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COMPOSITION OPERATORS FROM THE BLOCH SPACE
INTO THE SPACES QT
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Suppose that ϕ(z) is an analytic self-map of the unit disk ∆. We consider the
boundedness of the composition operator Cϕ from Bloch space � into the spaces
QT (QT,0) defined by a nonnegative, nondecreasing function T(r) on 0≤ r <∞.
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1. Introduction. Let ∆ = {z : |z| < 1} be the unit disk of complex plane C
and letH(∆) be the space of all analytic functions in∆. For a∈∆, Green’s func-

tion with logarithmic singularity at a∈∆ is denoted by g(z,a)= log |(1− āz)/
(a−z)|. For 0 < p <∞, the space Qp consists of all functions f analytic in ∆
for which

sup
a∈∆

∫∫
∆

∣∣f ′(z)∣∣2(g(z,a))p dA(z) <∞, (1.1)

where dA(z) is the Euclidean area element on ∆.

Qp-spaces have been investigated by many authors (cf. [1, 2, 3, 9]). We know

that Q1 = BMOA, the space of all analytic functions of bounded mean oscilla-

tion (cf. [4]). Further, the spaces Qp are the same for each p ∈ (1,∞), and each

space equals to the Bloch space �, which is a Banach space with the norm

‖f‖� := ∣∣f(0)∣∣+‖f‖b := ∣∣f(0)∣∣+sup
z∈∆

(
1−|z|2)∣∣f ′(z)∣∣. (1.2)

Recently, we introduced a new space QT (cf. [5, 10]) by a nondecreasing

function T(r) on 0≤ r <∞ as follows.

Definition 1.1. Let T(r) �≡ 0 be a nonnegative, nondecreasing function on

0≤ r <∞. A function f ∈H(∆) is said to belong to QT if

‖f‖2
QT := sup

a∈∆

∫∫
∆

∣∣f ′(z)∣∣2T
(
g(z,a)

)
dA(z) <∞. (1.3)

If

lim
|a|→1

∫∫
∆

∣∣f ′(z)∣∣2T
(
g(z,a)

)
dA(z)= 0, (1.4)

then f is said to belong to QT,0.
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For 0< p <∞, if we take T(r)= rp , the space QT coincides with the space

Qp . We note thatQT ⊂� for all nondecreasing functions T . We have previously

shown that QT =Qp under certain growth conditions on T(r) (cf. [10]).

In the present paper, first we give some basic properties ofQT spaces, some

of which are also new for the special caseQT =Qp . For example,QT is a Banach

space with the norm ‖f‖T defined by

‖f‖T := ∣∣f(0)∣∣+‖f‖QT . (1.5)

Then we investigate the boundedness of the composition operators from the

Bloch space � into QT or QT,0. These results extend some previously known

results (cf. [6, 8]).

2. Basic properties of QT spaces. We give the following propositions.

Proposition 2.1. The space QT is a subspace of the Bloch space �.

The proof of Proposition 2.1 can be found in [10].

Proposition 2.2. The space QT is a Banach space with the norm defined

in (1.5).

Proof. For f ∈QT and a∈∆, define

I2(f ,a) :=
∫∫
∆

∣∣f ′(z)∣∣2T
(
g(z,a)

)
dA(z). (2.1)

Let f1,f2 ∈QT . It follows from Schwarz’s inequality that

∫∫
∆

∣∣f ′1(z)f ′2(z)∣∣T(g(z,a))dA(z)≤ I(f1,a
)
I
(
f2,a

)
, (2.2)

and then

I2
(
f1+f2,a

)≤ I2(f1,a
)+2I

(
f1,a

)
I
(
f2,a

)+I2(f2,a
)

= (I(f1,a
)+I(f2,a

))2.
(2.3)

Thus, I(f1+f2,a)≤ I(f1,a)+I(f2,a) for all a∈∆. Hence

∥∥f1+f2

∥∥
QT ≤

∥∥f1

∥∥
QT +

∥∥f2

∥∥
QT . (2.4)

Therefore,

∥∥f1+f2

∥∥2
T =

(∣∣f1(0)+f2(0)
∣∣+∥∥f1+f2

∥∥
QT

)2

≤
(∣∣f1(0)

∣∣+∣∣f2(0)
∣∣+∥∥f1

∥∥
QT +

∥∥f2

∥∥
QT

)2

=
(∥∥f1

∥∥
T +

∥∥f2

∥∥
T

)2
,

(2.5)
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that is, ‖f1+f2‖T ≤ ‖f1‖T+‖f2‖T . On the other hand, it is obvious that ‖f‖T ≥
0 for each f ∈ QT and that ‖f‖T = 0 if and only if f ≡ 0. It is obvious that

‖cf‖T = |c|‖f‖ for any constant c. Thus, QT is a normed space.

