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MIRROR SYMMETRY FOR CONCAVEX VECTOR BUNDLES
ON PROJECTIVE SPACES

ARTUR ELEZI

Received 20 December 2001

Let X ⊂ Y be smooth, projective manifolds. Assume that ι : X ↩Ps is the zero lo-
cus of a generic section of V+ =⊕i∈I�(ki), where all the ki’s are positive. Assume
furthermore that �X/Y = ι∗(V−), where V− =⊕j∈J�(−lj) and all the lj ’s are nega-
tive. We show that under appropriate restrictions, the generalized Gromov-Witten
invariants of X inherited from Y can be calculated via a modified Gromov-Witten
theory on Ps . This leads to local mirror symmetry on the A-side.
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1. Introduction. Let V+ = ⊕i∈I�(ki) and V− = ⊕j∈J�(−lj) be vector bundles

on Ps with ki and lj positive integers. Suppose that X ι
↩ Ps is the zero locus

of a generic section of V+ and Y is a projective manifold such that X
j
↩ Y with

normal bundle �X/Y = ι∗(V−). The relations between Gromov-Witten theories

ofX and Y are studied here by means of a suitably defined equivariant Gromov-

Witten theory in Ps . We apply mirror symmetry to the latter to evaluate the

gravitational descendants of Y supported in X.

Section 2 is a collection of definitions and techniques that will be used

throughout this paper. In Section 3, using an idea from Kontsevich, we in-

troduce a modified equivariant Gromov-Witten theory in Ps corresponding to

V = V+ ⊕V−. The corresponding �-module structure [4, 11, 22] is computed

in Section 4. It is generated by a single function J̃V . In general, the equivari-

ant quantum product does not have a nonequivariant limit. It is shown in

Lemma 4.3 that the generator J̃V does have a limit JV which takes values in

H∗Pm[[q,t]]. It is this limit that plays a crucial role in this work.

Let Y be a smooth, projective manifold. The generator JY of the pure �-

module structure of Y encodes one-pointed gravitational descendants of Y .

It takes values in the completion of H∗Y along the semigroup (Mori cone) of

the rational curves of Y . The pullback map j∗ :H∗Y →H∗X extends to a map

between the respective completions. In Theorem 4.7, we describe one aspect

of the relation between pure Gromov-Witten theory of X
j
↩ Y and the modified

Gromov-Witten theory of Ps . Under natural restrictions, the pullback j∗(JY )
pushes forward to JV . It follows that although defined on Ps , JV encodes the
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gravitational descendants of Y supported in X, hence the contribution of X to

the Gromov-Witten invariants of Y .

The only way that X remembers the ambient variety Y in this context is

by the normal bundle, Y can therefore be substituted by a local manifold.

This suggests that there should be a local version of mirror symmetry (see

the remark at the end of Section 4). This was first realized by Katz et al. [15].

The principle of local mirror symmetry in general has yet to be understood.

Some interesting calculations that contribute toward this goal can be found in

[6].

In Section 5, we give a proof of the mirror theorem which allows us to com-

pute JV . A hypergeometric series IV that corresponds to the total space of V is

defined. The mirror Theorem 5.1 states that IV = JV up to a change of variables.

Hence, the gravitational descendants of Y supported on X can be computed

in Ps .
Two examples of local Calabi-Yau threefolds are considered in Section 6. For

X = P1 and V = �(−1)⊕�(−1), we obtain the Aspinwall-Morrison formula for

multiple covers. If X = P2 and V = �(−3), the quantum product of Y pulls back

to the modified quantum product in P2. The mirror theorem in this case yields

the virtual number of plane curves on a Calabi-Yau threefold.

The rich history of mirror symmetry started in 1990 with a surprising con-

jecture by Candelas et al. [5] that predicts the number nd of degree d rational

curves on a quintic threefold. In [11], Givental presented a clever argument

which, as shown later by Bini et al. in [4] and Pandharipande in [22], yields a

proof of the mirror conjecture for Fano and Calabi-Yau (convex) complete in-

tersections in projective spaces. Meanwhile, in a very well-written paper [20],

Lian et al. used a different approach to obtain a complete proof of mirror the-

orem for concavex complete intersections on projective spaces. An alternative

proof of the convex mirror theorem has been given by Bertram [3]. In this pa-

per, we use Givental’s approach to study the local nature of mirror symmetry

and to present a proof of the concavex mirror theorem.

2. Stable maps and localization

2.1. Genus zero stable maps. LetM0,n(X,β) be the Deligne-Mumford mod-

uli stack of pointed stable maps to X. For an excellent reference on the con-

struction and its properties, we refer the reader to [10]. We recall some of the

features onM0,n(X,β) and establish some notation. For each marking point xi,
let ei :M0,n(X,β)→ X be the evaluation map at xi, and �i the cotangent line

bundle at xi. The fiber of this line bundle over a moduli point (C,x1, . . . ,xn,f )
is the cotangent space of the curve C at xi. Let πk :M0,n(X,β)→M0,n−1(X,β)
be the morphism that forgets the kth marked point. The obstruction the-

ory of the moduli stack M0,n(X,β) is described locally by the following exact

sequence:
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0 �→ Ext0


ΩC


 n∑
i=1

xi


,�C


 �→H0(C,f∗TX) �→�M

�→ Ext1


ΩC


 n∑
i=1

xi


,�C


 �→H1(C,f∗TX) �→ Υ �→ 0.

(2.1)

(Here and thereafter, we are naming sheaves after their fibres.) To understand

the geometry behind this exact sequence, we note that �M = Ext1(f∗ΩX →
ΩC,�C) and Υ = Ext2(f∗ΩX → ΩC,�C) are, respectively, the tangent space

and the obstruction space at the moduli point (C,x1, . . . ,xn,f ). The spaces

Ext0(ΩC(
∑n
i=1xi),�C) and Ext1(ΩC(

∑n
i=1xi),�C) describe, respectively, the in-

finitesimal automorphisms and infinitesimal deformations of the marked

source curve. It follows that the expected dimension of M0,n(X,β) is

−KX ·β+dimX+n−3.

A smooth projective manifoldX is called convex ifH1(P1,f∗TX)= 0 for any

morphism f : P1 → X. For a convex X, the obstruction bundle Υ vanishes and

the moduli stack is unobstructed and of the expected dimension. Examples of

convex varieties are homogeneous spaces G/P .

In general, this moduli stack may behave badly and have components of

larger dimensions. In this case, a Chow homology class of the expected dimen-

sion has been constructed [2, 18]. It is called the virtual fundamental class

and denoted by [M0,n(X,β)]virt. Although its construction is quite involved,

we mainly use two relatively easy properties. The virtual fundamental class

is preserved when pulled back by the forgetful map πn. A proof of this fact

can be found in [7, Section 7.1.5]. If the obstruction sheaf Υ is free, the virtual

fundamental class refines the top Chern class of Υ . This fact is proven in [2,

Proposition 5.6].

2.2. Equivariant cohomology and localization theorem. The notion of

equivariant cohomology and the localization theorem is valid for any com-

pact connected Lie group. For a detailed exposition on this subject, we suggest

[7, Chapter 9]. Below, we state without proof the results that are used in this

work.

The complex torus T = (C∗)s+1 is classified by the principal T -bundle

ET = (C∞+1−{0})s+1
�→ BT = (CP∞)s+1. (2.2)

Let λi = c1(π∗i (�(1))) and λ := (λ0, . . . ,λs). We use �(λi) for the line bundle

π∗i (�(1)). Clearly, H∗(BT) = C[λ]. If T acts on a variety X, we let XT := X×T
ET .

Definition 2.1. The equivariant cohomology of X is

H∗T (X) :=H∗(XT ). (2.3)
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If X = x is a point, then XT = BT and H∗T (x)= C[λ]. For an arbitrary X, the

equivariant cohomologyH∗T (X) is aC[λ]-module via the equivariant morphism

X → x.

Let � be a vector bundle over X. If the action of T on X can be lifted to an

action on �, which is linear on the fibers, � is an equivariant vector bundle and

�T is a vector bundle over XT . The equivariant Chern classes of E are cTk (�) :=
ck(�T ). We use E(�) (ET (�)) to denote the nonequivariant (equivariant) top

Chern class of �.

Let XT =∪j∈JXj be the decomposition of the fixed point locus into its con-

nected components. The components Xj are smooth for all j and Xj is smooth

for all j and the normal bundle Nj of Xj in X is equivariant. Let ij : Xj → X
be the inclusion. The following form of the localization theorem will be used

extensively here.

Theorem 2.2. Let α∈H∗T (X)⊗C(λ). Then,

∫
XT
α=

∑
j∈J

∫
(Xj)T

i∗j (α)
ET
(
Nj
) . (2.4)

A basis for the characters of the torus is given by εi(t0, . . . , ts)= ti. There is

an isomorphism between the character group of the torus andH2(BT) sending

εi to λi. We say that the weight of the character εi is λi.
For an equivariant vector bundle � overX, it may happen that the restriction

of � on a fixed-point component Xj is trivial (e.g., if Xj is an isolated point).

In that case, � decomposes as a direct sum ⊕mi=1µi of characters of the torus.

If the weight of µi is ρi, then the restriction of cTk (�) on Xj is the symmetric

polynomial σk(ρ1, . . . ,ρm).
Our interest here is for X = Ps . For any action of T on Ps , we denote

� :=H∗T Ps , �=: �⊗C(λ). (2.5)

Consider the diagonal action of T =(C∗)s+1 onPs with weights (−λ0, . . . ,−λs),
that is,

(
t0, t1, . . . , ts

)·(z0,z1, . . . ,zs
)= (t−1

0 z0, . . . , t−1
s zs

)
. (2.6)

Then, PsT = P(⊕i�(−λi)). There is an obvious lifting of the action of T on

the tautological line bundle �(−1). It follows that �(k) is equivariant for all

k. Let p = cT1 (�Ps (1)) be the equivariant hyperplane class. We obtain � =
C[λ,p]/

∏
i(p−λi) and �= C(λ)[p]/∏i(p−λi). The locus of the fixed points

consists of points pj for j = 0,1, . . . ,s, where pj is the point whose jth co-

ordinate is 1 and all the other ones are 0. On the level of the cohomology,

the map i∗j sends p to λj . A basis for � as a C(λ)-vector space is given by
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φj =
∏
k≠j(p−λk) for j = 0,1, . . . ,s. Also, i∗j (φj)=

∏
k≠j(λj−λk)= EulerT (Nj).

