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In an earlier paper, the concept of semigroups of self-maps which are nearly com-
mutative at a function g : X → X was introduced. We now continue the investi-
gation, but with emphasis on the compact case. Fixed-point theorems for such
semigroups are obtained in the setting of semimetric and metric spaces.
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1. Introduction. By a semigroup of maps we mean a family H of self-maps

of a setX which is closed with respect to the composition of maps and includes

the identity map. In [6] we obtained fixed-point theorems for semigroups of

maps by introducing the following concept.

Definition 1.1 [6]. A semigroup H of self-maps of a set X is nearly com-

mutative (n.c.) at g :X →X if and only if f ∈H implies that there exists h∈H
such that fg = gh.

As in [6], we consider this concept in the context of generalized metric

spaces, namely, semimetric spaces. A semimetric on a set X is a function d :

X×X → [0,∞) such that d(x,y)= 0 if and only if x =y and d(x,y)= d(y,x)
for x,y ∈ X. For p ∈ X and ε > 0, we let S(p,ε) = {x ∈ X : d(x,p) < ε}. A

semimetric space is a pair (X;d) in which X is a topological space and d is a

semimetric on X. The topology on X is the family t(d) = {U ⊂ X : p ∈ U ⇒
S(p,ε)⊂U for some ε > 0}. We require that the point p be an interior point of

the set S(p,ε); that is, there exists U ∈ t(d) such that p ∈ U ⊂ S(p,ε). Conse-

quently, a sequence {xn} in X converges in t(d) to p ∈ X, denoted as xn → p
if and only if d(xn,p) → 0. And a function (map) g : X → X is continuous if

and only if fxn→ fx whenever xn→ x. To ensure unique limits, all spaces X
will be assumed to be Hausdorff (T2). We will conclude with two examples of

semimetrics, one of which is not T2. For further detail regarding semimetric

spaces, see [1, 2, 6].

This paper is a continuation of [6] but with focus on the effects of com-

pactness requirements. We obtain fixed-point theorems for semigroups H of

self-maps of X which are n.c. at continuous maps g : X → X. These theorems

generalize known results involving, for example, the semigroups Cg = {f :X →
X | fg = gf}. The main result we will need from [6, Proposition 2.6] is the fact
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that whenever a semigroup H of self-maps of a set X is n.c. at g :X →X, then

H is n.c. at the composite gn for all n∈ Z+. (Z+ denotes the set of positive in-

tegers, ω= Z+∪{0}, and R denotes the real numbers.) Observe also that if H
is a semigroup of self-maps of X and a,b ∈X, then H(a)= {h(a) : h∈H} and

H(a,b)=H(a)∪H(b). Furthermore, if A⊂ X, δ(A)= sup{d(x,y) : x,y ∈A}
and cl(A) denotes the closure of A.

2. Preliminaries. We now state and prove our first lemma. Note that most

results stipulate that the semimetricd in (X;d) is upper semicontinuous (u.s.c.).

Thus, d−1(−∞,a) is open for a ∈ R. Specifically, if an → a, bn → b in (X;d)
and d(an,bn) ↓ η, then η≤ d(a,b).

Lemma 2.1. Let (X;d) be a semimetric space withd u.s.c. and let g,f :X →X.

Suppose there is a nonempty compact subset A of X such that g(A)= f(A)=A
and a semigroup H of self-maps of X such that h(A) ⊂ A for h ∈ H. If there

exist m,n∈ω such that

(
fmx ≠ gny

)
�⇒ d(fmx,gny)< δ(H(x,y)), for x,y ∈A, (2.1)

then there is a unique point a∈A such that a= fa= ga= ha for all h∈H. In

fact, A= {a}.
Proof. Since A is compact, A×A is compact. Therefore, there exists a,b ∈

A such that d(a,b) = δ(A), since d is u.s.c. But f(A) = g(A) = A = fm(A) =
gn(A), so there exists c,d ∈ A such that fmc = a and gnd = b. If a ≠ b, (2.1)

implies

δ(A)= d(a,b)= d(fmc,gnd)< δ(H(c,d)). (2.2)

But c,d∈A so that hc,hd∈A for all h∈H by hypothesis; that is,H(c,d)⊂A.