Let f ∈ QT and let φa(w) = (a−w)/(1− āw), a ∈ ∆. Then by changing a

variable w =φa(z), we obtain

‖f‖2
QT ≥

∫∫
∆

∣∣f ′(z)∣∣2T
(
g(z,a)

)
dA(z)

=
∫∫
∆

∣∣(f ◦φa)′(w)∣∣2T
(

log
1
|w|

)
dA(w)

≥ T
(

log
1
r

)∫∫
|w|<r

∣∣(f ◦φa)′(w)∣∣2dA(w)

≥πr 2T
(

log
1
r

)(
1−|a|2)2∣∣f ′(a)∣∣2.

(2.6)

For r0, 0< r0 < 1, such that T(log(1/r0)) �= 0, we have

‖f‖b ≤ ‖f‖QT
r0
(
πT

(
log1/r0

))1/2 . (2.7)

Since f ∈QT ⊂�, we have for z ∈∆,

∣∣f(z)∣∣≤ ∣∣f(0)∣∣+ ‖f‖b
2

log
1+|z|
1−|z|

≤ ∣∣f(0)∣∣+ ‖f‖QT
2r0

(
πT

(
log

(
1/r0

)))1/2 log
1+|z|
1−|z|

≤ ‖f‖T

1+ 1

2r0
(
πT

(
log1/r0

))1/2


 log

1+|z|
1−|z| .

(2.8)

Suppose {fn} is a Cauchy sequence inQT . Then there is a constantM > 0 such

that

∥∥fn∥∥T ≤M, n= 1,2, . . . . (2.9)

By the estimate (2.8) for a fixed r0 ∈ (0,1), we obtain that

∣∣fn(z)∣∣≤M

1+ 1

2r0
(
πT

(
log1/r0

))1/2


 log

1+|z|
1−|z| (2.10)

holds for all integral numbers n = 1,2, . . . . Hence, there exist a subsequence

{fnj (z)} of {fn(z)} and an analytic function f defined on the unit disk ∆ such

that both {fnj (z)} and {f ′nj (z)} converge uniformly to f and f ′, respectively.

The conditions here are such that both the sequence of functions and the

sequence of derivatives converge since we know that {fn(z)} is bounded on
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compact subsets of ∆ by inequality (2.10). By Fatou’s lemma, we get that
∫∫
∆

∣∣f ′(z)∣∣2T
(
g(z,a)

)
dA(z)

=
∫∫
∆

lim
j→∞

∣∣f ′nj (z)
∣∣2T

(
g(z,a)

)
dA(z)

≤ liminf
j→∞

∫∫
∆

∣∣f ′nj (z)
∣∣2T

(
g(z,a)

)
dA(z)

≤ liminf
j→∞

∥∥fnj
∥∥2
QT ≤M2

(2.11)

holds for all a ∈ ∆, so that f ∈QT . By a similar reasoning, we can prove that

‖fn−f‖T → 0 as n→∞. The proof of Proposition 2.2 is complete.

3. Boundedness of composition operators. Let ϕ(z) be an analytic self-

map of the unit disk ∆. Let the composition operator Cϕ induced by ϕ from

H(∆) to itself be defined by Cϕ(f)= f ◦ϕ for f ∈H(∆). The boundednesses of

composition operators from � to itself and from � to Qp have been studied

in [6, 8], respectively. In this paper, we consider the same problems for the

general spaces QT .

Theorem 3.1. Let T(r) �≡ 0 be a nonnegative, nondecreasing function on

0≤ r <∞ and letϕ be an analytic self-map of ∆. Then Cϕ : �→QT is bounded

if and only if

sup
a∈∆

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z) <∞. (3.1)

Proof. Let (3.1) hold and let K2
1(K1 > 0) be the supremum in (3.1). If f ∈�,

then for all a∈∆, we have
∫∫
∆

∣∣(Cϕf )′(z)∣∣2T
(
g(z,a)

)
dA(z)

=
∫∫
∆

∣∣f ′(ϕ(z))∣∣2∣∣ϕ′(z)
∣∣2T

(
g(z,a)

)
dA(z)

≤ ‖f‖2
b

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z)

≤K2
1‖f‖2

b.

