ON THE CONVOLUTION PRODUCT OF THE DISTRIBUTIONAL

KERNEL $K_{\alpha, \beta, \gamma, \nu}$

A. KANANTHAI and S. SUANTAI

Received 18 June 2001 and in revised form 19 February 2002

We introduce a distributional kernel $K_{\alpha, \beta, \gamma, v}$ which is related to the operator \oplus^{k} iterated k times and defined by $\oplus^{k}=\left[\left(\sum_{r=1}^{p} \partial^{2} / \partial x_{r}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \partial^{2} / \partial x_{j}^{2}\right)^{4}\right]^{k}$, where $p+q=n$ is the dimension of the space \mathbb{R}^{n} of the n-dimensional Euclidean space, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, k$ is a nonnegative integer, and α, β, γ, and v are complex parameters. It is found that the existence of the convolution $K_{\alpha, \beta, \gamma, \nu} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}$ is depending on the conditions of p and q.
2000 Mathematics Subject Classification: 46F10, 46F12.

1. Introduction. The operator \oplus^{k} can be factorized in the form

$$
\begin{align*}
\oplus^{k}= & {\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right]^{k} } \tag{1.1}\\
& \times\left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}+i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right]^{k}\left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}-i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right]^{k},
\end{align*}
$$

where $p+q=n$ is the dimension of the space $\mathbb{R}^{n}, i=\sqrt{-1}$, and k is a nonnegative integer. The operator $\left(\sum_{r=1}^{p} \partial^{2} / \partial x_{r}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \partial^{2} / \partial x_{j}^{2}\right)^{2}$ is first introduced by Kananthai [2] and named the Diamond operator denoted by

$$
\begin{equation*}
\diamond=\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2} . \tag{1.2}
\end{equation*}
$$

We denote the operators L_{1} and L_{2} by

$$
\begin{align*}
& L_{1}=\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}+i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}, \\
& L_{2}=\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}-i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} . \tag{1.3}
\end{align*}
$$

Thus (1.1) can be written by

$$
\begin{equation*}
\oplus^{k}=\diamond^{k} L_{1}^{k} L_{2}^{k} \tag{1.4}
\end{equation*}
$$

Now consider the convolution $R_{\alpha}^{H}(u) * R_{\beta}^{e}(v) * S_{\gamma}(w) * T_{v}(z)$ where $R_{\alpha}^{H}(u)$, $R_{\beta}^{e}(v), S_{\gamma}(w)$, and $T_{v}(z)$ are defined by (2.2), (2.4), (2.6), and (2.7), respectively.

We defined the distributional kernel $K_{\alpha, \beta, \gamma, \nu}$ by

$$
\begin{equation*}
K_{\alpha, \beta, \gamma, v}=R_{\alpha}^{H}(u) * R_{\beta}^{e}(v) * S_{\gamma}(w) * T_{v}(z) \tag{1.5}
\end{equation*}
$$

Since the functions $R_{\alpha}^{H}(u), R_{\beta}^{e}(v), S_{\gamma}(w)$, and $T_{v}(z)$ are all tempered distributions and the supports of $R_{\alpha}^{H}(u)$ and $R_{\beta}^{e}(v)$ are compact (see [2, pages 30-31] and [1, pages 152-153]), then the convolution on the right-hand side of (1.5) exists and also is a tempered distributions. Thus $K_{\alpha, \beta, \gamma, v}$ is well defined and also is a tempered distribution.

For $\alpha=\beta=\gamma=v=2 k$, we obtain $(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}$ as an elementary solution of the operator \oplus^{k}, see [3]. That is $\oplus^{k}(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)=\delta$ where δ is the Dirac-delta distribution and \oplus^{k} is defined by (1.4).

2. Preliminaries

DEFINITION 2.1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and write

$$
\begin{equation*}
x=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, \quad p+q=n . \tag{2.1}
\end{equation*}
$$