The localization Theorem 2.2 says that for any polynomial F(p) ∈ C(λ)[p]/∏s
i=1(p−λi)

∫
PsT

F(p)=
∑
j

F
(
λj
)

∏
k≠j

(
λj−λk

) . (2.7)

Translating the target of a stable map, we get an action of T on M0,n(Ps ,d). In

[17], Kontsevich identified the fixed-point components of this action in terms

of decorated graphs. If f : (C,x1, . . . ,xn)→ Ps is a fixed stable map, then f(C)
is a fixed curve in Ps . The marked points, collapsed components, and nodes are

mapped to the fixed-points pi of the T -action on Ps . A noncontracted compo-

nent must be mapped to a fixed line pipj on Ps . The only branch points are the

two fixed pointspi andpj and the restriction of the map f to this component is

determined by its degree. The graph Γ corresponding to the fixed-point compo-

nent containing such a map is constructed as follows. The vertices correspond

to the connected components of f−1{p0,p1, . . . ,ps}. The edges correspond to

the noncontracted components of the map. The graph is decorated as follows.

Edges are marked by the degree of the map on the corresponding component,

and vertices are marked by the fixed point of Ps where the corresponding com-

ponent is mapped to. To each vertex, we associate a leg for each marked point

that belongs to the corresponding component. For a vertex v , let n(v) be the

number of legs or edges incident to that vertex. Also, for an edge e, let de be

the degree of the stable map on the corresponding component. Let

	Γ :=
∏
v
M0,n(v). (2.8)

There is a finite group of automorphisms GΓ acting onMΓ [7, 12]. The order of

the automorphism group GΓ is

aΓ =
∏
e
de ·

∣∣Aut(Γ)
∣∣. (2.9)

The fixed-point component corresponding to the decorated graph Γ is

MΓ =	Γ/G. (2.10)

Let iΓ : MΓ ↩ M0,n(Ps ,d) be the inclusion of the fixed-point component cor-

responding to Γ and NΓ its normal bundle. This bundle is T -equivariant. Let

α be an equivariant cohomology class in H∗T (M0,n(Ps ,d)) and αΓ := i∗Γ (α).
Theorem 2.2 says that

∫
M0,n(Ps ,d)T

α=
∑
Γ

∫
(MΓ )T

αΓ
aΓEulerT

(
NΓ
) . (2.11)
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Explicit formulas for EulerT (NΓ ) in terms of Chern classes of cotangent line

bundles in H∗T (MΓ ) have been found by Kontsevich in [17].

2.3. Linear and nonlinear sigma models for a projective space. Two com-

pactifications of the space of degree dmaps P1 → Ps are very important in this

paper. Md :=M0,0(Ps×P1,(d,1)) is called the degree-d nonlinear sigma model

of Ps , andNd := P(H0(P1,�P1(d))s+1) is called the degree-d linear sigma model

of the projective space Ps . An element inH0(P1,�P1(d))s+1 is an (s+1)-tuple of

degree d homogeneous polynomials in two variables w0 and w1. As a vector

space, H0(P1,�P1(d))s+1 is generated by the vectors vir = (0, . . . ,0,wr0wd−r1 ,
0, . . . ,0) for i = 0,1, . . . ,s and r = 0,1, . . . ,d. The only nonzero component of

vir is the ith one.

The action of T ′ := T×C∗ in Ps×P1 with weights (−λ0, . . . ,−λs) in the Ps fac-

tor and (−�,0) in the P1 factor gives rise to an action of T ′ inMd by translation

of maps. T ′ also acts in Nd as follows. For t̄ = (t0, . . . , ts)∈ T and t ∈ C∗,

(t̄,t)·[P0
(
w0,w1

)
, . . . ,Ps

(
w0,w1

)]= [t0P0
(
tw0,w1

)
, . . . , tsPs

(
tw0,w1

)]
.

(2.12)

There is a T ′-equivariant morphism ψ :Md �Nd. Here is a set-theoretical de-

scription of this map (for a proof that it is a morphism, see [11] or [19]). Let qi
for i= 1,2 be the projection maps on Ps×P1. For a stable map (C,f )∈Md, let

C0 be the unique component of C such that q2◦f : C0 → P1 is an isomorphism.

Let C1, . . . ,Cn be the irreducible components of C −C0 and di the degree of

the restriction of q1 ◦f on Ci. Choose coordinates on C0 � P1 such that q2 ◦
f(y0,y1)=(y1,y0). Let C0∩Ci=(ai,bi) and q1 ◦f =[f0 : f1 : ··· : fs] : C0 �Ps .
Then,

ψ(C,f) :=
n∏
i=1

(
biw0−aiw1

)di[f0 : f1 : ··· : fs
]
. (2.13)

Let pir be the points of Nd corresponding to the vectors vir . The fixed-point

loci of the T ′-action on Nd consists of the points pir . We write κ for the equi-

variant hyperplane class of Nd. The restriction of κ at the fixed point pir is

λi+r�. The restriction of the equivariant Euler class of the tangent space TNd
at pir is [19]

Eir =
∏

(j,t)≠(i,r)

(
λi−λj+r�−t�

)
. (2.14)

Fixed-point components of Md are obtained as follows. Let Γ idj be the graph

of a T -fixed point component in M0,1(Ps ,dj), where the marking is mapped

to pi and d1+d2 = d. Let (d1,d2) be a partition of d. We identify MΓ id1
×MΓ id2

with a T ′-fixed point component Mid1d2
in Md in the following manner. Let

(C1,x1,f1)∈MΓ id1
and (C2,x2,f2)∈MΓ id2

. Let C be the nodal curve obtained by
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gluing C1 with P1 at x1 and 0∈ P1 and C2 with P1 at x2 and∞∈ P1. Let f : C →
Ps ×P1 map C1 to the slice Ps ×∞ by means of f1 and C2 to Ps ×0 by means

of f2. Finally, f maps P1 to pi ×P1 by permuting coordinates and ψ maps

Mid1d2
to pid2 ∈Nd, hence the equivariant restriction of ψ∗(κ) in Mid1d2

is λi+
d2�. The normal bundle NΓ id1d2

of this component in the above identification

can be found by splitting it in five pieces: smoothing the nodes x1 and x2

and deforming the restriction of the map to C1, C2, P1. Using Kontsevich’s

calculations, Givental obtained [11]

1

ET
(
NΓ id1d2

) = 1∏
k≠i

(
λi−λk

) 1

ET
(
NΓ id1

) 1

ET
(
NΓ id2

) e∗1
(
φi
)

−�(−�−c1
) e∗1

(
φi
)

�
(
�−c2

) ,
(2.15)

where cj , j = 1,2 is the first Chern class of the cotangent line bundle on MΓ idj
.

3. A Gromov-Witten theory induced by a vector bundle

3.1. The obstruction class of a concavex vector bundle. The notion of

concavex vector bundle is due to Lian et al. [19] and is central to this work.

Definition 3.1. (1) A line bundle � onX is called convex ifH1(C,f∗(�))=
0 for any genus zero stable map (C,x1, . . . ,xn,f ).

(2) A line bundle � on X is called concave if H0(C,f∗(�))= 0 for any non-

constant genus zero stable map (C,x1, . . . ,xn,f ).
(3) A direct sum of convex and concave line bundles onX is called a concavex

vector bundle.

A concavex vector bundle V in a projective space Ps has the form

V = V+⊕V− = (⊕i∈I �
(
ki
))⊕(⊕j∈J �

(−lj)), (3.1)

where ki and lj are positive numbers. Denote E+ := E(V+) and E− := E(V−).
Let d> 0. Consider the following diagram:

M0,n+1
(
Ps ,d

)

πn+1

en+1
Ps

M0,n
(
Ps ,d

)
.

(3.2)

Since V is concavex, the sheaf

Vd := V+d ⊕V−d =πn+1∗e∗n+1

(
V+
)⊕R1πn+1∗e∗n+1

(
V−
)

(3.3)

is locally free.
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Definition 3.2. The obstruction class corresponding to V is defined to be

Ed := E(Vd)= E(V+d )E(V−d ) := E+dE−d . (3.4)

For a T -action on Ps that lifts to a linear action on the fibers of V = V+⊕V−,

let E+ := ET (V+) and E− := ET (V−). Assume that E− is invertible.

Definition 3.3. The modified equivariant integral ωV : � → C(λ) corre-

sponding to V is defined as follows:

ωV(α) :=
∫
PmT

α∪ E
+

E−
. (3.5)

Consider the trivial action of T = (⊕i∈IC∗)⊕ (⊕j∈JC∗) on Ps . In this case,

PsT = Ps × (⊕i∈IP∞)× (⊕j∈JP∞) and M0,n(Ps ,d)T = M0,n(Ps ,d)× (⊕i∈IP∞)×
(⊕j∈JP∞). It follows that � = H∗(Ps ,C[λ]) and � = H∗(Ps ,C(λ)). Let p de-

note the equivariant hyperplane class. The T -action lifts to a linear action on

the fibers of V with weights ((−λi)i∈I ,(−λj)j∈J). Let qi and qj denote the pro-

jection maps on M0,n(Ps ,d)T . Both V+d and V−d are T -equivariant bundles and

(
V+d
)
T = V+d ⊗

(⊕i∈I q∗i �P∞
(−λi)),(

V−d
)
T = V−d ⊗

(⊕j∈J q∗j �P∞
(−λj)). (3.6)

The equivariant obstruction class is

Ed := ET
(
Vd
)= ET (V+d )ET (V−d )= E+d E−d . (3.7)

The modified equivariant integral for the trivial action of T on Ps gives rise to

a modified perfect pairing in �

〈a,b〉V :=ωV(a∪b). (3.8)

Let T0 = 1, T1 = p,. . . ,T s = ps be a basis of � as a C(λ)-vector space. The

intersection matrix (grt) := (〈Tr ,Tt〉V ) has an inverse (grt). Let T i =∑sj=0gijTj
be the dual basis with respect to this pairing. Clearly,

T i = Tm−i ·
(
E−

E+

)
. (3.9)

This implies that, in H∗(Ps×Ps)⊗C(λ), we have

s∑
i=1

Ti⊗T i =∆·
(

1⊗ E
−

E+

)
, (3.10)

where ∆=∑si=0Ti⊗Ts−i is the class of the diagonal in Ps×Ps .
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Recall that the morphism πk : M0,n(Ps ,d) → M0,n−1(Ps ,d) forgets the kth

marked point.

Lemma 3.4. The forgetful morphisms satisfy πk∗(Ed) = Ed and πk∗(Ed) =
Ed.

Proof. For simplicity, we consider the case V = �(k)⊕�(−l) and k=n. The

general case is similar. LetMk =M0,k(Ps ,d) andMn,n =Mn×Mn−1Mn. Consider

the following equivariant commutative diagram:

Mn+1πn+1µ
en+1πn ,

Mβn,nαPs ,

MnπnMnπnen ,

Mn−1.

