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1. Introduction. Let Pn,r (x) be the generalized weighted means

Pn,r (x)=
( n∑
i=1

qixri

)1/r

, (1.1)

where Pn,0(x) denotes the limit of Pn,r (x) as r → 0+ and where qi > 0, 1≤ i≤n,

are positive real numbers with
∑n
i=1qi = 1 and x= (x1,x2, . . . ,xn). In this note,

we let q =minqi and always assume n≥ 2 and 0≤ x1 <x2 < ···<xn.

We define An(x) = Pn,1(x), Gn(x) = Pn,0(x), and Hn(x) = Pn,−1(x) and we

will write Pn,r for Pn,r (x), An for An(x), and similarly for other means when

there is no risk of confusion.

For mutually distinct numbers r , s, and t and any real number α and β, we

define

∆r ,s,t,α,β =
∣∣∣∣∣P

α
n,r −Pαn,t
Pβn,r −Pβn,s

∣∣∣∣∣, (1.2)

where we interpret P0
n,r −P0

n,s as lnPn,r − lnPn,s . When α= β, we define ∆r ,s,t,α
to be ∆r ,s,t,α,α. As a limit case

∆r ,s,t,0 = lim
α→0

∆r ,s,t,α =
∣∣∣∣
(
ln
(
Pn,r /Pn,t

))
(
ln
(
Pn,r /Pn,s

))∣∣∣∣. (1.3)

Bounds for ∆r ,s,t,α,β have been studied by many mathematicians. For the

case α ≠ β, we refer the reader to [2, 5, 7] for the detailed discussions. When

α = β, we can bound ∆r ,s,t,α in terms of r , s, and t only, due to the following

result of Hsu [6] (see also [1]).

Theorem 1.1. For r > s > t > 0,

1<∆r ,s,t,1 <
s(r −t)
t(r −s) . (1.4)
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It is also interesting to consider the following bounds:

fr,s,t,α(q)≥∆r ,s,t,α ≥ gr,s,t,α(q), (1.5)

where fr,s,t,α(q) is a decreasing function of q and gr,s,t,α(q) is an increasing

function of q.

The cases r = 1, s = 0, t = −1, α = 0, qi = 1/n, 1 ≤ i ≤ n, in (1.5) with

f1,0,−1,0(q) = n and g1,0,−1,0(q) = n/(n− 1), are the famous Sierpiński’s in-

equality [9].

Another cases, r = 1, s = 1/2, t = 0, and α= 1 with f1,1/2,0,1(q) = 1/q and

g1,1/2,0,1(q) = 1/(1−q) were proved by Diananda [3, 4] (see also [1, 8]), origi-

nally stated as

1
q
Σn ≥An−Gn ≥ 1

1−qΣn, (1.6)

where Σn =
∑

1≤i<j≤nqiqj(x
1/2
i −x1/2

j )2.

The main purpose of this note is to generalize Diananda’s result, which is

given by Theorem 3.1.

2. Lemmas

Lemma 2.1. For 0≤ q ≤ 1/2,

r −1
r

−(1−qr−1)≤ 0 (r ≥ 2), (2.1)∣∣∣∣r −1
r

∣∣∣∣≥ ∣∣1−(1−q)r−1
∣∣ (0< r ≤ 2) (2.2)

with equality holding if and only if r = 2 and q = 1/2.

Proof. We prove (2.1) here and the proof for (2.2) is similar. It suffices to

prove (2.1) for q = 1/2, which is equivalent to 2r ≥ 2r . Notice that the two

curves y = 2r and y = 2r only intersect at r = 1 and r = 2 in which cases they

are equal and the conclusion then follows.

Lemma 2.2. For 0< q ≤ 1, the function

f(q)=
∣∣∣∣ q

1−(1−q)r−1

∣∣∣∣ (2.3)

is decreasing for 0< r ≠ 1< 2 and increasing for r > 2.

Proof. We prove the case 1< r ≠ 2 here and the case 0< r < 1 is similar.