Denote by $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$ the interior of forward cone and $\bar{\Gamma}_{+}$denote its closure. For any complex number α, we define the function

$$
R_{\alpha}^{H}(x)= \begin{cases}\frac{u^{(\alpha-n) / 2}}{K_{n}(\alpha)}, & \text { if } x \in \Gamma_{+}, \tag{2.2}\\ 0, & \text { if } x \notin \Gamma_{+},\end{cases}
$$

where the constant $K_{n}(\alpha)$ is given by the formula

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{(n-1) / 2} \Gamma((2+\alpha-n) / 2) \Gamma((1-\alpha) / 2) \Gamma(\alpha)}{\Gamma((2+\alpha-p) / 2) \Gamma((p-\alpha) / 2)} \tag{2.3}
\end{equation*}
$$

the function R_{α}^{H} is first introduced by Nozaki [4, page 72] and is called the ultra-hyperbolic kernel of Marcel Riesz. Hence $R_{\alpha}^{H}(x)$ is an ordinary function if $\operatorname{Re}(\alpha) \geq n$ and is a distribution of α if $\operatorname{Re}(\alpha)<n$. Let supp $R_{\alpha}^{H}(u) \subset \bar{\Gamma}_{+}$where $\operatorname{supp} R_{\alpha}^{H}(u)$ denotes the support of $R_{\alpha}^{H}(u)$.

DEFINITION 2.2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and write $v=x_{1}^{2}+x_{2}^{2}+\cdots+$ x_{n}^{2}.

For any complex number β, define the function

$$
\begin{equation*}
R_{\beta}^{e}(v)=\frac{v^{(\beta-n) / 2}}{W_{n}(\beta)} \tag{2.4}
\end{equation*}
$$

where $W_{n}(\beta)=\pi^{n / 2} 2^{\beta} \Gamma(\beta) / \Gamma((n-\beta) / 2)$, the function $R_{\beta}^{e}(v)$ is called the elliptic kernel of Marcel Riesz and is ordinary function if $\operatorname{Re}(\beta) \geq n$ and is a distribution of β if $\operatorname{Re}(\beta)<n$.

DEFINITION 2.3. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the space \mathbb{R}^{n}. Write

$$
\begin{align*}
w & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-i\left(x_{p+1}^{2}+x_{p+2}^{2}+\cdots+x_{p+q}\right), \\
z & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}+i\left(x_{p+1}^{2}+x_{p+2}^{2}+\cdots+x_{p+q}\right), \quad p+q=n, i=\sqrt{-1} . \tag{2.5}
\end{align*}
$$

For any complex numbers γ and v, define

$$
\begin{align*}
S_{\gamma}(\omega) & =\frac{\omega^{(\gamma-n) / 2}}{W_{n}(\gamma)} \tag{2.6}\\
T_{v}(z) & =\frac{z^{(v-n) / 2}}{W_{n}(v)} \tag{2.7}
\end{align*}
$$

where

$$
\begin{equation*}
W_{n}(\gamma)=\frac{\pi^{n / 2} 2^{\gamma} \Gamma(\gamma / 2)}{\Gamma((n-\gamma) / 2)}, \quad W_{n}(v)=\frac{\pi^{n / 2} 2^{\nu} \Gamma(v / 2)}{\Gamma((n-v) / 2)} \tag{2.8}
\end{equation*}
$$

Lemma 2.4 (the convolution product of $R_{\beta}^{e}(v)$). The convolution $R_{\beta}^{e} * R_{\beta^{\prime}}^{e}=$ $R_{\beta+\beta^{\prime}}^{e}$ where R_{β}^{e} and $R_{\beta^{\prime}}$ are given by (2.2).

Proof. See [5, page 20].
Lemma 2.5 (the convolution product of $R_{\alpha}^{H}(x)$). The convolution product is given by
(i)

$$
\begin{equation*}
R_{\alpha}^{H} * R_{\alpha^{\prime}}^{H}=\frac{\cos (\alpha(\pi / 2)) \cos \left(\alpha^{\prime}(\pi / 2)\right)}{\cos ((\alpha+\beta) / 2) \pi} \cdot R_{\alpha+\alpha^{\prime}}^{H} \tag{2.9}
\end{equation*}
$$

where R_{α}^{H} and $R_{\alpha^{\prime}}^{H}$ are defined by (2.1) with p even,
(ii) $R_{\alpha}^{H} * R_{\alpha}^{H}=R_{\alpha+\alpha^{\prime}}^{H}+A_{\alpha, \alpha^{\prime}}$ for p odd, where