(3.11)

We compute

πn+1∗e∗n+1�(k)=πn+1∗π∗n en∗�(k)= β∗µ∗µ∗α∗en∗�(k). (3.12)

By the projection formula,

µ∗µ∗α∗en∗�(k)=α∗en∗�(k)⊗µ∗
(
�Mn+1

)
. (3.13)

Since the map µ is birational and Mn+1 is normal µ∗(�Mn+1)= �Mn,n , hence

µ∗µ∗α∗en∗�(k)=α∗en∗�(k). (3.14)

Substituting into (3.12) and applying base extension properties (πn is flat)

yields

πn+1∗e∗n+1�(k)= β∗α∗en∗�(k)=πn∗
(
πn∗en∗�(k)

)
. (3.15)

For the case of a negative line bundle, we have

R1πn+1∗e∗n+1�(−l)= R1πn+1∗πn∗en∗�(−l)= R1πn+1∗µ∗α∗en∗�(−l).
(3.16)

We now use the spectral sequence

Rpβ∗
(
Rqµ∗


)
�⇒ Rp+qπn+1∗
, (3.17)

where 
 is a sheaf of �	n+1 -modules. The map µ is birational. If we think ofMn
as the universal map of Mn−1, then the map µ has nontrivial fibers only over

pairs of stable maps in Mn that represent the same special point (i.e., node or

marked point) of a stable map in Mn−1. These nontrivial fibers are isomorphic

to P1. Since 
= e∗n+1�(−l), we obtain Rqµ∗
= 0 for q > 0. It follows that this

spectral sequence degenerates, giving

R1πn+1∗e∗n+1�(−l)= R1β∗µ∗µ∗α∗en∗�(−l). (3.18)
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Now, we proceed as in (3.14) to conclude

R1πn+1∗e∗n+1�(−l)=πn∗
(
R1πn∗en∗�(−l)). (3.19)

The lemma is proven.

Remark 3.5. The previous lemma justifies the omission of n from the no-

tation of the obstruction class.

3.2. Modified equivariant correlators and quantum cohomology. Let γi ∈
� for i = 1, . . . ,n and d > 0. Introduce the following modified equivariant

Gromow-Witten invariants:

Ĩd
(
γ1, . . . ,γn

)
:=
∫
M0,n(Pm,d)T

e∗1
(
γ1
)∪···∪e∗n(γn)∪Ed ∈ C(λ). (3.20)

Now, M0,n(Ps ,0)=M0,n×Ps and all the evaluation maps equal the projection

q2 to the second factor. The integrals in this case are defined as follows:

Ĩ0
(
γ1, . . . ,γn

)
:=
∫
M0,n(Ps ,0)

e∗1
(
γ1
)∪···∪e∗n(γn)∪q∗2 (E(V))∈ C(λ). (3.21)

The modified equivariant gravitational descendants are defined similarly to

Gromov-Witten invariants

Ĩd
(
τk1γ1, . . . ,τknγn

)

:=
∫
M0,n(Ps ,d)T

ck1
1

(
�1
)∪e∗1 (γ1

)∪···∪ckn1

(
�n
)∪e∗n(γn)∪Ed. (3.22)

Lemma 3.4 is essential in proving that the modified correlators satisfy the

same properties, such as fundamental class property, divisor property, point

mapping axiom, and so on, that the usual Gromov-Witten invariants do. The

proofs are similar to the ones in pure Gromov-Witten theory. As an illustration,

we prove one of these properties.

Fundamental class property. Let γn = 1 and d≠ 0. The forgetful mor-

phism πn : M0,n(Ps ,d) → M0,n−1(Ps ,d) is equivariant. Using Lemma 3.4, we

obtain

e∗1
(
γ1
)∪···∪e∗n−1

(
γn−1

)∪e∗n(1)∪Ed
=π∗(e∗1 (γ1

)∪···∪e∗n−1

(
γn−1

)∪Ed). (3.23)

Therefore,

Ĩd
(
γ1, . . . ,γn−1,1

)=
∫
M0,n(Ps ,d)

π∗
(
e∗1
(
γ1
)∪···∪e∗n−1

(
γn−1

)∪Ed)

=
∫
πn∗(M0,n(Ps ,d))

e∗1
(
γ1
)∪···∪e∗n−1

(
γn−1

)∪Ed = 0.
(3.24)
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The last equality is because the fibers of πn are positive dimensional. If d= 0,

by the point mapping property we know that the integral is zero unless n= 3.

In that case, Ĩ0(γ1,γ2,1)= 〈γ1,γ2〉.
We will now prove a technical lemma that will be very useful later. Let A∪B

be a partition of the set of markings and d = d1+d2. Let D = D(A,B,d1,d2)
be the closure in M0,n(Ps ,d) of stable maps of the following type. The source

curve is a union C = C1∪C2 of two lines meeting at a node x. The marked

points corresponding to A are on C1, and those corresponding to B are on C2.

The restriction of the map f on Ci has degree di for i = 1,2. D is a boundary

divisor in M0,n(Ps ,d). Let M1 :=M0,|A|+1(Ps ,d1) and M2 :=M0,|B|+1(Ps ,d2). Let

ex and ẽx be the evaluation maps at the additional marking in M1 and M2

and µ := (ex, ẽx). The boundary divisor D is obtained from the following fibre

diagram:

D

ν

ι M1×M2

µ

Ps
δ

Ps×Ps

(3.25)

where ν is the “evaluation map at the node x” and δ is the diagonal map.

Lemma 3.6. For any classes γ1, . . . ,γn in �,

∫
D

n∏
i=1

e∗i
(
γi
)
Ed =

s∑
a=0

(∫
M1

∏
i∈A
e∗i
(
γi
)
e∗x
(
Ta
)
Ed1

)
×
(∫

M2

∏
j∈B
e∗j
(
γj
)
ẽ∗x
(
Ta
)
Ed2

)
.

(3.26)

Proof. This lemma is the analogue of [10, Lemma 16]. The proof needs a

minor modification. Let α : D → M0,n(Ps ,d). Consider the normalization se-

quence at x

0 �→ �C �→ �C′ ⊕�C′′ �→ �x �→ 0. (3.27)

Twisting it by f∗(V+) and f∗(V−) and taking the cohomology sequence yield

the following identities on D:

α∗
(
E+d
)
ν∗
(
E+
)= ι∗(E+d1

×E+d2

)
, (3.28)

α∗
(
E−d
)= ι∗(E−d1

×E−d2

)
ν∗
(
E−
)
. (3.29)

Combining (3.28) and (3.29), we obtain the restriction of Ed in the divisor D

α∗
(
Ed
)= ι∗(Ed1×Ed2

)
ν∗
(
E−

E+

)
. (3.30)
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Using formula (3.10), we obtain

ι∗ν∗
(
E−

E+

)
= µ∗

(
1⊗ E

−

E+

)
µ∗(∆). (3.31)

Therefore,

∫
D

n∏
i=1

e∗i
(
γi
)∪Ed

=
∫
M1×M2

n∏
i=1

e∗i
(
γi
)∪Ed1∪Ed2∪µ∗

(
1⊗ E

−

E+

)
∪µ∗(∆)

=
∫
M1×M2

n∏
i=1

e∗i
(
γi
)∪Ed1∪Ed2∪µ∗

(∑
a
Ta⊗Ta

)

=
m∑
a=0


∫

M1

n1∏
i=1

e∗i
(
γi
)∪e∗x(Ta)∪Ed1


×


∫

M2

n2∏
j=1

e∗j
(
γj
)∪ ẽ∗x(Ta)∪Ed2


.

(3.32)

The lemma is proven.

The same proof can be used to show that the previous splitting lemma is

true for gravitational descendants as well.

Corollary 3.7. The following modified topological recursion relations hold:

Ĩd


τk1+1γ1,τk2γ2,τk3γ3,

n∏
i=4

τsiωi




=
∑
Ĩd1

(
τk1γ1,

∏
i∈I1
τsiωi,Ta

)
Ĩd2

(
Ta,τk2γ2,τk3γ3,

∏
i∈I2
τsiωi

)
,

(3.33)

where the sum is over all splittings d1+d2 = d and partitions I1∪I2 = {4, . . . ,n}
and over all indices a.

Proof. Let A and B be two disjoint subsets of {1,2, . . . ,n}. We denote by

D(A,B) the sum of boundary divisorsD(E,F,d1,d2) such that E,F is a partition

of {1,2, . . . ,n} and A⊂ E, B ⊂ F , and d1+d2 = d. The notation D(A,B) reflects

neither the number n of marked points nor the degree d of the maps, but they

will be clear from the context. Consider the morphism π :M0,n(Ps ,d)→M0,3

that forgets the map and all but the first 3 markings. Since M0,3 is a point,

the cotangent line bundle at the first marking is trivial. But π∗(�1) = �1 −
D({1},{2,3}); therefore, �1 =D({1},{2,3}) inM0,n(Ps ,d). Multiply both sides

of the previous equation by
∏3
j=1 c1(�j)kj∪e∗j (γj)∪

∏n
i=4 c1(�i)si∪e∗i (ωi)∪Ed

and integrate. The corollary follows from the splitting lemma for gravitational

descendants.
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In the process of finding solutions to the WDVV equations, Kontsevich sug-

gested the following modified equivariant Gromov-Witten potential:

Φ̃
(
t0, t1, . . . , tm

)
:=

∑
n≥3

∑
d≥0

1
n!
Ĩd
(
γ⊗n

)
, (3.34)

where γ = t0+t1p+···+tsps and ti ∈C(λ). Let Φ̃ijk = ∂3Φ̃/∂ti∂tj∂tk.

Definition 3.8. The modified, equivariant quantum product on � is de-

fined to be the linear extension of

Ti∗V Tj :=
m∑
k=0

Φ̃ijkTk. (3.35)

Theorem 3.9. The algebraQH∗V P
s
T := (�,∗V ) is a commutative, associative

algebra with unit T0.

Proof. A simple calculation shows that

Φ̃ijk =
∑
n≥0

∑
d≥0

1
n!
Ĩd
(
Ti,Tj,Tk,γ⊗n

)
. (3.36)

The commutativity of the modified, equivariant quantum product follows from

the symmetry of the new integrals. T0 is the unit due to the fundamental class

property for the modified Gromov-Witten invariants. To prove the associativ-

ity, we proceed as in [9, Theorem 4]. Let Φ̃ijk = ∂3Φ̃/∂ti∂tj∂tk. We compute

(
Ti∗V Tj

)∗V Tk =∑∑
Φ̃ijegef Φ̃fklgldTd,

Ti∗V
(
Tj∗V Tk

)=∑∑
Φ̃jkegef Φ̃filgldTd.

