

1

ds
λg(s)

)
, hλ(0)= 0, (2.7)

where hλ is continuous on [0,1] and h′λ(x)= hλ(x)/λg(x) on (0,1]. It follows

that
∫ x
1 (hλ(t)/λg(t))dt =

∫ x
1 h

′
λ(t)dt = hλ(x)−hλ(1)→−hλ(1) as x→ 0, and

so hλ(x)/λg(x)∈ L1(0,1) and so is w(x)(hλ(x)/λg(x)). As hλ(0)= 0, u(x)
given by (2.6), that is,

u(x)= 1
hλ(x)

(
k+

∫ x
1

w(t)
λg(t)

hλ(t)dt
)
, 0<x ≤ 1, (2.8)

is bounded only if k = ∫ 0
1 (w(t)/λg(t))hλ(t)dt, so the only possible solution

is

u(x)= 1
hλ(x)

∫ x
0

w(t)
λg(t)

hλ(t)dt, 0<x ≤ 1, u(0)=w(0). (2.9)

It is easy to check that in fact this function belongs to DB .
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Also

∣∣u(x)∣∣≤ |w|∞
hλ(x)

∫ x
0

hλ(t)
λg(t)

dt = |w|∞, 0<x ≤ 1,
∣∣u(0)∣∣= ∣∣w(0)∣∣,

(2.10)

and so |u|∞ ≤ |w|∞, as required.

Finally note that DB = C[0,1].
If ψ∈DB , then

lim
t→0+

ψ
(
h−1

(
h(x)e−t

))−ψ(x)
t

=−g(x)ψ′(x), (2.11)

hence the semigroup generated by B is

(
T(t)ψ

)
(x)=ψ(h−1(h(x)e−t)), (2.12)

where h(x)= exp(
∫ x
1 (1/g(s))ds).

Proof of Proposition 2.1. Since A is a bounded perturbation of B, A is

the infinitesimal generator of a semigroup on C[0,1]. To prove that this semi-

group is given by (2.2), observe that for ψ ∈D(B), the solution w(x,t) of the

problem

∂
∂t
(
g(x)w(x,t)

)=−g(x) ∂
∂x

(
g(x)w(x,t)

)
, w(x,0)=ψ(x), (2.13)

is

w(x,t)=
(
T(t)(gψ)

)
(x)

g(x)
= g

(
h−1

(
h(x)e−t

))
ψ
(
h−1

(
h(x)e−t

))
g(x)

(2.14)

for x ∈ (0,1]. To verify that (2.2) agrees with w(x,t), it suffices to show that

exp
(
−
∫ t

0
g′
(
h−1(h(x)e−s))ds)= g

(
h−1

(
h(x)e−t

))
g(x)

, x ∈ (0,1], (2.15)

or equivalently,

log
(
g(x)

)−
∫ t

0
g′
(
h−1(h(x)e−s))ds = log

(
g
(
h−1(h(x)e−t))), x ∈ (0,1].

(2.16)

The two sides of (2.16) agree at t = 0 and differentiation of both sides with

respect to t yields

g′
(
h−1(h(x)e−t))= g′

(
h−1

(
h(x)e−t

))
h−1′(h(x)e−t)h(x)e−t

g
(
h−1

(
h(x)e−t

)) . (2.17)

Then (2.15) follows from the formula for h since

(
h−1)′(u)= 1(

h−1
)′(h−1(u)

) = g
(
h−1(u)

)
h
(
h−1(u)

) . (2.18)
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To verify that formula (2.2) satisfies the semigroup property, observe that

(
S(t)S(s)ψ

)
(x)= g

(
h−1

(
h(x)e−t

))
g(x)

(
S(s)ψ

)(
h−1(h(x)e−t))

= g
(
h−1

(
h(x)e−t

))
g(x)

g
(
h−1

(
h
(
h−1

(
h(x)e−t

))
e−s

))
g
(
h−1

(
h(x)e−t

))
×ψ(h−1(h(h−1(h(x)e−t))e−s))

= g
(
h−1

(
h(x)e−(t+s)

))
g(x)

ψ
(
h−1(h(x)e−(t+s)))

= (S(t+s)ψ)(x).

(2.19)

We note that in [2] the case g(x)= x was considered.