We have

f ′(q)= 1−(1−q)r−1−q(r −1)(1−q)r−2(
1−(1−q)r−1

)2 (2.4)

and by the mean value theorem, 1− (1−q)r−1 = q(r −1)ηr−2, where 1−q <
η< 1, which implies f ′(q)≤ 0 for 1< r < 2 and f ′(q)≥ 0 for r > 2.
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Lemma 2.3. For 0< r ≠ 1< 2 and 0< q ≤ 1/2,

∣∣∣∣ 1/2
1−1/r

∣∣∣∣<
∣∣∣∣ q

1−(1−q)r−1

∣∣∣∣. (2.5)

If r > 2, (2.5) is valid with “>” instead of “<”.

Proof. We prove the case 1< r < 2 here and the other cases are similar. By

Lemma 2.2, it suffices to show (2.5) for q = 1/2. In this case, (2.5) is equivalent

to (2.2).

3. The main theorems

Theorem 3.1. For any t ≠ 0,

∆t,t/r ,0,t ≥ 1
1−qr−1

(r ≥ 2), (3.1)

∆t,t/r ,0,t ≤
∣∣∣∣ 1

1−(1−q)r−1

∣∣∣∣ (0< r ≠ 1≤ 2) (3.2)

with equality holding if and only if n = 2, x1 = 0, and q2 = q for (3.1) and

n = 2, x1 = 0, and q1 = q for (3.2), except in the trivial cases r = n = 2 and

q1 = q2 = 1/2.

Proof. Since the proofs of (3.1) and (3.2) are very similar, we only prove

(3.1) here and we just point out that (2.2) is needed for the proof of (3.2). The

case r = 2 was treated in [3], so we will assume that r > 2 from now on. First,

consider the case t = 1 and define

Dn(x)=
(
1−qr−1)(An−Gn)−(An−Pn,1/r ), (3.3)

and then we have

1
qn
∂Dn
∂xn

= (1−qr−1)(1− Gn
xn

)
−
(

1−
(Pn,1/r
xn

)1−1/r
)
. (3.4)

By a change of variables: xi/xn → xi, 1 ≤ i ≤ n, we may assume 0 ≤ x1 <
x2 < ···<xn = 1 in (3.4) and rewrite it as

gn
(
x1, . . . ,xn−1

)
:= (1−qr−1)(1−Gn)−(1−(Pn,1/r )1−1/r

)
. (3.5)

We want to show that gn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point

in which the absolute minimum of gn is reached.

We may assume a1 ≤ a2 ≤ ··· ≤ an−1. If ai = ai+1 for some 1≤ i≤ n−2 or

an−1 = 1, by combing ai with ai+1 and qi with qi+1 or an−1 with 1 and qn−1

with qn, we can reduce the determination of the absolute minimum of gn to
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that of gn−1 with different weights. Thus, without loss of generality, we may

assume a1 < a2 < ··· < an−1 < 1. If a is a boundary point of [0,1]n−1, then

a1 = 0 and (3.5) is reduced to

gn = 1−qr−1−
(
1−(Pn,1/r )1−1/r

)
. (3.6)

It follows that gn ≥ 0 is equivalent to Pn,1/r ≥ qr while the last inequality is

easily verified with equality holding if and only if n = 2, a1 = 0, and q2 = q.

Thus gn ≥ 0 for this case.

Now we may assume a1 > 0 and a is an interior point of [0,1]n−1, then we

obtain

∇gn
(
a1, . . . ,an−1

)= 0 (3.7)

such that a1, . . . ,an−1 solve the equation

−(1−qr−1)Gn
x
+
(

1− 1
r

)(
Pn,1/r

)−1/r
(Pn,1/r

x

)1−1/r
= 0. (3.8)

The above equation has at most one root (regarding Gn and Pn,1/r as con-

stants), so we only need to show that gn ≥ 0 for the case n= 2. Now by letting

0<x1 = x < x2 = 1 in (3.5), we get

1
q1
g′2(x)= h(x)x1/r−1, (3.9)

where

h(x)= r −1
r

(
q1x1/r +q2

)r−2−(1−qr−1)xq1−1/r . (3.10)

If 1/r ≥ q1, then

h′(x)= (r −1)(r −2)
r 2

q1x1/r−1(q1x1/r +q2
)r−3

−(1−qr−1)(q1− 1
r

)
xq1−1/r−1 ≥ 0

(3.11)

which implies

h(x)≤ h(1)= r −1
r

−(1−qr−1)< 0 (3.12)

for r > 2 and q ≤ 1/2 by Lemma 2.1, and thus g2(x)≥ g2(1)= 0.