(3.37)

Since the matrix (gld) is nonsingular, (Ti ∗V Tj)∗V Tk = Ti ∗V (Tj ∗V Tk) is

equivalent to

∑
e,f

Φ̃ijegef Φ̃fkl =
∑
e,f

Φ̃jkegef Φ̃fil. (3.38)

Equation (3.38) is the WDVV equation for the modified potential Φ̃. To prove

this equation, let q, r , s, t be four different integers in {1,2, . . . ,n}. There exists

an equivariant morphism

π :M0,n
(
Ps ,d

)
�→M0,4 = P1 (3.39)
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that forgets the map and all the marked points but q, r , s, t. Obviously, the

divisors D({q,r},{s,t}) and D({q,s},{r ,t}) are linearly equivalent in M0,4,

hence, via the pullback π∗, they are linearly equivalent in M0,n(Ps ,d). Now,

integrate the class

n−4∏
i=1

(
e∗i (γ)

)∪e∗n−3

(
Ti
)∪e∗n−2

(
Tj
)∪e∗n−1

(
Tk
)∪e∗n(Tl)∪Ed (3.40)

over D({q,r},{s,t}), and use Lemma 3.6 to obtain WDVV equation; hence, the

associativity

If we restrict Φ̃ijk to the divisor classes γ = tp and use the divisor property

for the modified Gromov-Witten invariants, we obtain the small product

Ti∗V Tj := Ti∪Tj+
∑
d>0

qd
m∑
k=0

Ĩd
(
Ti,Tj,Tk

)
Tk. (3.41)

Here, q = et . We extend this product to �⊗C C[[q]] to obtain the small equi-

variant quantum cohomology ring SQH∗V PsT . We use ∗V to denote both the

small and the big quantum product. The difference is clear from the context.

Remark 3.10. (i) Equation (3.30) and Lemma 3.4 are the basis for building

a modified equivariant Gromow-Witten theory similar to pure Gromov-Witten

theory.

(ii) We can see from (3.9) that the only potential problem with the existence

of the nonequivariant limit of (3.41) is the presence of E+ in the denominator

of Tk. Hence, if V = V− is a pure negative line bundle, the nonequivariant limit

of this product exists. An example of this situation is treated in the last section.

4. A �-module structure induced by V

4.1. Equivariant quantum differential equations. Recall from Section 2.3

the generator � of H2(BC∗). Consider the system of first-order differential

equations on the modified, big quantum cohomology ring QH∗V (P
s
T )

�
∂
∂ti

= Ti∗V , i= 1, . . . ,m. (4.1)

Theorem 4.1. The space of solutions of these equations has the following

basis:

sa = Ta+
s∑
j=0

∞∑
n=0

∞∑
d=0

∞∑
k=0

�−(k+1)

n!
Ĩd
(
τkTa,Tj,γ⊗n

)
Tj

= Ta+
m∑
j=0

∞∑
d=0

∞∑
n=0

1
n!
Ĩd
(
Ta
�−c ,Tj,γ

⊗n
)
Tj,

(4.2)



MIRROR SYMMETRY FOR CONCAVEX VECTOR BUNDLES . . . 173

where c is a formal symbol that stands for c1
T (�1) and Ta/(�−c) should be

expanded in powers of c/�.

Proof. On the one hand,

�
∂sa
∂ti

=
m∑
j=0

∞∑
n=0

∞∑
d=0

∞∑
k=0

�−k

n!
Ĩd
(
τkTa,Tj,Ti,γ⊗n

)
Tj. (4.3)

On the other hand,

Ti∗sa = Ti∗Ta+
m∑
j=0

∞∑
n=0

∞∑
d=0

∞∑
k=0

�−(k+1)

n1!
Ĩd
(
τkTa,Tj,γ⊗n

)(
Ti∗Tj

)

=
∑
n,d,e

1
n!
Ĩd
(
Ti,Ta,Te,γ⊗n

)
Te+

m∑
j=0

∞∑
n=0

∞∑
k=0

∑
d1

�−(k+1)

n!
Ĩd1

(
τkTa,Tj,γ⊗n

)

×
∑

m,d2,e

1
m!
Ĩd2

(
Ti,T j,Te,γ⊗m

)
Te.

(4.4)

The theorem follows from the topological recursion relations (3.33).

Restrictions s̃a of the sections sa to γ ∈H0(Pm)⊕H2(Pm) are solutions of

�
∂
∂ti

= Ti∗V : i= 0,1. (4.5)

Repeated use of the divisor axiom yields

s̃a = e(t0+pt1)/�∪Ta+
∞∑
d=1

m∑
j=0

qdĨd

(
e(t0+pt1)/�∪Ta

�−c ,Tj

)
Tj, (4.6)

where q := et1 .

Definition 4.2. The module of differential operators that annihilate

〈s̃a,1〉V for all a is called the modified equivariant �-module of Ps induced

by V .

This module is generated by the following �[[t0, t1,q]]-valued function

J̃V =
s∑
a=0

〈
s̃a,1

〉
VT

a. (4.7)

Recall that e1 :M0,2(Ps ,d)→ Ps is the evaluation map at the first marked point

and c is the Chern class of the cotangent line bundle at the first marked point.
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Substituting (4.6) into (4.7) and using the projection formula, we obtain

J̃V = exp
(
t0+pt1
�

)

·
(

1+
∑
d>0

qdPD−1
(
e1∗

((
Ed
�−c ∩

[
M0,2

(
Ps ,d

)]))∪(E−
E+

)))
.

(4.8)

In the above expression, PD : H∗(M0,2(Ps ,d)) → Hs+d+sd−1−∗(M0,2(Ps ,d)) is

the Poincaré duality isomorphism.

It is convenient for us to work with the moduli space of one pointed stable

maps. To that end we note that

e1∗
(
Ed
�−c ∩

[
M0,2

(
Ps ,d

)])= e1∗
(

Ed
�(�−c) ∩

[
M0,1

(
Ps ,d

)])
. (4.9)

This identity follows easily from the fact that if π2 :M0,2(Ps ,d)→M0,1(Ps ,d)
forgets the second marked point and D is the image of the universal section

of π induced by the marked point, then c =π2
∗(c)+D and Ed =π2

∗(Ed).
The final expression for J̃V is

J̃V = exp
(
t0+pt1
�

)

·
(

1+
∑
d>0

qdPD−1
(
e1∗

(
Ed

�(�−c) ∩
[
M0,1

(
Ps ,d

)]))∪(E−
E+

))
.

(4.10)

From this presentation, we see that the presence of the equivariant class E+ in

the denominator of J̃V is a potential problem for the existence of the nonequiv-

ariant limit.

Lemma 4.3. The generator J̃V ∈ �[[q]]; therefore, it has a nonequivariant

limit.

Proof. Let V ′d be the subbundle of V+d whose fiber consists of those sec-

tions of H0(C,f∗(V+)) that vanish at the marked point. Let E′d := cTtop(V ′d).
There is an exact sequence of equivariant bundles on M0,1(Ps ,d)

0 �→ V ′d �→ V+d �→ e1
∗(V+) �→ 0. (4.11)

Taking the top Chern classes, we obtain

E+d = E′d ·e∗1
(
E+
)
. (4.12)
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We compute

PD−1e1∗
(

Ed
�(�−c) ∩

[
M0,1

(
Ps ,d

)])

= PD−1
(
e1∗

(E′de∗1 (E+)E−d
�(�−c) ∩[M0,1

(
Ps ,d

)]))

= PD−1
(
E+∩e1∗

( E′dE
−
d

�(�−c) ∩
[
M0,1

(
Ps ,d

)]))

= E+∪PD−1
(
e1∗

( E′dE
−
d

�(�−c) ∩
[
M0,1

(
Ps ,d

)]))
.

(4.13)

Therefore,

J̃V = exp
(
t0+pt1
�

)
·
(

1+
∑
d>0

qdPD−1e1∗
( E′dE

−
d

�(�−c) ∩
[
M0,1

(
Ps ,d

)])∪E−
)
.

(4.14)

It is now visible from this presentation that J̃V ∈�[[q]] and

JV := lim
λ→0
J̃V

= exp
(
t0+Ht1
�

)(
1+

∑
d>0

qdPD−1e1∗
(
E′dE

−
d

�(�−c) ∩
[
M0,1

(
Ps ,d

)])∪E−
)
.

(4.15)

The lemma is proven.

4.2. A local property of the J-function. Let Y be a smooth projective variety

and j : Ps ↩ Y an embedding. Suppose that �Ps/Y = V− = �(−l) for some l > 0.

Let C be a curve in Ps . The map j gives rise to an embedding

M0,n
(
Ps ,[C]

)
↩M0,n

(
Y ,j∗

(
[C]

))
. (4.16)

Lemma 4.4. Let C be a degree-d rational curve in Ps . Then, M0,n(Ps ,d) =
M0,n(Y ,j∗([C])).

Proof. Let (C′,x1, . . . ,xn,f )∈M0,n(Y ,j∗([C])) and f(C′)= C1∪C2∪···∪
Cp be the irreducible decomposition. Then, d[line] = [C1]+···[Cp]. Let I1 =
{i : Ci ⊂ Ps} and I2 = {1,2, . . . ,n}−I1. Assume that I2 is nonempty. If

d[line]−
∑
i∈I1

[
Ci
]

(4.17)

has nonpositive degree in Ps , we intersect with an ample divisor in Y to see

that

d[line]−
∑
i∈I1

[
Ci
]= ∑

i∈I2

[
Ci
]

(4.18)
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is impossible. Otherwise, we intersect with [Ps] to get the same contradiction.

Hence, I2 is empty and all the curves Ci lie in Ps . It follows that f factors

through Ps , and, therefore, (C′,x1, . . . ,xn,f )∈M0,n(Ps ,d). On the other hand,

M0,n(Ps ,d) is a component of M0,n(Y ,j∗([C])) (cf. [7, Section 7.4.4]). These

two arguments imply the lemma.

Denote M0,n(Y ,d) :=M0,n(Y ,j∗([C])), where C is any rational curve of de-

gree d in Ps . The following lemma is a special case of a conjecture by Cox et

al. in [8] which was proved in [16].

Lemma 4.5. The following identity holds [M0,n(Y ,d)]virt = Ed∩[M0,n(Ps ,d)].

At this point we introduce a new object. For any smooth projective variety

Y and any ring �, we define the formal completion of � along the semigroup

of the Mori cone of Y to be

�
[[
qβ
]]

:=
{∑
β
aβqβ, aβ ∈�, β—effective

}
, (4.19)

where β∈H2(Y ,Z) is effective if it is a positive linear combination of algebraic

curves. This new ring behaves like a power series since, for each β, the set of

α such that α and β−α are both effective is finite. For example, in the case of

Ps , we obtain the power series �[[q]].
Choose generatorsD1, . . . ,Dr ofH2(Y ,Q) such that j∗(D1)=H and j∗(Di)=

0 for i ≥ 2. Elements of H0(Y ,Q)⊕H2(Y ,Q) are of the form t0+ tD := t0+
t1D1 + ··· + trDr . It is shown in [11] that the generator of the quantum �-

module for the pure Gromov-Witten theory of Y is

JY = exp
(
t0+tD
�

) ∑
β∈H2(Y ,Q)

qβPD−1

(
e1∗

([
M0,1(Y ,β)

]virt

�(�−c)

))
. (4.20)

The moduli spaces M0,1(Y ,β) are empty unless β is effective. Hence, we con-

sider JY as an element of the ring H∗Y[[t0, t1, . . . , tr ]][[qβ]].
We extend the map j∗ :H∗Y →H∗Ps to a homomorphism

j∗ :H∗Y
[[
t0, t1, . . . , tr

]][[
qβ
]]
�→H∗Ps[[t0, t1]][[q]] (4.21)

by defining j∗(ti) = 0 for i > 1 and j∗(qβ) = qβ for β ∈ j∗(H2(Ps ,Z)) and

j∗(qβ) = 0 for β ∈ H2(Y ,Z)− j∗(H2(Ps ,Z)). The following results show that

J-function is local.