3. Existence and uniqueness of solutions. Consider the equation

ut(x,t)+
(
g(x)u(x,t)

)
x = f

(
u(αx,t−τ)), 0≤ x ≤ 1, t > 0,

u(x,t)=φ(x,t)∈ Y , 0≤ x ≤ 1, −τ ≤ t ≤ 0, τ > 0,

u(x,0)=φ(x)∈X, τ = 0,

(3.1)

where the delays α and τ are such that 0 < α < 1 and τ ≥ 0. If τ > 0, then Y
is the space of real continuous functions on [0,1]×[−τ,0] with norm ‖ϕ‖ =
sup0≤x≤1,−τ≤t≤0 |ϕ(x,t)|; so Y = C([0,1]×[−τ,0])= C([−τ,0];C[0,1]). If τ =
0, then X = C[0,1] with norm |φ|∞.

We suppose that g satisfies (Hg), that is, g ∈ C1[0,1], g(0)= 0 and g(x) > 0

for 0 < x ≤ 1, and
∫ 1
0 (ds/g(s)) = ∞, and that f : R → R is continuous. The

function f incorporates the proliferation process of the population through

cell division and cell mortality. For the existence and uniqueness of solutions,

we require continuity and, in certain cases, differentiability conditions on f .

For the asymptotic behavior of the solutions, we will require differentiability

conditions on f related to differentiability conditions on g.

From the results of Section 1, it follows that the mild or integrated version

of (3.1) is the integral equation

u(x,t)=φ(h−1(h(x)e−t),0)exp
(
−
∫ t

0
g′
(
h−1(h(x)e−ξ))dξ)

+
∫ t

0
f
(
u
(
αh−1(h(x)e−(t−σ)),σ −τ))

×exp
(
−
∫ t−σ

0
g′
(
h−1(h(x)e−ξ))dξ)dσ, 0≤ x ≤ 1, t > 0,

u(x,t)=φ(x,t)∈ Y , 0≤ x ≤ 1, −τ ≤ t ≤ 0, τ > 0,

u(x,0)=φ(x)∈X, τ = 0.
(3.2)

In this section, we study existence and uniqueness of the solutions of (3.2). If

τ > 0, it is easily seen, using the method of steps, that (3.2) has a continuous
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solution for each continuous initial datum and that this solution is unique. We

prove in Proposition 3.1 a specific uniqueness result that will be useful in the

instability analysis of Section 5. This result says that if two initial data agree

for small values of the maturity variable x, then their corresponding solutions

will ultimately agree for sufficiently large t for all maturity values x.

Proposition 3.1. Let τ ≥ 0. Suppose thatu1(x,t) andu2(x,t) are solutions

of (3.2) with initial data ϕ1 and ϕ2, respectively. Suppose that there exists b,

0< b ≤ 1, such that

ϕ1(x,t)=ϕ2(x,t) for x ∈ [0,b], t ∈ [−τ,0], if τ > 0, (3.3)

or

ϕ1(x)=ϕ2(x) for x ∈ [0,b], if τ = 0. (3.4)

Then there exists t such that u1(x,t)=u2(x,t) for x ∈ [0,1] and t ≥ t, where

t can be chosen to be − logh(b)+ logb/logα.

Proof. Note first that the solutions of (3.2) are solutions of

u(x,t)=u(h−1(h(x)e−(t−s)),s)exp
(
−
∫ t−s

0
g′
(
h−1(h(x)e−ξ))dξ)

+
∫ t
s
f
(
u
(
αh−1(h(x)e−(t−σ)),σ −τ))

×exp
(
−
∫ t−σ

0
g′
(
h−1(h(x)e−ξ))dξ)dσ, 0≤ x ≤ 1, 0≤ s ≤ t.

(3.5)

Set

t0 = 0, tn+1 = tn+ log
h
(
bα−(n+1))
h
(
bα−n

) +τ =− log
h(b)

h
(
bα−(n+1)

) +(n+1)τ.

(3.6)

We prove by induction that if bα−n ≤ 1, then

u1(x,t)=u2(x,t) for x ∈ [0,bα−n], t ≥ tn−τ. (3.7)

It is true if n= 0. Suppose true for n. If t ≥ tn,

ui(x,t)=ui
(
h−1(h(x)e−(t−tn)), tn)exp

(
−
∫ t−tn

0
g′
(
h−1(h(x)e−ξ))dξ)

+
∫ t
tn
f
(
ui
(
αh−1(h(x)e−(t−σ)),σ −τ))

×exp
(
−
∫ t−σ

0
g′
(
h−1(h(x)e−ξ))dξ)dσ,

(3.8)
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where i= 1,2. Buth andh−1 are increasing. Takex ∈ [0,bα−(n+1)], t ≥ tn+1−τ .