If q1 > 1/r , we have

lim
x→0+

h(x)= lim
x→0+

(
r −1
r

(
q1x1/r +q2

)r−2−(1−qr−1)xq1−1/r
)
> 0, (3.13)

lim
x→1−

h(x)= lim
x→1−

(
r −1
r

(
q1x1/r +q2

)r−2−(1−qr−1)xq1−1/r
)

= r −1
r

−(1−qr−1)< 0.
(3.14)
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Notice here that any positive root of h(x) also satisfies the equation

P(x)= q1x1/r +q2−
(
Cxq1−1/r )1/(r−2) = 0, (3.15)

where C = r(1−qr−1)/(r −1).
It is easy to see that P ′(x) can have at most one positive root. Thus by Rolle’s

theorem, P(x) henceh(x) can have at most two roots in (0,1). Equations (3.13)

and (3.14) further imply h(x), hence g′2(x) has exactly one root x0 in (0,1).
Since (3.14) shows that g′2(1) < 0, g2(x) takes its maximum value at x0. Thus

g2(x)≥min{g2(0),g2(1)} = 0.

Thus we have shown gn ≥ 0, hence ∂Dn/∂xn ≥ 0 with equality holding if and

only if n= 1 or n= 2, x1 = 0, and q2 = q. By letting xn tend to xn−1, we have

Dn ≥Dn−1 (with weights q1, . . . ,qn−2,qn−1+qn). Since 1−qr−1 is a decreasing

function of q, it follows by induction that Dn > Dn−1 > ··· > D2 = 0 when

x1 = 0 and q2 = q in D2 or else Dn > Dn−1 > ··· > D1 = 0. Since we assume

that n≥ 2 in this note, this completes the proof for t = 1.

Now for an arbitrary t, a change of variables xi→ xti in the above cases leads

to the desired conclusion.

We remark here that the constants in (3.1) and (3.2) are best possible by

considering the cases n= 2, x1 = 0, and q2 = q or q1 = q. Also when n= 2, we

conclude from the proof of Lemma 2.1 and limx1→x2∆t,t/r ,0,t = r/(r −1) that

an upper bound in the form of (3.2) does not hold for ∆1,1/r ,0,1 when r > 2.

Similarly, a lower bound in the form of (3.1) does not hold for 1< r < 2.

For t = 1, rewrite (3.1) as

An−Gn ≥ 1
1−qr−1

(
An−Pn,1/r

)
. (3.16)

When n= 2, we have

lim
x1→x2

(
A2−P2,1/2

)
/(1−q)(

A2−P2,1/r ′
)
/
(
1−qr ′−1

) = (1/2)/(1−q)
(1−1/r ′)/

(
1−qr ′−1

) . (3.17)

By considering q = 0,1/2, we find that the right-hand side of (3.16) is not

comparable for r = 2 and any r ′ > 2.

However, for the comparison of the left-hand side of (3.2), we have the

following theorem.

Theorem 3.2. For any t ≠ 0 and 0< r ≠ 1< 2,

∣∣∣∣ q
1−(1−q)r−1

∣∣∣∣≥∆t,t/r ,t/2,t . (3.18)

If r ≥ 2, (3.18) is valid with “≤” instead of “≥” with equality holding in all the

cases if and only if n= 2, x1 = 0, and q1 = q.
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Proof. Since the proofs are similar, we only prove the case 1< r < 2 here.

Notice by Lemma 2.2 that q/(1−(1−q)r−1) is decreasing with respect to q, so

we can prove by induction as we did in the proof of Theorem 3.1. First consider

the case t = 1 and define

En(x)= q
(
An−Pn,1/r

)−(1−(1−q)r−1)(An−Pn,1/2), (3.19)

so

1
qn
∂En
∂xn

= q
(

1−
(Pn,1/r
xn

)1−1/r
)
−(1−(1−q)r−1)(1−

(Pn,1/2
xn

)1/2
)
. (3.20)

By a change of variables: xi/xn → xi, 1 ≤ i ≤ n, we may assume 0 < x1 <
x2 < ···<xn = 1 in (3.20) and rewrite it as

hn
(
x1, . . . ,xn−1

)
:= q

(
1−(Pn,1/r )1−1/r

)
−(1−(1−q)r−1)(1−P1/2

n,1/2
)
. (3.21)