Theorem 4.6. The generator j is local in the sense that j∗(JY )= JV .
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Proof. Notice that

j∗JY = exp
(
t0+t1H
�

) ∞∑
d1=0

qd1
1 j

∗PD−1

(
e1∗

([
M0,1

(
Y ,d1

)]virt

�(�−c)

))
. (4.22)

Consider the following fiber diagram:

M0,1
(
Ps ,d1

)

e1

=
M0,1

(
Y ,d1

)

e1

Ps
j

Y .

(4.23)

By excess intersection theory [9] and the previous lemma,

j∗
(
e1∗

([
M0,1

(
Y ,d1

)]virt

�(�−c)

))
= E−∩e1∗

(
Ed1

�(�−c) ∩
[
M0,1

(
Ps ,d1

)])
. (4.24)

The theorem follows easily.

Theorem 4.7. Let V = V+ ⊕V− = �(k)⊕�(−l) on Ps . Let ι : X ↩ Ps be the

zero locus of a generic section of V+. Assume that X is smooth and dimX > 2.

Let Y be a smooth projective variety such that j : X ↩ Y with � = �X/Y =
ι∗(V−). Assume that if C ⊂ Y is a curve with [C]∈MX, then all the irreducible

components Ci of C satisfy Ci ⊂ X. Let j∗ be the map constructed as in (4.21).

Let JY be the generator of the pure �-module of Y [13]. Then,

ι!
(
j∗
(
JY
))= E(V+)JV , (4.25)

where ι! is the Gysin map on cohomology.

Proof. Since dimX > 2, it follows that H2X is generated by ι∗(H). Let β1

be the Poincaré dual to ι∗(H), and let D1,D2, . . . ,Dr be a set of generators of

H2(Y ,Q). We may assume that j∗(D1) = ι∗(H) and j∗(Di) = 0 for i > 1. Let

tD := t1D1+···+trDr . Now,

JY = exp
(
t0+tD
�

) ∑
β∈H2(Y ,Q)

qβPD−1e1∗

([
M0,1(Y ,β)

]virt

�(�−c)

)
. (4.26)
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Consider the following diagram:

M0,1
(
Y ,d1β1

)

e1

M0,1
(
X,d1β1

)j1

e1

ι1
M0,1

(
Ps ,d1

)

e1

Y X
j ι

Ps .

(4.27)

The square on the left is a fibre diagram. We repeatedly use the projection

formula

ι∗
(
j∗
(
JY
))

=ι!

exp

(
t0+t1ι∗(H)

�

) ∞∑
d1=0

qd1
1 PD

−1j∗e1∗

([
M0,1

(
Y ,d1j∗

(
β1
))]virt

�(�−c)

)

=ι!

exp

(
t0+t1ι∗(H)

�

) ∞∑
d1=0

qd1
1 ι

∗(E−)∪PD−1e1∗j1
∗
([
M0,1

(
Y ,d1j∗

(
β1
))]virt

�(�−c)

)

=exp
(
t0+t1H
�

)E++ ∞∑
d1=1

qd1
1

(
E−
)∪PD−1ι∗e1∗j1

∗
([
M0,1

(
Y ,d1j∗

(
β1
))]virt

�(�−c)

)


=exp
(
t0+t1H
�

)E++ ∞∑
d1=1

qd1
1

(
E−
)∪PD−1e1∗ι1∗j1

∗
([
M0,1

(
Y ,d1j∗

(
β1
))]virt

�(�−c)

).
(4.28)

The equality in the second row follows from excess intersection theory in the

left square. An argument similar to Lemma 4.4 implies that

M0,1
(
X,d1β1

)=M0,1
(
Y ,d1j∗

(
β1
))
. (4.29)

There are two obstruction theories in this moduli stack corresponding to the

moduli problems of maps to X and Y , respectively. They differ exactly by the

bundle R1π2∗e∗2 (�), where

π2 :M0,2
(
X,d1β1

)
�→M0,1

(
X,d1β1

)
(4.30)

is the map that forgets the second marked point and �=�X/Y . It follows that

j1
∗([M0,1

(
Y ,d1j∗

(
β1
))]virt

)
= E(R1π2∗e∗2 (�)

)∩[M0,1
(
X,d1β1

)]virt. (4.31)



MIRROR SYMMETRY FOR CONCAVEX VECTOR BUNDLES . . . 179

Consider the following commutative diagram:

M0,2
(
X,d1β1

)

ι2

e2
X

ι

M0,2
(
Ps ,d1

) e2
Ps .

(4.32)

We compute

e∗2 (�)= e∗2
(
ι∗
(
�(−l)))= ι2∗e2

∗(�(−l)). (4.33)

There is the following fibre square:

M0,2
(
X,d1β1

)

π2

ι2
M0,2

(
Ps ,d1

)

π2

M0,1
(
X,d1β1

) ι1
M0,1

(
Ps ,d1

)
.

(4.34)

We apply [14, Proposition 9.3] to obtain

R1π2∗e∗2 (�)= R1π2∗ι2∗ẽ2
∗(�(−l))= ι1∗(R1π2∗ẽ2

∗(�(−l)))= ι1∗(V−d1

)
.

(4.35)

Therefore,

j1
∗([M0,1

(
Y ,d1j∗

(
β1
))]virt

)
= E(R1π2∗e∗2 (�)

)∩[M0,1
(
X,d1β1

)]virt

= ι∗1
(
E−d
)∩[M0,1

(
X,d1β1

)]virt.
(4.36)

On the other hand, [7, Proposition 11.2.3] says that

ι1∗
[
M0,1

(
X,d1β1

)]virt = E+d∩
[
M0,1

(
Ps ,d1

)]
. (4.37)

Substituting (4.36) and (4.37) into (4.28), we obtain

ι∗
(
j∗
(
JY
))= exp

(
t0+t1H
�

)

·

E++ ∞∑

d=1

qd1PD
−1e1∗

(
Ed

�(�−c)∩
[
M0,1

(
Ps ,d

)])∪(E−)

. (4.38)
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Recall that, on H∗(M0,1(Ps ,d)), we have Ed = E′dE−de∗1 (E+). Substituting this

into (4.38) and using the projection formula, we obtain

ι!
(
j∗
(
JY
))= exp

(
t0+t1H
�

)

∪E+∪

1+

∞∑
d=1

qd1PD
−1e1∗

(
E′dE

−
d

�(�−c)∩
[
M0,1

(
Ps ,d

)])∪(E−)

.
(4.39)

The theorem is proven.

Remark 4.8. This naturally leads to local mirror symmetry. For example,

let Y be a Calabi-Yau threefold that containsX = P2. By adjunction formula, the

normal bundle of P2 in X is KP2 = �P2(−3). The last theorem asserts that the

restriction of JY in X depends only on V = �P2(−3), that is, in a neighborhood

of X in Y . Hence, JV encodes Gromov-Witten correlators of the total space of

�P2(−3) which is a local Calabi-Yau. In the next section, we see that mirror

symmetry can be applied to JV , establishing that mirror symmetry is local at

least on theA-side. Interesting calculations in this direction can be found in [6].

5. Mirror theorem. In this section, we formulate and prove the mirror theo-

rem which computes the generator JV . Recall thatV =(⊕i∈I�(ki))⊕(⊕j∈J�(−lj))
= V+⊕V− with ki,lj > 0 for all i ∈ I and j ∈ J. Consider the H∗Ps -valued hy-

pergeometric series

IV
(
t0, t1

)
:= exp

(
t0+t1H
�

)

×
∞∑
d=0

qd
∏
i∈I
∏kid
m=1(kH+m�)

∏
j∈J

∏ljd−1
m=0

(−ljH−m�)∏d
m=1(H+m�)s+1

.
(5.1)

Theorem 5.1 (mirror theorem). Assume that
∑
i∈I ki+

∑
j∈J lj ≤ s+1 and

that J is nonempty. If |J|> 1 or
∑
i∈I ki+

∑
j∈J lj < s+1, then JV = IV . Otherwise,

there exists a power series I1 of q such that JV (t0, t1+ I1) = IV (t0, t1) as power

series of q.

Remark 5.2. The case in which J is empty has been treated in [3, 4, 11, 22].

It was suggested by Givental that his techniques should apply in the case in

which J is nonempty.

5.1. The equivariant mirror theorem. We use Givental’s approach for com-

plete intersections in projective spaces [11] to prove an equivariant version of

the theorem. For the remainder of this paper, we use the standard diagonal ac-

tion of T = (C∗)s+1 on Ps with weights (−λ0, . . . ,−λs). Recall from Section 2.2

that � = H∗T (Ps) = C[λ][p]/
∏s
i=0(p − λi) and � = C(λ)[p]/

∏s
i=0(p − λi).
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Denote

Jeq
V := exp

(
t0+pt1
�

) ∞∑
d=0

qde1∗
( E′dE

−
d

�(�−c)
)
∪
(∏
j∈J
−ljp

)
=exp

(
t0+t1p
�

)
S(q,�),

Ieq
V := exp

(
t0+t1p
�

) ∞∑
d=0

qd
∏
i∈I
∏kid
m=1

(
kip+m�

)∏
j∈J

∏ljd−1
m=0

(−ljp−m�)∏d
m=1

∏s
i=0

(
p−λi+m�

)
= exp

(
t0+t1p
�

)
S′(q,�).

(5.2)

Obviously, the nonequivariant limits of Jeq
V and Ieq

V are, respectively, JV and

IV . The mirror theorem follows as a nonequivariant limit of the following

theorem.

Theorem 5.3 (the equivariant mirror theorem). The same change of vari-

ables from Theorem 5.1 transforms Ieq
V into Jeq

V .

Remark 5.4. As the reader will see, the central part of the proof of the

mirror theorem (up to Section 5.5) involves lengthy formulas and algebraic

manipulations. To simplify the presentation, we assume during this part that

V = �(k)⊕�(−l). The general case is similar. We return to the general case

V = V+⊕V− in Section 5.5.

Recall that the equivariant Thom classes φi of the fixed points pi form a

basis of � as a C(λ)-vector space. Let Si and S′i be the restrictions of S and S′

at the fixed point pi. By the localization theorem, in Ps , they determine S and

S′. By the projection formula,

Si =
∫
PsT

S∪φi = 1+
∞∑
d=1

qd
∫
M0,1(Ps ,d)T

e∗1
(−lpφi)
�(�−c) E′dE

−
d . (5.3)

The proof of the equivariant mirror theorem is based on exhibiting similar

properties of the correlators Si and S′i . The extra property Si = 1+ o(�−2)
determines Si uniquely. After the change of variables, that property is satisfied

by S′i as well, which implies Si = S′i .
We now proceed with displaying properties of the correlators Si and S′i .