$$
\begin{gather*}
A_{\alpha, \alpha^{\prime}}=\frac{2 \pi i}{4} \frac{C\left(\left(-\alpha-\alpha^{\prime}\right) / 2\right)}{C(-\alpha / 2) C\left(-\alpha^{\prime} / 2\right)}\left[H_{\alpha+\alpha^{\prime}}^{+}-H_{\alpha+\alpha^{\prime}}^{-}\right], \\
C(r)=\Gamma(r) \Gamma(1-r), \\
H_{r}^{ \pm}=H_{r}(x \pm i 0, n)=e^{\mp r(\pi / 2) i} e^{ \pm q(\pi / 2) i} a\left(\frac{r}{2}\right)(u \pm i 0)^{(r-n) / 2}, \tag{2.10}\\
a\left(\frac{r}{2}\right)=\Gamma\left(\frac{n-r}{2}\right)\left(2^{r} \pi^{n / 2} \Gamma\left(\frac{r}{2}\right)\right)^{-1}, \\
(u \pm i 0, n)^{\lambda}=\lim _{\epsilon \rightarrow 0}(u \pm i \epsilon, n)^{\lambda},
\end{gather*}
$$

$u=u(x)$ is defined by (2.1) and $|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$ in particular $R_{\alpha}^{H} * R_{-2 k}^{H}=R_{\alpha-2 k}^{H}$ and $R_{\alpha}^{H} * R_{2 k}^{H}=R_{\alpha+2 k}^{H}$.

The proof of this lemma is given by Téllez [6, pages 121-123].
Lemma 2.6 (the convolutions product of $S_{\gamma}(w)$ and $\left.T_{v}(z)\right)$. The convolutions product is given by
(i) $S_{\gamma} * S_{y^{\prime}}=(i)^{q / 2} S_{\gamma^{\prime} \gamma^{\prime}}$,
(ii) $T_{v} * T_{v^{\prime}}=(-i)^{q / 2} T_{v+v^{\prime}}$ where S_{y} and T_{v} are defined by (2.6) and (2.7), respectively.

Proof. (i) Now

$$
\begin{equation*}
\left\langle S_{\gamma}(w), \varphi(x)\right\rangle=\frac{1}{W_{n}(\gamma)} \int_{\mathbb{R}^{n}} \omega^{(\gamma-n) / 2} \varphi(x) d x \tag{2.11}
\end{equation*}
$$

where $\varphi \in \mathscr{D}$ the space of infinitely differentiable function with compact supports. We have $\omega=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-i\left(x_{p+1}^{2}+x_{p+2}^{2}+\cdots+x_{p+q}^{2}\right), p+q=n$. By changing the variables $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{p}=y_{p}, x_{p+1}=y_{p+1} / \sqrt{-i}$, $x_{p+2}=y_{p+2} / \sqrt{-i}, \ldots$, and $x_{p+q}=y_{p+q} / \sqrt{-i}$. Thus we obtain $\omega=y_{1}^{2}+y_{2}^{2}+$ $\cdots+y_{p}^{2}+y_{p+1}^{2}+y_{p+2}^{2}+\cdots+y_{p+q}^{2}$. Let $r^{2}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{p+q}^{2}, p+q=n$. Thus (2.11) can be written in the form

$$
\begin{align*}
\left\langle S_{\gamma}(w), \varphi(x)\right\rangle & =\frac{1}{W_{n}(\gamma)} \int_{\mathbb{R}^{n}} r^{\gamma-n} \varphi \frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)} d y_{1} d y_{2} \cdots d y_{n} \\
& =\frac{1}{(-i)^{q / 2}} \frac{1}{W_{n}(\gamma)} \int_{\mathbb{R}^{n}} r^{\gamma-n} \varphi d y \tag{2.12}\\
& =\frac{(i)^{q / 2}}{W_{n}(\gamma)}\left\langle r^{\gamma-n}, \varphi\right\rangle .
\end{align*}
$$

Thus $S_{\gamma}(w)=\left((i)^{q / 2} / w_{n}(\gamma)\right) r^{\gamma-n}=(i)^{q / 2} R_{\gamma}^{e}(w)$ by (2.4).