Thus, (2.2) yields the contradiction δ(A) < δ(H(c,d)) ≤ δ(A). Consequently,

a = b so that A = {a}. Therefore, by hypothesis, f({a}) = g({a}) = h({a}) =
{a} for all h∈H; that is, a= fa= ga= ha for all h∈H. Clearly, a is the only

point of A which is a common fixed point of f ,g, and h∈H.

Remark 2.2. The definition of a semimetric space (X;d) requires that S(x,ε)
be a neighborhood of x; that is, the topological interior of S(x,ε) is a set in

t(d) which contains x. It is an easy matter to show that this fact assures us

that any compact semimetric space is sequentially compact.

Lemma 2.3. Let (X;d) be a semimetric space and let f ,g : X → X. Suppose

that H is a semigroup of self-maps of X which is n.c. at f and at g. Then the

following hold, where A=∩{(gf)n(X) :n∈ Z+}(=∩(gf)n(X)):
(1) H is n.c. at gf ;

(2) h(A)⊂A for all h∈H;
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(3) if f ,g ∈H and gf(A)=A, then f(A)= g(A)=A;

(4) gf(A)=A when (X;d) is compact and gf is continuous.

Proof. Since H is n.c. at g and at f for each h∈H, there exists h1,h2 ∈H
such that

h(gf)= (hg)f = (gh1
)
f = g(h1f

)= g(fh2
)= (gf)h2. (2.3)

Thus (1) holds. But then, since H is n.c. at gn for n ∈ Z+ if H is n.c. at g,

(1) implies that for each n ∈ Z+ and h ∈ H, there exists hn ∈ H such that

h(gf)n = (gf)nhn. So

h(A)⊂∩h(gf)n(X)=∩(gf)nhn(X)⊂∩(gf)n(X)=A. (2.4)

Consequently, (2) is true. Moreover, if f ,g ∈H and gf(A)=A, then g(A)=A
since f ∈H implies that f(A)⊂A. Therefore,

(
A= gf(A)) �⇒ (

A= gf(A)⊂ g(A)⊂A) (2.5)

since g ∈ H. To see that f(A) = A, first note that since g ∈ H and H is n.c.

at f , there exists h ∈ H such that gf(A) = fh(A). But h(A) ⊂ A (by (2)) and

f ∈H, so we can write

(
A= gf(A)) �⇒ (

A= gf(A)= fh(A)⊂ f(A)⊂A). (2.6)

Thus f(A)=A, and (3) holds.

To prove (4), first note that gf(A)⊂A by the definition of A. To show that

A ⊂ gf(A), let a ∈ A. Then a ∈ (gf)n+1(X) ⊂ (gf)n(X) for each n ∈ Z+, so

we can choose xn ∈ (gf)n(X) such that gf(xn) = a. Since (X;d) is compact

(sequentially), there exists a subsequence {xin } of {xn} and p ∈ X such that

xin → p. But in ≥ n by definition of subsequence, so for any k ∈ Z+, xin ∈
(gf)k(X) for all n≥ k. Therefore, for a fixed k, since (gf)k(X) is compact and

thus closed (X is T2), p ∈ (gf)k(X). Hence p ∈ A. But gf is continuous and

therefore, a= gf(xin)→ gf(p). Thus, gf(p)= a.

Remark 2.4. If (X;d) is compact andgf is continuous, thenA=∩(gf)n(X)
≠∅ and is compact by the finite intersection property.

3. Main results

Theorem 3.1. Let f andg be self-maps of a compact semimetric space (X;d)
with d u.s.c. and gf continuous. Let H be a semigroup of self-maps of X con-

taining f and g, and suppose thatH is n.c. at f and at g. If there existm,n∈ω
such that

(
fmx ≠ gny

)
�⇒ d(fmx,gny)< δ(H(x,y)) for x,y ∈X, (3.1)
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then there is a unique point a ∈ X such that a = fa = ga = ha for all h ∈ H.

Moreover, (i) δ((gf)n(X))→ 0 and (ii) (gf)n(x)→ a uniformly on X.