5.2. Linear recursion relations. The first property is given by the following

lemma.

Lemma 5.5. The correlators Si satisfy the following linear recursion relations:

Si = 1+
∞∑
d=1

qdRid+
∞∑
d=1

∑
j≠i
qdCijdSj

(
q,
λj−λi
d

)
, (5.4)
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where Rid ∈C(λ)[�−1] are polynomials in �−1 and

Cijd =
(
λj−λi

)∏kd
m=1

(
kλi+m

((
λi−λj

)
/d
))∏ld−1

m=0

(−lλi+m((λi−λj)/d))
d�
(
d�+λi−λj

)∏d
m=1

∏s
k=0,(k,m)≠(j,d)

(
λi−λk+m

((
λj−λi

)
/d
)) .

(5.5)

Proof. We see during the proof that Sj is regular at �= (λj−λi)/d. The

integrals that appear in the formula for Si can be evaluated using localization

theorem

∫
M0,1(Ps ,d)T

e∗1
(−lpφi)
�(�−c) E′dE

−
d =

∑
Γ

∫
(MΓ )T

1
aΓET

(
NΓ
)(e∗1

(−lpφi)
�(�−c) E′dE

−
d

)
Γ
. (5.6)

There are three types of fixed-point components MΓ of MT0,1(Ps ,d). The first

one consists of those MΓ where the component of the curve that contains the

marked point is collapsed to pi. We denote the set of these components by


i1,d. Let 
i2,d be the set of thoseMΓ in which the marked point is mapped at pi
and its incident component is a multiple cover of the line pi,pj for some j ≠ i.
Finally, let 
i0,d be the rest of the fixed-point components. Notice first that

∑
Γ∈
i0,d

∫
(MΓ )T

1
aΓET

(
NΓ
)(e∗1

(−lpφi)
�(�−c) E′dE

−
d

)
Γ
= 0. (5.7)

Indeed, let Γj ∈
i0,d represent a fixed-point component with the marked point

mapped to the fixed point pj for some j ≠ i. Since (e∗1 (φi))Γj = 0, we are

done. Next, in each fixed-point component that belongs to 
i1,d, the class c is

nilpotent. Indeed, if Γ is the decorated graph that represents such a fixed-point

component, let M0,k correspond to the vertex of Γ that contains the marked

point. Then, k≤ d+1. There is a morphism

ϕ :MΓ � �→M0,k (5.8)

such that ϕ∗(c) = cΓ . For dimension reasons, cd−1 = 0 on M0,k, therefore,

1/�(�−c) is a polynomial of c in MΓ . Hence,

∑
Γ∈
i1,d

∫
(MΓ )T

1
aΓET

(
NΓ
)(e∗1

(−lpφi)
�(�−c) E′dE

−
d

)
Γ
= Rid (5.9)

is a polynomial in �−1.
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We now consider the fixed-point components in 
i2,d. Again, let Γ represent

such a component. For a stable map (C,x1,f ) in Γ , let C′ be the component of

C containing x1, C′′ the rest of the curve, x = C′∩C′′, and f(x)= pj for some

j ≠ i. Let d′ be the degree of the map f on the component C′ and d′′ = d−d′.
Then, (C′′,x,f |C′′) is a fixed point inM0,1(Ps ,d′′). Denote its decorated graph

by Γ ′′. Choose the coordinates on C′ such that the restriction of f on C′ is

given by f(y0,y1)= (0, . . . ,zi =yd′0 , . . . ,zj =yd
′

1 , . . . ,0). As Γ moves in 
i2,d, the

set of all such Γ ′′ exhausts all the fixed points in M0,1(Ps ,d′′), where the first

marked point is not mapped to pi. Since Aut(Γ)=Aut(Γ ′′), it follows from (2.9)

that

aΓ = d′aΓ ′′ . (5.10)

The local coordinate at pi on the component C′ is z =y1/y0. The weight of the

T -action on yl is λl/d′ for l = 0,1. It follows that the weight of the action on

the coordinate z and hence on T∗piC
′ is (λj−λi)/d′; therefore, cΓ = (λj−λi)/d′.

Now, ET (NΓ ) can be split in three pieces: smoothing the node x, deforming the

maps f |C′′ , and f |C′ . It follows [11] that

ET
(
NΓ
)= (λj−λi

d′
−c′′Γ

)
ET
(
NΓ ′′

)·d
′−1∏
m=0

s∏
k=0,(m,k)≠(0,i)

(
λi−λk+mλj−λid′

)
.

(5.11)

Next, we find the localization of E′d and E−d on the fixed-point componentMid1d2
.

Consider the normalization sequence at the node x

0 �→ �C �→ �C′ ⊕�C′′ �→ �x �→ 0. (5.12)

Twisting it by f∗(V+) and f∗(V−), respectively, and taking the cohomology

sequence yield

(
E−d
)
Γ =

(−lλj)(E−d′′)Γ ′′(E−d′)Γ ′ ,
(
E+d
)
Γ =

(
E+d′

)
Γ ′
(
E+d′′

)
Γ ′′

kλj
.

(5.13)

An explicit basis for H1(C′,f∗(V−))=H1(�P1(−ld′)) consists of

ys0y
ld′−2−s
1(

y0y1
)ld′−1 =

1

yld′−s−1
0 y1+s

1

, s = 0,1, . . . , ld′ −2. (5.14)

It allows us to compute

(
E−d′

)
Γ ′ =

ld′−2∏
s=0

(
1+s−ld′

d′
λi− 1+s

d′
λj
)
=
ld′−1∏
s=1

(
−lλi+s λi−λjd′

)
. (5.15)
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Therefore, we have

(
E−d
)
Γ =

(−lλj)
ld′−1∏
s=1

(
−lλi+s λi−λjd′

)(
E−d′′

)
Γ ′′ . (5.16)

A basis for H0(C′,f∗(V+)) = H0(�P1(kd′)) consists of monomials ys0y
kd′−s
1

for s = 0, . . . ,kd′. It can be used to calculate (E+d′)Γ ′ similarly to (E−d′)Γ ′ above.

Recall from (4.12) that E+d = e∗1 (E(V+))E′d. The line bundle e∗1 (V+) is trivial on

MΓ , but the torus acts on it with weight kλi. Hence, (E+d )Γ = kλi(E′d)Γ . Substi-

tuting into (5.13) yields

(
E′d
)
Γ =

kd′∏
r=1

(
kλi+r λj−λid′

)(
E′d′′

)
Γ ′′ . (5.17)

We pause here to show that Si is regular at �= (λj−λi)/d for any j ≠ i and

any d> 0. It follows from (5.7) and (5.9) that

Si = 1+
∞∑
d=1

qdRid+
∑

Γ∈
i2,d

qd
∫
(MΓ )T

(−lλi)∏k≠i
(
λi−λk

)(
E′d ·E−d

)
Γ

�
(
�−cΓ

)
aΓET

(
NΓ
) . (5.18)

From this representation of Si, it is clear that the coefficients of the power

series Si =
∑∞
d=0Sidqd belong to Q(λ,�). But cΓ = (λj−λi)/d′ for some d′ ≤ d

and Rid has poles only at � = 0; therefore, Si is regular at �= (λi−λj)/d. We

use (5.11), (5.17), and (5.16) to compute

∑
Γ∈
i2,d

qd
∫
(MΓ )T

(−lλj)∏k≠i
(
λi−λk

)(
E′d ·E−d

)
Γ

�
(
�−cΓ

)
aΓET

(
NΓ
)

=
∞∑
d′=1

∑
j≠i
qd

′
Cijd′

∑
Γ ′′
qd

′′
∫
(MΓ ′′ )T

−lλj
∏
k≠j

(
λj−λk

)(
E′d′′ ·E−d′′

)
Γ ′′((

λj−λi
)
/d′

)((
λj−λi

)
/d′ −c′′Γ

)
aΓ ′′ET

(
NΓ ′′

)

=
∞∑
d′=1

∑
j≠i
qd

′
Cijd′Sj

(
q,
λj−λi
d′

)
.

(5.19)

The lemma follows by substituting the above identity into (5.18).

Lemma 5.6. The correlators S′i satisfy the same linear recursion relations

as Si.
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Proof. We know that S′i =
∑∞
d=0qdS

′
id with

S′id =
∏kd
m=1

(
kλi+m�

)∏ld−1
m=0

(−lλi−m�)
d�

∏d
m=1

∏s
j=0,(j,m)≠(i,d)

(
λi−λj+m�

) . (5.20)

Note that S′id ∈ C(λ,�) is a proper rational expression of �. It has multiple poles

at �= 0 and simple poles at �= (λr −λi)/m for any r ≠ i and any 1≤m≤ d.

Applying calculus of residues in the �-variable yields

S′id = Rid+
d∑

m=1

∑
r≠i

1
d�
(
λi−λr +m�

)

×
∏kd
n=1

(
kλi+n

((
λr −λi

)
/m

))∏ld−1
n=0

(−lλi−n((λr −λi)/m))∏d
n=1,(j,n)≠(r ,m)

∏s
j=0,(j,n)≠(i,d)

(
λi−λj+n

((
λr −λi

)
/m

))
(5.21)

for some polynomials Rid ∈ C(λ)[�−1] such that Rid(0) = 0. Substitute (5.21)

into (5.20) to obtain

S′i = 1+
∞∑
d=1

qdRid

+
∞∑
d=1

qd
∑
r≠i

d∑
m=1

1
d�
(
λi−λr +m�

)

×
∏kd
n=1

(
kλi+n

((
λr−λi

)
/m

))∏ld−1
n=0

(−lλi−n((λr−λi)/m))∏d
n=1,(j,n)≠(r ,m)

∏s
j=0,(j,n)≠(i,d)

(
λi−λj+n

((
λr −λi

)
/m

)) .
(5.22)

Changing the order of summation in the last equation yields

S′i−1−
∞∑
d=1

qdRid

=
∑
r≠i

∞∑
m=1

qm
1

�
(
λi−λr +m�

)

×
∞∑
d=m

qd−m
∏kd
n=1

(
kλi+n

((
λr−λi

)
/m

))∏ld−1
n=0

(−lλi−n((λr−λi)/m))
d
∏d
n=1,(j,n)≠(r ,m)

∏s
j=0,(j,n)≠(i,d)

(
λi−λj+n

((
λr−λi

)
/m

)) .
(5.23)
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The lemma follows from the identity

∞∑
d=m

qd−m
∏kd
n=1

(
kλi+n

((
λr −λi

)
/m

))∏ld−1
n=0

(−lλi−n((λr −λi)/m))
d
∏d
n=1,(j,n)≠(r ,m)

∏s
j=0,(j,n)≠(i,d)

(
λi−λj+n

((
λr −λi

)
/m

))

=
((
λr−λi

)
/m

)∏km
n=1

(
kλi+n

((
λr−λi

)
/m

))∏lm−1
n=0

(−lλi−n((λr −λi)/m))∏m
n=1,(j,n)≠(r ,m)

∏s
j=0

(
λi−λj+n

((
λr −λi

)
/m

))

×
∞∑
u=0

qu
∏ku
n=1

(
kλr +n

((
λr −λi

)
/m

))∏lu−1
n=0

(−lλr −n((λr −λi)/m))
u
((
λr −λi

)
/m

)∏u
n=1,(j,n)≠(r ,u)

∏s
j=0

(
λr −λj+n

((
λr −λi

)
/m

)) .
(5.24)

5.3. Double polynomiality. Recall from Section 3.1 that V induces a modi-

fied equivariant integral ωV : �→ C(λ) defined as follows:

ωV(a) :=
∫
PsT

a∪ E
+

E−
. (5.25)

As we can see, in the case V = �(k)⊕�(−l), this modified equivariant integral

simplifies via E+/E− = kp/− lp = k/l. We have chosen not to simplify this

integral in the proof of the following lemma so that it is easier to see how to

proceed in the general case.