Then

h−1(h(x)e−(t−tn))≤ h−1

(
h
(
bα−(n+1)) h

(
bα−n

)
h
(
bα−(n+1)

)
)
= bα−n,

αh−1(h(x)e−(t−σ))≤αx ≤ bα−n,
(3.9)

andσ ≥ tn impliesσ−τ ≥ tn−τ . Thusu1(x,t)=u2(x,t) forx ∈ [0,bα−(n+1)]
and t ≥ tn+1−τ .

Now suppose that bα−N ≤ 1< bα−(N+1). Take x in [0,1]. If σ ≥ tN , then

αh−1(h(x)e−(t−σ))≤αx ≤ bα−N, (3.10)

and if t ≥ tN− logh(bα−N)=− logh(b)+Nτ ,

h−1(e−(t−tN)h(x))≤ h−1(h(bα−N))= bα−N. (3.11)

So if x ∈ [0,1] and t ≥ − logh(b)+Nτ , then u1(x,t) = u2(x,t). But N ≤
logb/logα, and the result follows.

We now look at the existence of solutions in the case τ = 0. If τ = 0 and f
is only continuous, then solutions may not always exist, as we showed in [2]

for the particular cases g(x) = x and f(x) = µx(1−x). So consider the case

where f is Lipschitz continuous.

Proposition 3.2. Let τ = 0, let ϕ ∈ X, and let f be Lipschitz continuous

with constant L. Then the iterates un(x,t), defined by

u0(x,t)=φ
(
h−1(h(x)e−t))exp

(
−
∫ t

0
g′
(
h−1(h(x)e−ξ))dξ),

un(x,t)=φ
(
h−1(h(x)e−t))exp

(
−
∫ t

0
g′
(
h−1(h(x)e−ξ))dξ)

+
∫ t

0
f
(
un−1

(
αh−1(h(x)e−(t−σ)),σ))

×exp
(
−
∫ t−σ

0
g′
(
h−1(h(x)e−ξ))dξ)dσ,

(3.12)

converge, uniformly on compact subsets of [0,1]×[0,∞), to the unique contin-

uous solution of (3.2).

If the solution with initial datum ϕ ∈X is denoted by uϕ(x,t), then

∣∣uϕ(·, t)−uψ(·, t)∣∣∞ ≤ e(L−I)t∣∣ϕ−ψ∣∣∞, ϕ,ψ∈X, (3.13)

where I = inf0≤x≤1g′(x).

Proof. The convergence of the iterates is proved using standard tech-

niques.
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To prove (3.13), we note that from (3.2), for x ∈ [0,1],
∣∣uϕ(x,t)−uψ(x,t)∣∣≤ |ϕ−ψ|∞e−It+

∫ t
0
L
∣∣uϕ(x,s)−uψ(x,s)∣∣e−I(t−s)ds

(3.14)

and the result follows immediately using Gronwall’s inequality.

If f is locally Lipschitz continuous, uniqueness can be proved using Gron-

wall’s inequality and we have the following lemma.

Lemma 3.3. Let τ = 0 and letϕ ∈X. If f is locally Lipschitz continuous, then

there is at most one solution of (3.2).

Also we have the following lemma.

Lemma 3.4. Let τ = 0 and let ϕ ∈ X. If, for some ϕ ∈ C[0,1], there exists

b, 0 < b ≤ 1, such that (3.2) has a solution for x ∈ [0,b], then (3.2) also has a

solution for x ∈ [0,1].
Proof. Take x ∈ [0,bα−1]. Thenαh−1(h(x)e−(t−σ))∈ [0,b] and sou(x,t)

is defined for x ∈ [0,bα−1]. Continue by induction.

This leads to the following proposition. Denote by X0 the space {ϕ ∈ X,

ϕ(0)= 0} and by X+0 the set {ϕ ∈X0, ϕ ≥ 0}. If 0< b < 1 and ϕ ∈ C[0,b], we

set |ϕ|b = sup0≤x≤b |ϕ(x)| and if ϕ ∈ C([0,b]×[−τ,0]), where τ > 0, we set

‖ϕ‖b = sup0≤x≤b,−τ≤t≤0 |ϕ(x,t)|.
Proposition 3.5. Let τ = 0.

(a) If there exists η > 0 such that if |ϕ|∞ < η andϕ ∈X0 then uϕ(x,t) exists,

then in fact (3.2) has a solution for all ϕ ∈X0.