Consider the convolution $S_{\gamma} * S_{\gamma^{\prime}}$. We have

$$
\begin{align*}
S_{\gamma} * S_{y^{\prime}} & =(i)^{q / 2} R_{\gamma}^{e}(w) *(i)^{q / 2} R_{\gamma^{\prime}}^{e}(w) \\
& =(i)^{q} R_{\gamma+\gamma^{\prime}}^{e}(w) \quad \text { by Lemma 2.4 and [1, pages 157-159] } \\
& =(i)^{q / 2}(i)^{q / 2} R_{\gamma+\gamma^{\prime}}^{e}(w) \tag{2.13}\\
& =(i)^{q / 2} S_{\gamma+\gamma^{\prime}} .
\end{align*}
$$

Similarly, for (ii) we also have

$$
\begin{equation*}
T_{v} * T_{v^{\prime}}=(-i)^{q / 2} T_{v+v^{\prime}} \tag{2.14}
\end{equation*}
$$

3. Main results

Theorem 3.1. Let $K_{\alpha, \beta, \gamma, v}$ be the distributional kernel defined by (1.5). Then we obtain the following:
(i) $K_{\alpha, \beta, \gamma, v} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}=K_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}, \nu+\nu^{\prime}}$ for $\alpha, \beta, \gamma, \nu, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$, and ν^{\prime} positive even numbers with $\alpha=\beta=\gamma=\nu, \alpha^{\prime}=\beta^{\prime}=\gamma^{\prime}=\nu^{\prime}$;
(ii) $K_{\alpha, \beta, \gamma, v} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}=B_{\alpha, \alpha^{\prime}} \cdot K_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}, \nu+v^{\prime}}$ for p even, $\alpha, \beta, \gamma, \nu, \alpha^{\prime}$, $\beta^{\prime}, \gamma^{\prime}$, and ν^{\prime} any complex numbers, and $B_{\alpha, \alpha^{\prime}}=\cos (\alpha \pi / 2) \cos \left(\alpha^{\prime} \pi / 2\right) /$ $\cos \left(\left(\alpha+\alpha^{\prime}\right) / 2\right) \pi ;$
(iii) $K_{\alpha, \beta, \gamma, v} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, v^{\prime}}=K_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}, v+v^{\prime}}+A_{\alpha, \alpha^{\prime}} * R_{\beta+\beta^{\prime}}^{e} * S_{\gamma+\gamma^{\prime}} * T_{v+v^{\prime}}$ for p odd, $\alpha, \beta, \gamma, \nu, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$, and v^{\prime} any complex numbers $R_{\beta}^{e}, S_{\gamma}$, and T_{v} defined by (2.4), (2.6), and (2.7), respectively. And

$$
\begin{gather*}
A_{\alpha, \alpha^{\prime}}=\frac{C\left(\left(-\alpha-\alpha^{\prime}\right) / 2\right)}{C(-\alpha / 2)} C\left(-\frac{\alpha^{\prime}}{2}\right) \cdot \frac{2 \pi i}{4}\left[H_{\alpha+\alpha^{\prime}}^{+}-H_{\alpha+\alpha^{\prime}}^{-}\right] \\
C(r)=\Gamma(r) \Gamma(1-r), \\
H_{r}^{ \pm}=H_{r}(u \pm i 0, n)=e^{\mp r(\pi / 2) i} e^{ \pm q(\pi / 2) i} a\left(\frac{r}{2}\right)(u \pm i 0)^{r-n / 2}, \tag{3.1}\\
a\left(\frac{r}{2}\right)=\Gamma\left(\frac{n-r}{2}\right)\left[2^{r} \pi^{n / 2} \Gamma\left(\frac{r}{2}\right)\right]^{-1}, \\
(u \pm i 0)^{\lambda}=\lim _{\epsilon \rightarrow 0}\left(u+i \in|x|^{2}\right)^{\lambda},
\end{gather*}
$$

where $u=u(x)$ is defined by (2.1) and

$$
\begin{equation*}
|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} . \tag{3.2}
\end{equation*}
$$

Proof. The proof of (i) follows from [3, Theorem 3.1, page 66]. The proof of (ii) and (iii) is obtained by Lemmas 2.4, 2.5, and 2.6.

REFERENCES

[1] W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.
[2] A. Kananthai, On the solutions of the n-dimensional diamond operator, Appl. Math. Comput. 88 (1997), no. 1, 27-37.
[3] A. Kananthai, S. Suantai, and V. Longani, On the weak solutions of the equation related to the diamond operator, Vychisl. Tekhnol. 5 (2000), no. 5, 61-67.
[4] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kōdai Math. Sem. Rep. 16 (1964), 69-87.
[5] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223 (French).
[6] M. A. Téllez and S. E. Trione, The distributional convolution products of Marcel Riesz' ultra-hyperbolic kernel, Rev. Un. Mat. Argentina 39 (1995), no. 3-4, 115-124.
A. Kananthai: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: malamnka@science.cmu.ac.th
S. Suantai: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: scmti005@chiangmai .ac.th