Lemma 5.7. If z is a variable, the expression

P(z,�)=ωV
(
epzS

(
qez�,�

)
S(q,−�)) (5.26)

belongs to Q(λ)[�][[q,z]].

Proof. In Section 2.3, we introduced the action of T ′ = T ×C∗ on Ps ×P1

with weights (−λ0, . . . ,−λs) on the first factor and (−�,0) in the second factor.

Consider the following T ′-equivariant diagram:

M0,1
(
Ps×P1,(d,1)

)

π

e1
Ps×P1

Md =M0,0
(
Ps×P1,(d,1)

)
.

(5.27)

Define

Wd =W+
d ⊕W−

d :=π∗
((
e1
)∗(

�Ps (k)⊗�P1
))⊕R1π∗

((
e1
)∗(

�Ps (−l)⊗�P1
))
.

(5.28)
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The lemma follows from the identity

P(z,�)=
∞∑
d=0

qd
∫
(Md)T ′

ezψ
∗κET ′

(
Wd

)
, (5.29)

where ψ and κ were defined in Section 2.3. The localization formula for the

diagonal action of T on Ps applied to the left side gives

P(z,�)=
s∑
i=0

Si
(
qez�,�

)
ezλiSi(q,−�)∏

k≠i
(
λi−λk

) (
kλi
−lλi

)
. (5.30)

We recall from identity (5.3)

Si = 1+
∞∑
d=1

qd
∫
M0,1(Ps ,d)T

e∗1
(−lpφi)
�(�−c) E′dE

−
d . (5.31)

To compute the integrals on the right side of (5.29), we use localization for

the action of T ′ on Md. In Section 2.3, we found that the components of the

fixed-point loci have the form Mid1d2
=MΓ id1

×MΓ id2
for some i = 0,1, . . . ,s and

a splitting d = d1+d2. We first compute the restriction of ET ′(Wd) in such a

component. Consider the following normalization sequence:

0 �→ �C �→ �C0⊕�C1⊕�C2 �→ �x1⊕�x2 �→ 0. (5.32)

Twist (5.32) by f∗(�(−l)⊗�P1) and take the corresponding long exact coho-

mology sequence. We obtain

0 �→ C �→ �x1(−l)⊕�x2(−l) �→W−
d �→W−

d1
⊕W−

d2
�→ 0. (5.33)

The first piece is trivial since it comes from the isomorphism

(
�Ps (−l)×�P1

)∣∣
C0
� �C0 � C. (5.34)

The left-hand side is generated by 1/zil; therefore, the weight of that piece is

−lλi. It follows that

ET ′
(
W−
d
)= (−lλi)E−d1

E−d2
. (5.35)
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Similarly, twisting the normalization sequence (5.32) by f∗(�(k)⊗ �P1) and

taking the corresponding cohomology sequence, we obtain

ET ′
(
W+
d
)= (kλi)E′d1

E′d2
. (5.36)

We now use the localization theorem to calculate the integrals on the right side

of (5.29). The equivariant Euler class of the normal bundle of the fixed-point

component Mid1d2
has been calculated at the end of Section 2.3. We have

∫
(Md)T ′

ezψ
∗κET ′

(
Wd

)

=
∑

Γ id1
,Γ id2

(
kλi

)(−lλi) ez(λi+d2�)∏
k≠i

(
λi−λk

) ∫(
M
Γ id1

)
T

1

ET
(
NΓ id1

)
(
e∗1
(
φi
)
E′d1
E−d1

−�(−�−c1
)
)
Γ id1

×
∫(
M
Γ id2

)
T

1

ET
(
NΓ id2

)
(
e∗1
(
φi
)
E′d2
E−d2

�
(
�−c2

)
)
Γ id2

=
∑

Γ id1
,Γ id2

kλi
−lλi

ez(λi+d2�)∏
k≠i

(
λi−λk

) ∫(
M
Γ id1

)
T

1

ET
(
NΓ id1

)
(
e∗1
(−lλiφi)Ed1

−�(−�−c1
)
)
Γ id1

×
∫(
M
Γ id2

)
T

1

ET
(
NΓ id2

)
(
e∗1
(−lλiφi)Ed2

�
(
�−c2

)
)
Γ id2

.

(5.37)

If we use localization to compute Si in (5.31) and then substitute in (5.30), we

obtain the right side of the last equation.

Lemma 5.8. If z is a variable, the expression

P ′(z,h)=ωV
(
S′
(
qez�,�

)
epzS′(q,−�)) (5.38)

belongs to Q(λ)[�][[q,z]].

Proof. The lemma will follow from the identity

P ′(z,h)=
∞∑
d=0

qd
∫
(Nd)T ′

ezκ
kd∏
m=0

(kκ−m�)
ld−1∏
m=1

(−lκ+m�). (5.39)

For d= 0, the convention

∫
(Nd)T ′

ezκ
kd∏
m=0

(kκ+m�)
ld−1∏
m=1

(−lκ+m�)=
∫
PsT

epz
( ∏

i∈I kip∏
j∈J−ljp

)
(5.40)
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is taken. Apply the localization formula to the integrals (5.38). We obtain

P ′(z,�)

=
s∑
i=0

kλieλiz(−lλi)∏j≠i
(
λi−λj

) ∞∑
d1=0

(
qez�

)d1

∏kd1
m=1

(
kλi+m�

)∏ld1−1
m=0

(−lλi−m�)∏d1
m=1

∏s
j=0

(
λi−λj+m�

)

×
∞∑
d2=0

qd2

∏kd2
m=1

(
kλi−m�

)∏ld2−1
m=0

(−lλi+m�)∏d2
m=1

∏s
j=0

(
λi−λj−m�

)

=
s∑
i=0

1∏
j≠i
(
λi−λj

) ∞∑
d1=0

qd1ze(λi+d1�)z
∏kd1
m=0

(
kλi+m�

)∏ld1−1
m=1

(−lλi−m�)∏d1
m=1

∏s
j=0

(
λi−λj+m�

)

×
∞∑
d2=0

qd2

∏kd2
m=1

(
kλi−m�

)∏ld2−1
m=0

(−lλi+m�)∏d2
m=1

∏s
j=0

(
λi−λj−m�

) .

(5.41)

But for d1,d2 > 0

∏kd1
m=0

(
kλi+m�

)∏ld1−1
m=1

(−lλi−m�)∏kd2
m=1

(
kλi−m�

)∏ld2−1
m=0

(−lλi+m�)∏
j≠i
(
λi−λj

)∏d1
m=1

∏s
j=0

(
λi−λj+m�

)∏d2
m=1

∏s
j=0

(
λi−λj−m�

)

=
∏k(d1+d2)
m=0

(
k
(
λi+d1�

)−m�)∏l(d1+d2)−1
m=1

(−l(λi+d1�
)+m�)∏s

j=0

∏d1+d2
m=0,(j,m)≠(i,d1)

(
λi+d1�−λj−m�

) .

(5.42)

Therefore,

P ′(z,�)

=
∞∑
d=0

qd
d∑

d1=0

s∑
i=0

e(λi+d1�)z
∏kd
m=0

(
k
(
λi+d1�

)−m�)∏ld−1
m=1

(−l(λi+d1�
)+m�)∏s

j=0

∏d
m=0,(j,m)≠(i,d1)

(
λi+d1�−λj−m�

) .

(5.43)

By the localization formula in Nd, we can see that

P ′(z,�)=
∞∑
d=0

qd
∫
(Nd)T ′

ezκ
kd∏
m=0

(kκ−m�)
ld−1∏
m=1

(−lκ+m�). (5.44)

The lemma is proven.

5.4. Mirror transformation and uniqueness. The following two lemmas

carry over from [11]. The first lemma deals with uniqueness.

Lemma 5.9. Let S =∑∞
d=0Sdqd and S′ =∑∞

d=0S
′
dqd be two power series with

coefficients in �[[�−1]] that satisfy the following conditions:
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(1) S0 = S′0 = 1;

(2) they both satisfy the recursion relations of Lemma 5.5;

(3) they both have the double polynomiality property of Lemma 5.8;

(4) for any d, Sd ≡ S′dmod(�−2).
Then, S = S′.

The second lemma describes a transformation which preserves the proper-

ties of Lemma 5.9.

Lemma 5.10. Let I1 be a power series in q whose first term is zero. Then,

exp(I1p/�)S(qeI1 ,�) satisfies conditions (1), (2), and (3) of Lemma 5.9.

5.5. The conclusion of the proof of mirror theorem. Recall that

Ieq
V = exp

(
t0+t1p
�

)

×

1+

∞∑
d=1

qd
∏
i∈I
∏kid
m=1

(
kip+m�

)∏
j∈J

∏ljd−1
m=0

(−ljp−m�)∏d
m=1

∏s
i=0

(
p−λi+m�

)

. (5.45)

We are assuming that there is at least one negative line bundle. We expand

the second factor of Ieq
V as a polynomial of �−1. Each negative line bundle pro-

duces a factor of p/�. For example, in the case V = �(k)⊕�(−l), the expansion

yields

Ieq
V = exp

(
t0+pt
�

)1+ p
�

∞∑
d=1

qd
(−1)ld(ld−1)!(kd)!

(d!)s+1

1
�d(s+1−k−l) +o

(
1
�2

).
(5.46)

If V contains two or more negative line bundles, it follows that

Ieq
V = exp

(
t0+pt
�

)(
1+o

(
1
�2

))
. (5.47)

Lemmas 5.9 and 5.10 imply that Jeq
V = Ieq

V . If
∑
i∈I ki+

∑
j∈J lj < s+1, the pres-

ence of 1/�d(s+1−k−l) in the above expansion shows, again that,

Ieq
V = exp

(
t0+pt
�

)(
1+o

(
1
�2

))
; (5.48)

hence, Jeq = Ieq. We may assume that
∑
i∈I ki+

∑
j∈J lj = s+1 and |J| = 1. In

this case,

Ieq
V = exp

(
t0+pt
�

)(
1+I1p� +o

(
1
�2

))
, (5.49)
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where I1 is a power series of q whose first term is zero. For example, if V =
�(k)⊕�(−l), the power series I1 is

I1 =
∞∑
d=1

qd
(−1)ld(ld−1)!(kd)!