(3.2)

Consequently, ‖Cϕf‖QT ≤K1‖f‖b. Since f(z)∈�, we obtain

∥∥Cϕf∥∥2
T =

(∣∣f ◦ϕ(0)∣∣+∥∥Cϕf∥∥QT
)2

≤
(∣∣f(0)∣∣+ ‖f‖b

2
log

1+∣∣ϕ(0)∣∣
1−∣∣ϕ(0)∣∣ +K1‖f‖b

)2

≤K2(∣∣f(0)∣∣+‖f‖b)2 =K2‖f‖2
�,

(3.3)
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where K = max{1,K1 + (1/2) log(1+ |ϕ(0)|)/(1− |ϕ(0)|)}. Thus, ‖Cϕf‖T ≤
K‖f‖�, which shows that Cϕ : �→QT is bounded.

Conversely, assume that Cϕ : � → QT is bounded, there exists a constant

K > 0 such that for each f ∈�, we have

∥∥Cϕf∥∥T ≤K‖f‖�. (3.4)

On the other hand, by a result in [7], there exist f1,f2 ∈� such that

1
1−|z|2 ≤

∣∣f ′1(z)∣∣+∣∣f ′2(z)∣∣ (3.5)

holds for all z ∈∆, so that

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 ≤ 2
∣∣(f1 ◦ϕ

)′(z)∣∣2+2
∣∣(f2 ◦ϕ

)′(z)∣∣2. (3.6)

Thus, the inequalities

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z)

≤ 2
∫∫
∆

(∣∣(f1 ◦ϕ
)′(z)∣∣2+∣∣(f2 ◦ϕ

)′(z)∣∣2
)
T
(
g(z,a)

)
dA(z)

≤ 2K2
(∥∥f1

∥∥2
�+

∥∥f2

∥∥2
�

)
(3.7)

hold for all z,a∈∆, which establishes (3.1). The proof of Theorem 3.1 is com-

pleted.

Remark 3.2. Note that if Cϕ : � → �, then (3.1) holds for any increasing

function T satisfying QT = �. Indeed, we know that QT = � (see [5]) if and

only if

∫ 1

0
T
(

log
(

1
r

))(
1−r 2)−2r dr <∞. (3.8)

The Schwarz-Pick lemma guarantees that ((1−|z|2)/(1−|ϕ(z)|2))|ϕ′(z)| ≤ 1,

so that (3.8) leads easily to (3.1). It means that Cϕ : �→� is always bounded

(cf. [6]).

Remark 3.3. If one considers the composition operator Cϕ from the Bloch

space to the Dirichlet space

�=
{
f ∈H(∆) :

∫∫
∆

∣∣f ′(z)∣∣2dA(z) <∞
}
, (3.9)

then Cϕ : �→� is bounded if and only if

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2dA(z) <∞. (3.10)



1978 P. WU AND H. WULAN

For the spaces QT,0, we have the following results.

Theorem 3.4. Let T(r) be a nonnegative, nondecreasing function on 0 ≤
r <∞ and let ϕ be an analytic self-map of ∆. Then Cϕ : �→QT,0 is bounded if

and only if

lim
|a|→1

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z)= 0. (3.11)

Proof. Suppose Cϕ : �→QT,0 is bounded. Using a way similar to the proof

of Theorem 3.1, we choose functions f1,f2 ∈� such that

1
1−|z|2 ≤

∣∣f ′1(z)∣∣+∣∣f ′2(z)∣∣ (3.12)

for all z ∈∆. Then Cϕf1 and Cϕf2 belong to QT,0. Therefore,

lim
|a|→1

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z)

≤ 2 lim
|a|→1

∫∫
∆

(∣∣(f1 ◦ϕ
)′(z)∣∣2+∣∣(f2 ◦ϕ

)′(z)∣∣2
)
T
(
g(z,a)

)
dA(z)= 0,

(3.13)

which shows that (3.11) holds.

Conversely, by Theorem 3.1, we know that Cϕ : � → QT is bounded since

condition (3.11) implies that

sup
a∈∆

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z) <∞. (3.14)

We need only to prove that Cϕf ∈QT,0 for each f ∈�, and this follows from

the inequality

∫∫
∆

∣∣(Cϕf )′(z)∣∣2T
(
g(z,a)

)
dA(z)

=
∫∫
∆

∣∣f ′(ϕ(z))∣∣2∣∣ϕ′(z)
∣∣2T

(
g(z,a)

)
dA(z)

≤ ‖f‖2
b

∫∫
∆

∣∣ϕ′(z)
∣∣2

(
1−∣∣ϕ(z)∣∣2

)2 T
(
g(z,a)

)
dA(z).

(3.15)

The proof of Theorem 3.4 is completed.
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