Proof. Let A = ∩{(gf)n(X) : n ∈ Z+}. By Lemma 2.3(4), gf(A) = A and

therefore, A = f(A) = g(A) by Lemma 2.3(3). Since (X;d) is compact and gf
is continuous, A is compact and nonempty. Moreover, Lemma 2.3(2) tells us

that h(A) ⊂ A for all h ∈ H. But then Lemma 2.1 implies that A = {a} and

a is the desired common fixed point. The point a is clearly unique since any

common fixed point b of f and g satisfies (gf)n(b) = b for n ∈ Z+ and is

therefore in A.

To see that (i) holds, note that gf is continuous and therefore (gf)n(X)
is compact for n ∈ Z+. Thus for each n ∈ Z+, there exists xn,yn ∈ (gf)n(X)
such that

αn = d
(
xn,yn

)= δ((gf)n(X)) (3.2)

since the semimetric d is u.s.c. Clearly, 0 ≤ αn+1 ≤ αn and therefore αn ↓ b
for some b ≥ 0. Since X is compact, there exist subsequences {xkn} and {ykn}
of {xn} and {yn} which converge to x, y , respectively, for some x,y ∈X. As

in the proof of Lemma 2.3(4), x,y ∈ A = {a}, so x = y = a. Then the upper

semicontinuity of the semimetric d yields

b = lim
n→∞d

(
xkn,ykn

)≤ d(x,y)= 0. (3.3)

To verify (ii), let ε > 0. By (i), we can choose k∈ Z+ such that δ((gf)n(X)) < ε
for n≥ k. Therefore, if x ∈X, a,(gf)n(x)∈ (gf)n(X), so d(a,(gf)n(x)) < ε
for n≥ k.

In Theorem 3.1, (ii) states that the point a is a uniformly contractive point

of gf , or attracts X (see [7]). The following theorem tells us that f and g need

not be members of H if fg = gf .

Theorem 3.2. Let f and g be commuting maps of a compact semimetric

space (X;d) with d u.s.c. Let H be a semigroup of self-maps of X which is n.c. at

gf . If gf is continuous and (3.1) holds, then there is a unique point a∈X such

that for all h∈X, a= fa= ha. Moreover, Theorem 3.1(i) and (ii) hold.

Proof. As above, let A = ∩{(gf)n(X) : n ∈ Z+}. By Remark 2.4, we know

that A is nonempty and compact. Moreover, since (X;d) is compact and gf
is continuous, the proof of Lemma 2.3(4) tells us that gf(A) = A. And the

argument in the proof of Lemma 2.3(2) is valid under our hypothesis, soh(A)⊂
A for h ∈ H. Finally, since f and g commute, they commute with (gf)n for

n ∈ Z+, so g(A) ⊂ A and f(A) ⊂ A (substitute g(f) for h and hn in (2.4)).

Consequently, A = gf(A) ⊂ g(A) ⊂ A and thus A = g(A). Therefore, since

gf = fg, A= gf(A)= fg(A)= f(A). Thus, by Lemma 2.1, a= fa= ga= ha
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for h∈H. And the proof of (i) and (ii) given in the proof of Theorem 3.1 holds

under the present hypothesis.

Remark 3.3. Theorem 3.2 generalizes [5, Theorem 4.2] by requiring that

the underlying space be a semimetric space (X;d) with u.s.c. semimetric d
instead of being a metric space (X,d), in which case d is uniformly contin-

uous (see [4]). Moreover, it substitutes the more general semigroup H for

Cgf . Note also that [6, Theorem 5.1] is a consequence of Theorem 3.2. In fact,

Theorem 3.2 extends [6, Theorem 5.1] since the underlying space in Theorem

5.1 is a metric space, and Theorem 5.1 does not include results (i) and (ii) of

Theorem 3.2.

We now lift the requirement that the space (X;d) be compact by demanding

thatH(a) be relatively compact (i.e., cl(H(a)) is compact) for some a∈X. And

if there exists x ∈X such that hx = x for all h∈H, we say that the semigroup

H has a fixed point.