(b) If there exists η > 0 such that if 0≤ϕ<η andϕ ∈X0 then uϕ(x,t) exists,

then in fact (3.2) has a solution for all ϕ ∈X+0 .

Proof. To prove (a), givenϕ ∈X0, there exists b such that |ϕ|b < η. Define

ψ∈X0 by

ψ(x)=

ϕ(x) if x ∈ [0,b],
ϕ(b) if x ∈ [b,1]. (3.15)

Then |ψ|∞ < η and thus uψ(x,t) exists. So uϕ(x,t) exists for x ∈ [0,b] as

ϕ(x)=ψ(x) for x ∈ [0,b]. The result now follows from Lemma 3.4.

The proof of (b) is similar.

Finally, we have the following existence result for f locally Lipschitz contin-

uous.

Theorem 3.6. Let τ = 0. Suppose that g satisfies (Hg) and also g′(x) > 0,

for 0 ≤ x ≤ 1. Suppose that f ∈ C1(R) and f(0) = 0. Set I = inf0≤x≤1g′(x).
Suppose that either
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(a) there is a δ > 0 such that |f ′(x)| ≤ I for |x| ≤ δ and the initial datum

ϕ ∈X is such that, for some b > 0, |ϕ|b ≤ δ, or

(b) there is a δ > 0 such that 0 ≤ f ′(x) ≤ I for 0 ≤ x ≤ δ and the initial

datum ϕ ∈X is such that, for some b > 0, 0≤ϕ(x)≤ δ for 0≤ x ≤ b.

Then the iterates un(x,t) defined in (3.12) converge uniformly on compact sub-

sets of [0,b]×[0,∞) to a function u(x,t) which satisfies (3.2) for x ∈ [0,b].
Thus, for such ϕ, (3.2) has a unique solution for x ∈ [0,1]. In particular,

under condition (a) there is a solution for all ϕ ∈ X0 and under condition (b)

there is a solution for all ϕ ∈X+0 .

Proof. We prove (a). Let µ = sup|x|≤δ(|f ′(x)|/I). We have f(k)−f(0) =
f ′(ξ)k and so |f(k)| ≤ µδI if |k|< δ. If |ϕ|b ≤ δ and |un−1(·, t)|b ≤ δ, then

∣∣un(·, t)∣∣b ≤ δe−It+
∫ t

0
µIδe−I(t−s) ds ≤ δ. (3.16)

Hence by induction |un(·, t)|b ≤ δ for all n. The convergence of the un(x,t)
uniformly for x ∈ [0,b] and t on compact subsets of [0,∞) now follows by

standard iterative techniques.

That there is a solution of (3.2) for x ∈ [0,1] follows from Lemma 3.4 and

that there is a solution for any ϕ ∈X0 follows from Proposition 3.5(a).

The proof of (b) is similar.

Note that what we need in the proof of Theorem 3.6 is that f ′(x) exists in

[−γ,γ] for a γ > 0.

4. Invariance and asymptotic behavior. In this section, we study invari-

ance and asymptotic behavior of solutions. In Theorem 4.1 we provide suffi-

cient conditions on the relationship between the population growth and mat-

uration processes to guarantee the extinction of the population for a class of

initial data.

Theorem 4.1. Let τ > 0. Suppose that g satisfies (Hg) and also g′(x) > 0,

for 0 ≤ x ≤ 1. Set I = inf0≤x≤1g′(x). Suppose that f ∈ C1(R) and f(0) = 0.

Suppose that either

(a) there is a δ > 0 such that |f ′(x)|< I for |x| ≤ δ and the initial datum ϕ
is such that, for some b > 0, ‖ϕ‖b ≤ η≤ δ, or

(b) there is a δ > 0 such that 0≤ f ′(x) < I for 0≤ x ≤ δ and the initial datum

ϕ ∈ Y is such that, for some b > 0, 0 ≤ ϕ(x,t) ≤ η ≤ δ, for 0 ≤ x ≤ b,

−τ ≤ t ≤ 0.

Then invariance of the initial datum bounds holds,

∣∣u(·, t)∣∣b ≤ η, t ≥ 0, (4.1)

and in case (b),

0≤u(x,t)≤ η, 0≤ x ≤ b, t ≥ 0. (4.2)
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Also u(·, t) → 0 exponentially in Y as t → ∞. The results hold with obvious

modifications if τ = 0.

Proof. Take τ > 0 first and look at case (a).