We want to show that hn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point

in which the absolute minimum of hn is reached. Similar to the proof of

Theorem 3.1, we may assume a1 <a2 < ···<an−1 < 1. If a is a boundary point

of [0,1]n−1, then a1 = 0, and we can regard hn as a function of a2, . . . ,an−1,

then we obtain

∇hn
(
a2, . . . ,an−1

)= 0. (3.22)

Otherwise a1 > 0, a is an interior point of [0,1]n−1 and

∇hn
(
a1, . . . ,an−1

)= 0. (3.23)

In either cases, a2, . . . ,an−1 solve the equation

−q
(

1− 1
r

)(
Pn,1/r

)−1/r
(Pn,1/r

x

)1−1/r
+ 1

2

(
1−(1−q)r−1)x−1/2 = 0. (3.24)

The above equation has at most one root (regarding Pn,1/r as a constant), so

we only need to show hn ≥ 0 for the case n= 3 with 0= x1 < x2 = x < x3 = 1

in (3.21). In this case we regard h3 as a function of x and we get

1
q2
h′3(x)=−q

r −1
r

(
q2x1/r +q3

)r−2x1/r−1+ 1
2

(
1−(1−q)r−1)x−1/2. (3.25)

Let x be a critical point, then h′3(x)= 0. Similar to the proof of Theorem 3.1,

there can be at most two roots in [0,1] for h′3(x)= 0.

Further notice that

lim
x→1−

1
q2
h′3(x)=−q

r −1
r

(
1−q1

)r−2+ 1−(1−q)r−1

2
< 0 (3.26)
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by Lemma 2.3 and

lim
x→0+

1
q2
h′3(x)=+∞. (3.27)

It then follows that h′3(x) has exactly one root x0 in (0,1) and h′3(1) < 0

implies that h3(x) takes its maximum value at x0. Thus

h3(x)≥min
{
h3(0),h3(1)

}≥ 0, (3.28)

where the last inequality follows from Lemma 2.2. Thus Dn ≥ 0 with equality

holding if and only if n = 2, x1 = 0, and q1 = q, and a change of variables

xi→ xti completes the proof.

Notice here for 1 < r < 2, by setting t = 1 and letting q → 0 in (3.18) while

noticing that q/(1−(1−q)r−1) is a decreasing function of q, we get

∆1,1/r ,1/2,1 ≤ 1
r −1

, (3.29)

a special case of Theorem 1.1, which shows that, in this case, Theorem 3.2

refines Theorem 1.1.

We end the note by refining a result of the author [5].

Theorem 3.3. If x1 ≠ xn, n ≥ 2, then for 1 > s ≥ 0 and σn,1 =
∑n
i=1qi(xi−

An)2,

P1−s
n,s −x1−s

1

2x1−s
1

(
An−x1

)σn,1−q
(
An−Pn,s

)2

2
(
An−x1

)

>An−Pn,s >
x1−s
n −P1−s

n,s

2x1−s
n

(
xn−An

)σn,1+q
(
An−Pn,s

)2

2
(
xn−An

) .
(3.30)

Proof. We will prove the right-hand side inequality and the proofs for the

left-hand side inequality are similar. Let

Fn(x)=
(
xn−An

)(
An−Pn,s

)− x1−s
n −P1−s

n,s

2x1−s
n

σn,1−q
(
An−Pn,s

)2

2
. (3.31)

We want to show by induction that Fn ≥ 0. We have

∂Fn
∂xn

=
(

1−qn−qqn
(

1−
(Pn,s
xn

)1−s))(
An−Pn,s

)

− 1−s
2xn

(Pn,s
xn

)1−s(
1−

(
xn
Pn,s

)s
qn

)
σn,1

≥ (1−qn)
(Pn,s
xn

)1−s(
An−Pn,s− 1−s

2xn
σn,1

)
≥ 0,

(3.32)

where the last inequality holds by [5, Theorem 2.1]. Thus by a similar induction

process as the one in the proof of Theorem 3.1, we have Fn ≥ 0. Since not all

the xi’s are equal, we get the desired result.
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