Theorem 3.4. Let (X,d) be a semimetric space with d u.s.c. and let H be a

semigroup of continuous self-maps of X which is n.c. at f ,g ∈H. Suppose H(a)
is relatively compact for some a∈ X. If (2.1) holds for x,y ∈ cl(H(a)), then H
has a fixed point in cl(H(a)).

Proof. Now h(H(a))⊂H(a) for h∈H since H is a semigroup. Moreover,

since each h∈H is continuous, h(cl(H(a)))⊂ cl(h(H(a)))⊂ cl(H(a)). Thus,

cl(H(a)) is a nonempty compact h-invariant subset of X for h ∈ H. We can

therefore apply Theorem 3.1 to the compact semimetric space (M ;d)withM =
cl(H(a)) to obtain our conclusion.

Since any closed and bounded subset ofRn is compact, we have the following

result. Recall that a semigroup H is n.c. at gn if it is n.c. at g.

Corollary 3.5. Suppose X ⊂ Rn and H is a semigroup of continuous self-

maps of X n.c. at g ∈ H. If H(a) is bounded for some a ∈ X and there exists

m,n∈ω such that

gm(x)≠ gn(y) �⇒ d(gmx,gny)< δ(H(x,y)) for x,y ∈ cl
(
H(a)

)
, (3.4)

then H has a fixed point.

The following example demonstrates the generality of Corollary 3.5 in that

the semigroup H constructed is n.c. at the function g but H is not n.c. (i.e., n.c.

at each h∈H, see [3, 6]).

Remark 3.6. Suppose that gi :Xi→Xi for i in some indexing set λ and that

Hi is a semigroup of maps hi :Xi→Xi which is n.c. at gi for i∈ λ. Let g = (gi)λ,
where for x = (xi)λ ∈ X =

∏{Xi : i ∈ λ}, g(x) = g((xi)λ) = (gi(xi))λ, and

h = (hi) is defined in a similar manner. If H = {(hi)λ : hi ∈ Hi for i ∈ λ},
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then it is immediate that H is a semigroup of self-maps of X which is n.c. at

g :X →X.

Example 3.7. LetX =X1×X2 ⊂R2 with the usual metricd, whereX1 =X2 =
[0,∞), and let b ∈ (0,1). Define g :X →X, where g = (g1,g2) by g1(x1)= bx1

and g2(x2)= x1/2
2 =√x2. Let H1 and H2 be semigroups defined by

H1 =
{
h1 : h1

(
x1
)= bmxn1 :m∈ω, n∈ Z+},

H2 =
{
h2 : h2

(
x2
)= x(1/k)2 , k∈ Z+}. (3.5)

Then H1 is not n.c. but is n.c. at g1 (see [6, Example 2.2]), and H2 is n.c. at g2

since any member of H2 commutes with g2. Thus, H =H1×H2 is n.c. at g by

Remark 3.6. Moreover,

H
((

1
2
,
1
2

))
=
{(
bm

1
2n
,
(

1
2

)1/k
)

:m∈ω; n,k∈ Z+
}
⊂
[

0,
1
2

]
×
[

1
2
,1
]
,

(3.6)

and is thus bounded. Furthermore, if x1,y1 ∈ [0,1/2], x2,y2 ∈ [1/2,1], and

(x1,x2)≠ (y1,y2), then

d
(
g
((
x1,x2

)
,g
(
y1,y2

)))= d((g1
(
x1
)
,g2

(
x2
))
,
(
g1
(
y1
)
,g2

(
y2
)))

=
√(
b
(
x1−y1

))2+(√x2−
√
y2
)2

<
√(
x1−y1

)2+(x2−y2
)2.

(3.7)

Note that for x1 ≠ y1, |√x2 −√y2| < |x2 −y2| since x2,y2 ∈ [1/2,1]. Now

the identity function id (id(xi) = xi) is a member of Hi (i = 1,2), and if

h2(x2) = √
x2, then h2 ∈ H2. Therefore, (3.4) is satisfied with m = n = 1

and a = (1/2,1/2), and H has a fixed point by Corollary 3.5. In fact, for any

h = (h1,h2) ∈ H, the composites hp1 (x1) → 0 and hp2 (x2) → 1, as p → ∞ for

x1 ∈ [0,1/2] and x2 ∈ [1/2,1]. Thus, (0,1) is a fixed point of H.