Set µ = sup|x|≤δ(|f ′(x)|/I). We have f(h)−f(0)= f ′(ξ)h, so |f(h)| ≤ µηI
if |h| ≤ η.

Take t ∈ [0,τ], x ∈ [0,b], and ϕ such that ‖ϕ‖b ≤ η, then

∣∣u(·, t)∣∣b ≤ ηe−It+
∫ t

0
µηIe−I(t−s)ds ≤ η(e−It(1−µ)+µ). (4.3)

Thus in particular |u(·, t)|b ≤ η for t ∈ [0,τ], and, by induction, |u(·, t)|b ≤ η
for all t ≥ 0, and so (4.3) holds for all t ≥ 0.

Now take µ < λ< 1 and set e−I(T−τ)(1−µ)= λ−µ, so

∣∣u(·, t)∣∣b ≤ ηλ for t ≥ T −τ. (4.4)

Thus we can prove, by induction, as in [2, Theorem 6.1], that

∣∣u(·, t)∣∣b ≤ ηλn for t ≥nT −τ, (4.5)

and so

∣∣u(·, t)∣∣∞ ≤ ηλn for t ≥− logh(b)+ logb
logα

τ+nT −τ, (4.6)

and we have exponential decay.

Now look at the case (b) and τ > 0.

Set µ = sup0≤x≤δ(f ′(x)/I) and note that, as above, if 0 ≤ h ≤ δ, f(h) =
f ′(ξ)h, and so 0≤ f(h)≤ ηIµ if 0≤ h≤ η.

Take t ∈ [0,τ], x ∈ [0,b], so

u(·, t)≤ ηe−It+
∫ t

0
µηIe−I(t−s)ds ≤ η(e−It(1−µ)+µ), (4.7)

alsou(x,t)≥ 0. Thus, in particular, 0≤u(x,t)≤ η for x ∈ [0,b] and t ∈ [0,τ],
and hence, by induction, 0≤u(x,t)≤ η for x ∈ [0,b] and t ≥ 0.

Now proceed as before using (4.7) instead of (4.3).

We now look at the case τ = 0. Consider un(x,t) as defined by (3.12). It is

easily seen by induction on n that in case (a)

if |ϕ|b ≤ η, then
∣∣un(·, t)∣∣b ≤ η for t ≥ 0, (4.8)

and in case (b)

if 0≤ϕ(x)≤ η, then 0≤un(x,t)≤ η for x ∈ [0,b], t ≥ 0. (4.9)

Thus, letting n→∞ in (4.8) and (4.9) we have the invariance results.
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Now in case (a), from (4.8), we have

∣∣un(·, t)∣∣b ≤ ηe−It+
∫ t

0
µηIe−I(t−s)ds = η(e−It(1−µ)+µ) for t ≥ 0, (4.10)

and so |un(·, t)|b ≤ ηλ for t ≥ T , and, as above, by induction, |un(·, t)|b ≤ ηλN
for t ≥NT . It follows that

∣∣u(·, t)∣∣b ≤ ηλN for t ≥NT. (4.11)

Hence we have exponential decay. Similarly in case (b).

A similar result was proved in [2] for the particular case g(x)= x and f(x)=
µx(1−x).

5. Instability. In this section, we study the instability of solutions. We de-

note by uφ the solution of (3.2) with initial datum φ; note that when τ > 0,

φ ∈ Y and when τ = 0, φ ∈ X. If τ > 0 and φ ∈ Y , we say that uφ is stable

if given ε > 0, there exists a δ > 0 such that if ψ ∈ Y and ‖φ−ψ‖ < δ, then

|uφ(·, t)−uψ(·, t)|∞ < ε for all t. If τ = 0 and φ ∈ X, we say that uφ is stable

if given ε > 0, there exists a δ > 0 such that if ψ ∈ X and |φ−ψ|∞ < δ, then

|uφ(·, t)−uψ(·, t)|∞ < ε for all t. We say that uφ is unstable if it is not stable.

The following hypothesis, which assumes that the population does not extin-

guish for at least one initial condition, is sufficient in certain cases to guarantee

the instability of all solutions for a certain class of initial conditions. The in-

terpretation of this result is that the population behavior is abnormal either

in its inability to stabilize to a normal level or its inability to survive at all.

Hypothesis 1. There exists a solution uφ such that |uφ(·, t)|∞ does not

converge to 0 as t tends to ∞.