(d!)s+1
. (5.50)

Recall that S = 1+o(�−2). Therefore,

exp
(
I1p
�

)
S
(
qeI1 ,�

)= 1+I1p� +o
(
�−2). (5.51)

Lemma 5.10 implies that both exp(I1p/�)S(qeI1 ,�) and S′(q,�) satisfy the

conditions of Lemma 5.9. It follows that

exp
(
I1p
�

)
S
(
qeI1 ,�

)= S′(q,�). (5.52)

Multiplying both sides of this identity by exp((t0+pt)/�) yields

Jeq
V
(
t0, t+I1

)= Ieq
V
(
t0, t

)
. (5.53)

This completes the proof.

Corollary 5.11. Let V = (⊕i∈I�(ki))⊕(⊕j∈J�(−lj)). For |J|> 1 or k+ l <
s+1,

e1∗
(
E′dE

−
d

�(�−c)
)
=
∏
i∈I
∏kid
m=1

(
kiH+m�

)∏
j∈J

∏ljd−1
m=1

(−ljH−m�)∏d
m=1(H+m�)s+1

. (5.54)

Proof. As mentioned above, in this case we have Jeq
V = Ieq

V . Recall that

Jeq
V = exp

(
t0+pt1
�

)(
1+

∑
d>0

qde1∗
( E′dE

−
d

�(�−c)
)
∪
∏
j∈J

(−ljp)
)
. (5.55)

We obtain the equivariant identity

e1∗
( E′dE

−
d

�(�−c)
)
∪
∏
j∈J

(−ljp)=
∏
i∈I
∏kid
m=1

(
kip+m�

)∏
j∈J

∏ljd−1
m=0

(−ljp−m�)∏d
m=1

∏s
k=0

(
p−λk+m�

) .

(5.56)
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The restriction of p to any fixed point pi is nonzero. This implies that p is

invertible. Therefore, we obtain

e1∗
( E′dE

−
d

�(�−c)
)
=
∏
i∈I
∏kid
m=1

(
kip+m�

)∏
j∈J

∏ljd−1
m=1

(−ljp−m�)∏d
m=1

∏s+1
k=1

(
p−λk+m�

) . (5.57)

The nonequivariant limit of this identity reads

e1∗
(
E′dE

−
d

�(�−c)
)
=
∏
i∈I
∏kid
m=1

(
kiH+m�

)∏
j∈J

∏ljd−1
m=1

(−ljH−m�)∏d
m=1(H+m�)s+1

. (5.58)

The corollary is proven.

This corollary is particularly useful when Euler(V−) = 0 in Ps . In this case,

JV = IV = exp((t0 +Ht1)/�), hence, the mirror theorem is true trivially. An

example of such a situation is V = �P1(−1)⊕�P1(−1) which is treated in the

next section.

6. Examples

6.1. Multiple covers. Let C be a smooth rational curve in a Calabi-Yau three-

fold X with normal bundle N = �(−1)⊕�(−1) and β = [C] ∈ H2(X,Z). Since

KX = �X , the expected dimension of the moduli spaceM0,0(X,dβ) is zero. How-

ever, this moduli space contains a component of positive dimension, namely,

M0,0(P1,d). Indeed, let f : P1 → C be an isomorphism, and g : P1 → P1 a degree

d multiple cover. Then, f ◦g is a stable map that belongs to M0,0(X,dβ). For

a proof of the fact that M0,0(P1,d) is a component of M0,0(X,dβ), see [7, Sec-

tion 7.4.4]. Let Nd be the degree of [M0,0(X,dβ)]virt. We want to compute the

contribution nd of M0,0(P1,d) to Nd. Kontsevich asserted in [17] and Behrend

proved in [1] that the restriction of [M0,0(X,dβ)]virt to M0,0(P1,d) is precisely

Ed for V = �(−1)⊕�(−1). Therefore,

nd =
∫
M0,0(P1,d)

Ed. (6.1)

Note that dimM0,0(P1,d)= 2d−2, and the rank of the bundle Vd is also 2d−2.

We use the mirror theorem to compute numbers nd. Since V contains two

negative line bundles, we can apply Corollary 5.11

e1∗
(

Ed
�(�−c)

)
=
∏d−1
m=1(−H−m�)2∏d
m=1(H+m�)2

= 1
(H+d�)2 . (6.2)
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An expansion of the left-hand side using the divisor property for the modified

gravitational descendants yields

e1∗
(

Ed
�(�−c)

)
= dnd

�2
+ H
�3

∫
M0,1(P1,d)

c∪Ed, (6.3)

where c is the Chern class of the cotangent line bundle at the marked point.

On the other hand,

1
(H+d�)2 =

1
d2�2

− 2H
d3�3

. (6.4)

We obtain the Aspinwall-Morrison formula

nd = 1
d3
, (6.5)

which has been proved by several different methods [17, 21, 23]. We also obtain

∫
M0,1(P1,d)

c∪Ed =− 2
d3
. (6.6)

6.2. Virtual numbers of plane curves. Let X be a Calabi-Yau threefold con-

taining a P2. As we saw in Remark 4.8, the normal bundle of P2 in X is KP2 =
�(−3). Let C be a rational curve of degree d in P2. Since KX = �X , the ex-

pected dimension of the moduli space M0,0(X,[C]) is zero. Lemma 4.4 says

that M0,0(P2,d) = M0,0(X,[C]); hence, the dimension of this moduli stack is

3d−1. Recall the diagram

M0,1
(
P2,d

)

π1

e1
P2

M0,0
(
P2,d

)
.

(6.7)

From Lemma 4.5, the virtual fundamental class of M0,0(X,[C]) is the refined

top Chern class of the bundle Vd = R1π1∗(e∗1 (KP2)) overM0,0(P2,d). The zero-

pointed Gromov-Witten invariant

Nd := deg
[
M0,0

(
X,[C]

)]virt =
∫
M0,0(P2,d)

Ed (6.8)

is called the virtual number of degree d rational curves in X. As promised in

Remark 3.10, we show that the modified equivariant quantum product in this

case has a nonequivariant limit. We also use the mirror theorem to calculate

these numbers Nd.
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The modified pairing on P2
C∗ corresponding to V = �P2(−3) is

〈a,b〉 :=
∫
(P2)C∗

a∪b∪
(

1
−3p−λ

)
. (6.9)

Recall that p denotes the equivariant hyperplane class in P2. Then, 1,p,p2 is a

basis for � as a Q(λ)-module. A simple calculation shows that −λp2,−3p2−
λH,−3p−λ is its dual basis with respect to the above pairing. Since both bases

and Ed are polynomials in λ, we can restrict Ĩd and ∗V in � = H∗(P2,Q[λ])
and take the nonequivariant limit. Denote by H the nonequivariant limit of p.

We obtain the following nonequivariant quantum product on H∗P2⊗Q[[q]]:

a∗V b := a∪b+
∞∑
d=1

qdTkId
(
a,b,−3HTk

)
, (6.10)

where T 0 = 1, T 1 =H, T 2 =H2, and, for γ1,γ2, . . . ,γn ∈H∗P2,

Id
(
γ1,γ2, . . . ,γn

)=
∫
M0,n(P2,d)

e∗1 γ1∪e∗2 γ2∪···∪e∗nγn∪Ed. (6.11)

For example, using the divisor axiom, we obtain

H∗V H =H2

(
1−3

∑
d>0

qdd3Nd

)
. (6.12)

Theorem 3.9 implies the following theorem.

Theorem 6.1. The ring (H∗P2⊗Q[[q]],∗V ) is an associative, commutative,

and unital ring with unity 1= [P2].

Denote by i the embedding i : P2 ↩X. Since the normal bundle of P2 in X is

�P2(−3), it follows that i∗(−(1/3)[P2])= T 1 and i∗(−(1/3)[l])= T 2. There-

fore, the map i∗ : (H∗X,Q) → (H∗P2,Q) is surjective. Consider the small

quantum cohomology rings SQH∗X = (H∗X ⊗Q[[β]],∗) and SQH∗V P2 :=
(H∗P2 ⊗Q[[q]],∗V ), where the products are given by three-point correla-

tors. Recall from Section 4.2 the extension of i∗ : H∗(X,Q) → H∗(P2,Q) to

ĩ∗ : SQH∗X → SQH∗V P2. There is a natural relation between the modified quan-

tum product in P2 and the pure product in X.

Theorem 6.2. The map ĩ∗ is a ring homomorphism.

Proof. Complete τ0 = [X], τ1 = −(1/3)[P2], and τ2 = −(1/3)H into a

basis of (H∗X,Q) by adding elements from Ker(i∗). Let τ0 = [pt],τ1 =H,τ2 =
[P2], . . . be the dual basis. Let a,b ∈H∗X. We want to show

ĩ∗(a∗b)= i∗(a)∗V i∗(b). (6.13)
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But

a∗b =
∑

β∈H2(X,Q)

∑
r
qβτr

∫
[M0,3(X,β)]virt

e∗1a∪e∗2 b∪e∗3 τr . (6.14)

Note that this formula is true for a Z-basis, but, due to the uniqueness of the

quantum product, it is true for any Q-basis as well. Now,

ĩ∗(a∗b)=
∑
d≥0

∑
r
qdi∗τr

∫
M0,3(P2,d)

e∗1
(
i∗a

)∪e∗2 (i∗b)∪e∗3 (i∗τr )Ed. (6.15)

But i∗(τr ) = Tk for r = 0,1,2 and i∗(τr ) = 0 for r ≥ 2. The theorem follows

from the readily checked fact that i∗(τk)=−3HTk for k= 0,1,2.

Using the divisor and fundamental class properties of the modified gravita-

tional descendants, it is easy to show that

JV = exp
(
t0+t1H
�

)1−3
H2

�2

∞∑
d=1

qddNd


. (6.16)

The hypergeometric series corresponding to the total space of V = �P2(−3) is

IV := exp
(
t0+t1H
�

) ∞∑
d=0

qd
∏3d−1
m=0 (−3H−m�)∏d
m=1(H+m�)3

. (6.17)

We expand the function

IV = exp
(
t0+t1H
�

)(
1+I1H� +o

(
1
�

))
, (6.18)

where

I1 = 3
∞∑
d=1

qd(−1)d
(3d−1)!
(d!)3

. (6.19)

The mirror theorem for this case says that J(t0, t1+ I1) = IV (t0, t1). This the-

orem allows us to compute the virtual number of rational plane curves in the

Calabi-Yau X. The first few numbers are 3, −45/8, 244/9.
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