In the above example, withM=[0,1/2]×[1/2,1],g(M)⊂M andd(g(p),g(q))
< d(p,q) when p ≠ q on M ; that is, g was a contraction on M . Thus g has

a fixed point by the classic theorem of Edelstein. We now provide an example

in which g is not a contraction but satisfies the hypothesis of Corollary 3.5.

Example 3.8. Let X = [0,∞) and let g(x)= (15/4)x3−(59/4)x2+15x+1

for x ∈ X. If H = Og = {gn : n ∈ ω}, then g satisfies condition (3.4) with

m=n= 1, and has a= 2 as a fixed point. For x <y ,

d(gx,gy) <


d
(
id(x),max{gx,gy}), x < 2,

d
(
gx,g2y

)
, x ≥ 2.

(3.8)
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Clearly, g is not a contraction on X. However, on the small interval J =
[1.87,2], g is a contraction and gnx ↑ 2 on J. So suppose we let g be the

continuous piecewise linear function g : X → X given by g(x) = 3x + 1 on

[0,1], g(x) = −2x+6 on [1,2], and g(x) = 2x−2 for x > 2. Then g satisfies

(3.8), has 2 as a fixed point, and g so defined is a contraction on no subinterval

of X.

4. Retrospect. The arguments given in the proofs of Lemma 2.1 and

Theorem 3.1 appear to be “standard” in that they are similar in form to those

given in the metric case (see, e.g., [5, Theorem 4.2]). However, these proofs

demonstrate that much can be done in spaces not having all of the attributes

of metric spaces such as the triangle inequality or the continuity of the dis-

tance function. Moreover, by using semigroups H of maps n.c. at a function

g instead of Cg , the results are appreciably generalized. See [6] for further

examples of semigroups n.c. at a function g.

We now give two examples of nonmetric semimetrics. The first produces a

topology which is not T2 and therefore does not yield a semimetric space.

Example 4.1. Let X = R, and define d(x,y) = 1/|x − y| if x ≠ y and

d(x,x)= 0, for x,y ∈R. Clearly, d is a semimetric on X. To see that (X;d) is

a semimetric space, note that for any a∈X and ε > 0, S(a,ε)= {a}∪(−∞,a−
1/ε)∪ (a+1/ε,∞). It is then an easy matter to show that S(a,ε) ∈ t(d); that

is, S(a,ε) is “open.” Moreover, it is clear that S(a,ε)∩ S(b,δ) ≠ ∅ for any

a,b ∈ X and ε,δ > 0 and therefore the definition of t(d) assures us that any

two nonempty members of t(d) have a nonempty intersection.

The next semimetric induces a topology which does not produce a semimet-

ric space since p is not always an interior point of S(p,ε).

Example 4.2. Let X = [0,1] and define

d(x,y)= |x−y|, if x,y ∈X, x,y > 0,

d(y,0)= d(0,y)=

y, if y ∈X, y is rational,

2, if y ∈X, y is irrational.

(4.1)

Let ε ∈ (0,2). Then 0 is not an interior point of S(0,ε). Suppose there exists

U ∈ t(d) such that

0∈U ⊂ S(0,ε). (4.2)

Since U ∈ t(d), we can choose a positive rational r such that

S(0,r )⊂U ⊂ S(0,ε). (4.3)
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Now r is rational, so that r/2∈ S(0,r ) and therefore r/2∈ U . Since U ∈ t(d)
by definition of t(d), there exists α∈ (0,r/2) such that

S
(
r
2
,α
)
⊂U ⊂ S(0,ε). (4.4)

Thus, the definition of the function d implies

I =
(
r
2
−α, r

2
+α

)
⊂U ⊂ S(0,ε). (4.5)

But since 0< ε < 2, S(0,ε) contains no irrationals whereas the interval I does.

This contradiction assures us that 0 is not an interior point of S(0,ε).
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