We denote by Y0 the space {ϕ ∈ Y ,ϕ(0, t)= 0 for t ∈ [−τ,0]}. We prove that

if this condition is satisfied for a φ in Y0, then for all φ in Y0, uφ is unstable.

As we will see in the proof, this is a consequence of the uniqueness result

proved in Proposition 3.1, that is, that if initial data coincide for x ∈ [0,b],
where 0 < b < 1, then eventually solutions coincide, and that if the functions

φ1 and φ2 belong to Y0, then, if b is small, |φ1(t,x)−φ2(t,x)| is small for

x ∈ [0,b].
We first consider the case τ > 0.

Proposition 5.1. Let τ > 0. Suppose that Hypothesis 1 holds for a solution

with initial datum φ0 ∈ Y0. Then for every φ∈ Y0, uφ is unstable.

Proof. If Hypothesis 1 holds, there exists ε > 0 and σn → ∞ such that

|uφ0(·,σn)|∞ > ε for all n.

Suppose that φ∈ Y0 is stable. So there exists δ > 0 such that if ‖φ−ψ‖< δ,

then |uφ(·, t)−uψ(·, t)|∞ < ε/2 for all t ≥ 0.
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Choose b1 > 0 and φ1 ∈ Y0 such that φ1(x,t) = 0 in [0,b1]× [−τ,0] and

‖φ1−φ‖< δ so that |uφ1(·, t)−uφ(·, t)|∞ < ε/2 for all t ≥ 0.

Also we can choose b2 > 0 and φ2 ∈ Y0 such that φ2(x,t) = φ0(x,t) in

[0,b2]× [τ,0] and ‖φ2 −φ‖ < δ so that |uφ2(·, t)−uφ(·, t)|∞ < ε/2 for all

t ≥ 0.

By Proposition 3.1 there exist t1 and t2 such that uφ1(x,t)= 0 if t > t1 and

uφ2(x,t)=uφ0(x,t) if t > t2.

Hence if t >max{t1, t2}, then |uφ(·, t)|∞ < ε/2 and |uφ0(·, t)−uφ(·, t)|∞ <
ε/2. So if t >max{t1, t2}, |uφ0(·, t)|∞ < ε, a contradiction.

We now prove that Hypothesis 1 is satisfied if g(x)= x.

Theorem 5.2. Let τ > 0. Consider the equation

u(x,t)= e−tφ(e−tx,0)+
∫ t

0
e−(t−s)f

(
u
(
αxe−(t−s),s−τ))ds, t ≥ 0,

u(x,t)=φ(x,t), x ∈ [0,1], t ∈ [−τ,0].
(5.1)

Suppose that f(0) = 0 and f ′(0) > 1. Then there exists φ0 ∈ Y0 such that

uφ0(·, t) does not converge in X to 0 as t→∞, and so all uφ with initial datum

φ∈ Y0 are unstable.

Proof. Let ε > 0 be such that f ′(0)−ε > 1; f(y) = f ′(0)y+o(y), where

o(y)/y → 0 as y → 0, and so there exists δ > 0 such that if 0≤ y ≤ δ, o(y)+
εy ≥ 0. Set µ = f ′(0)− ε, so f(y) = µy +h(y), where h(y) = o(y)+ εy is

such that

h(y)≥ 0 if 0≤y ≤ δ. (5.2)

Choose

φ(x,t)= δxrest, 0≤ x ≤ 1, −τ ≤ t ≤ 0, (5.3)

where r > 0 and s > 0 are such that r +s+1 = µαre−sτ . Note that uµ(x,t) =
δxrest is the solution of the equation

ut(x,t)+
(
xu(x,t)

)
x = µu(αx,t−τ), t > 0,

u(x,t)= δxrest, 0≤ x ≤ 1, −τ ≤ t ≤ 0.
(5.4)

Let u(x,t) be the solution of (5.1) with φ(x,t) = δxrest . Suppose, for con-

tradiction, that u(·, t) → 0 as t → ∞. Thus there exists x1, 0 < x1 ≤ 1, such

that

∣∣u(x,t)∣∣≤ δ for 0≤ x ≤ x1, t ≥−τ. (5.5)
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Set

v(x,t)=u(x,t)−uµ(x,t), (5.6)

we have

u(x,t)= e−tφ(xe−t ,0)+
∫ t

0
e−(t−σ)f

(
u
(
e−(t−σ)αx,σ −τ))dσ

= e−tφ(xe−t ,0)+
∫ t

0
e−(t−σ)µuµ

(
e−(t−σ)αx,σ −τ)dσ

+
∫ t

0
e−(t−σ)µv

(
e−(t−σ)αx,σ −τ)dσ

+
∫ t

0
e−(t−σ)h

(
u
(
e−(t−σ)αx,σ −τ))dσ.

(5.7)

But e−tφ(xe−t ,0)+∫ t0 e−(t−σ)µuµ(e−(t−σ)αx,σ −τ)dσ =uµ(x,t), so

v(x,t)=
∫ t

0
e−(t−σ)µv

(
e−(t−σ)αx,σ −τ)dσ

+
∫ t

0
e−(t−σ)h

(
u
(
e−(t−σ)αx,σ −τ))dσ.

(5.8)

Hence for 0≤ t ≤ τ ,

v(x,t)= 0+
∫ t

0
e−(t−σ)h

(
φ
(
e−(t−σ)αx,σ −τ))dσ ≥ 0 (5.9)

because 0≤φ(x,t)≤ δ, for 0≤ x ≤ 1, −τ ≤ t ≤ 0, and so

u(x,t)≥uµ(x,t)≥ 0 for 0≤ x ≤ 1, 0≤ t ≤ τ. (5.10)

It follows, in particular, that

0≤u(x,t)≤ δ for 0≤ x ≤ x1, 0≤ t ≤ τ, (5.11)

and so

h
(
u(x,t)

)≥ 0 for 0≤ x ≤ x1, 0≤ t ≤ τ, (5.12)

by (5.2). Hence, by (5.8), v(x,y) ≥ 0, for 0 ≤ x ≤ x1 and 0 ≤ t ≤ 2τ , and, by

induction,

v(x,y)≥ 0 for 0≤ x ≤ x1, t ≥ 0. (5.13)

Thus for 0<x ≤ x1,

u(x,t)≥uµ(x,t)= δxrest �→∞ as t �→∞, (5.14)

giving a contradiction.
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A similar argument to that given in the proof of Proposition 5.1 holds for

τ = 0 if there is existence of solutions for all initial data in X0. Proposition 3.5

gives a sufficient condition for existence of solutions for all such initial data.

So for the case τ = 0 we have the instability result below.

Proposition 5.3. Let τ = 0. Suppose that there is an η such that there are

solutions of (3.2) for all ϕ ∈ X0 such that |ϕ|∞ < η. Suppose that Hypothesis 1

holds for a solution with initial data inX0. Then for everyφ∈X0,uφ is unstable.

Finally we have the analogue of Theorem 5.2 for the case τ = 0.

Theorem 5.4. Let τ = 0. Consider the equation

u(x,t)= e−tϕ(e−tx)+
∫ t

0
e−(t−s)f

(
u
(
αxe−(t−s),s

))
ds, t > 0, x ∈ [0,1],

u(x,0)=ϕ(x), x ∈ [0,1].
(5.15)

Assume that there is an η > 0 such that if ϕ ∈ X0 and |ϕ|∞ < η, then there

exists a solution uϕ(x,t) and if ϕ ≥ 0, then uϕ(x,t) ≥ 0 and uϕ(0, t) = 0 for

all t ≥ 0. Suppose that f(0) = 0 and f ′(0) > 1. Then there exists φ0 ∈ X0 such

that uφ0(·, t) does not converge in X to 0 as t →∞, and so all uφ with initial

datum φ∈X0 are unstable.

Proof. We use the same notation as in the proof of Theorem 5.2 but take

δ≤ η. Denote by Uµ(t)φ the semigroup of the solutions of the equation

ut(x,t)+
(
xu(x,t)

)
x = µu(αx,t), t > 0,

u(x,0)=φ(x). (5.16)

In Section 2 (and, in fact, also in [2]) we prove that the semigroup generated in

C[0,1] by the operator −(xu(x))′ with domain

{
u∈ C[0,1], u is differentiable on (0,1], u′ ∈ C(0,1], lim

x→0
xu′(x)= 0

}
(5.17)

is (V(t)φ)(x) = e−tφ(e−tx). Also the semigroup generated in C[0,1] by the

continuous operator (Hφ)(x)= µφ(αx) is

(
W(t)φ

)
(x)=

∞∑
n=1

tn

n!

(
Hnφ

)
(x)=

∞∑
n=1

(µt)n

n!
φ
(
αnx

)
. (5.18)

Note that V(t)W(t)=W(t)V(t). It follows that Uµ(t)=W(t)T(t), that is,

(
Uµ(t)φ

)
(x)=

∞∑
n=0

(µt)n

n!
e−tφ

(
αne−tx

)
, (5.19)
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and so, if φ ≥ 0, then Uµ(t)φ ≥ 0. Now take r > 0, s > 0 such that r +s+1 =
µαr . Choose φ= δxr , so that Uµ(t)φ= δxrest . Let u(x,t) be the solution of

(5.15) with initial datumφ(x)= δxr . Suppose, for contradiction, thatu(·, t)→
0 in X as t→∞. As f(y)= µy+h(y), we have

u(x,t)=Uµ(t)φ(x)+
∫ t

0
Uµ(t−s)h

(
u(αx,σ)

)
dσ. (5.20)

Since u(·, t) → 0 in X as t → ∞ and u(0, t) = 0, for all t ≥ 0, there exists

x1, 0 < x1 ≤ 1, such that 0 ≤ u(x,t) < δ for 0 ≤ x ≤ x1 and t ≥ 0. Thus

h(u(αx,σ))≥ 0, for 0≤ x ≤ x1/α and σ ≥ 0, so that

u(x,t)≥ (Uµ(t)φ)(x)= δxrest (5.21)

for 0≤ x ≤ x1/α and t ≥ 0, yielding a contradiction.

6. Summary and conclusions. The production of blood cells is a complex

process that originates from an experimentally inaccessible source of most

primitive cells. Through successive divisions, cell lines exhibit an increasing

maturity of cell types as individual cells grow and divide. The ultimate behav-

ior of the population is inextricably linked to this behavior of individual cells.

The model we have developed is a simplified description of this maturation-

proliferation process. It consists of a semilinear partial differential equation

of transport type, for which we investigate the existence, uniqueness, and as-

ymptotic behavior of solutions. In this model the normal production of blood

cells depends on the initial state of the system. If there is not a sufficient sup-

ply in the initial state of the most primitive cells, then the population either

extinguishes or destabilizes. It is hypothesized that abnormalities of the blood

production system, such as aplastic anemia, arise as defects in or shocks to

the most primitive precursor cells. The results we have established provide a

qualitative conceptualization of this kind of abnormal population process.

Acknowledgment. The research of the second author was supported in

part by MURST grant.

References

[1] M. Adimy and L. Pujo-Menjouet, A singular transport model describing cellular
division, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 12, 1071–1076.

[2] J. Dyson, R. Villella-Bressan, and G. Webb, A singular transport equation mod-
elling a proliferating maturity structured cell population, Canad. Appl.
Math. Quart. 4 (1996), no. 1, 65–95.

[3] T. R. Harrison (ed.), Principles of Internal Medicine, 9th ed., McGraw-Hill, New
York, 1980.

[4] L. L. Henry, Population Analysis and Models, Edward Arnold, London, 1976.
[5] K. E. Howard, A size structured model of cell dwarfism, Discrete Contin. Dyn. Syst.

Ser. B 1 (2001), no. 4, 471–484.



2026 JANET DYSON ET AL.

[6] N. Keyfitz, Introduction to the Mathematics of Population, Addison-Wesley, Mas-
sachusetts, 1968.

[7] M. C. Mackey and P. Dörmer, Continuous maturation of proliferating erythroid
precursors, Cell and Tissue Kinetics 15 (1982), 381–392.

[8] M. C. Mackey and R. Rudnicki, A new criterion for the global stability of simul-
taneous cell replication and maturation processes, J. Math. Biol. 38 (1999),
no. 3, 195–219.

[9] J. H. Pollard, Mathematical Models for the Growth of Human Populations, Cam-
bridge University Press, Cambridge, 1973.

[10] A. D. Rey and M. C. Mackey, Multistability and boundary layer development in a
transport equation with delayed arguments, Canad. Appl. Math. Quart. 1
(1993), no. 1, 61–81.

Janet Dyson: Mansfield College, Oxford, OX1 3TF, UK
E-mail address: janet.dyson@mansfield.oxford.ac.uk

Rosanna Villella-Bressan: Dipartimento di Matematica Pura ed Applicata, Universitá
di Padova, Padova, Italy

E-mail address: rosannav@math.unipd.it

Glenn F. Webb: Department of Mathematics, Vanderbilt University, Nashville, TN
37235, USA

E-mail address: glenn.f.webb@vanderbilt.edu

mailto:janet.dyson@mansfield.oxford.ac.uk
mailto:rosannav@math.unipd.it
mailto:glenn.f.webb@vanderbilt.edu

