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We introduce a distributional kernel Ky g,y,,, which is related to the operator &k
iterated k times and defined by &% = [(SF_,92/0x2)* - <z§?jg+1a2/ax§)4]k,
where p + g = n is the dimension of the space R" of the n-dimensional Eu-
clidean space, x = (x1,x2,...,Xn) € R", k is a nonnegative integer, and «, S, y,
and v are complex parameters. It is found that the existence of the convolution
Ku,,y,v * Ko g,y v 18 depending on the conditions of p and q.
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1. Introduction. The operator ®F can be factorized in the form
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where p + g = n is the dimension of the space R", i = /-1, and k is a non-

negative integer. The operator (37_,92/0x2)? - (Z;’:,ZH 62/3x57)2 is first in-

troduced by Kananthai [2] and named the Diamond operator denoted by
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We denote the operators L; and L, by
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Thus (1.1) can be written by
ok = okLkLk, (1.4)

Now consider the convolution R (u) * Rg(v) * Sy (w) * T, (z) where RH (u),
RE (v), Sy (w), and T, (z) are defined by (2.2), (2.4), (2.6), and (2.7), respectively.
We defined the distributional kernel Ky g,y by

Kepyw = RE (u) xR (v) %S, (w) * T, (2). (1.5)

Since the functions RY (u), Rg(v), Sy(w), and T, (z) are all tempered distribu-
tions and the supports of R¥ (1) and Rg(v) are compact (see [2, pages 30-31]
and [1, pages 152-153]), then the convolution on the right-hand side of (1.5)
exists and also is a tempered distributions. Thus Ky,,y,v is well defined and
also is a tempered distribution.

For ¢ = B =y = v = 2k, we obtain (—1)kK2k’2k’2k’2k as an elementary solution
of the operator @, see [3]. That is ®*(—1) Koy 2x2x2k(X) = & where § is the
Dirac-delta distribution and @* is defined by (1.4).

2. Preliminaries

DEFINITION 2.1. Let x = (x1,X2,...,Xn) € R™ and write

Sl —Xpia— = Xpig PHA=M.  (21)

X=X{+X5++X5-X
Denote by I'y = {x € R": x; > 0 and u > 0} the interior of forward cone and
T'; denote its closure. For any complex number «, we define the function

ule=n)/2 ¢
=, ifxer,,
RE(x) =1 Kn(o) ’ (2.2)

0, if x ¢TI,

where the constant K, («) is given by the formula

DRI (2+x-n)/2)T (1 - o) /2)T(x)
I[(2+a-p)/2)I((p-00/2) ’

Kn(x) = (2.3)

the function R is first introduced by Nozaki [4, page 72] and is called the
ultra-hyperbolic kernel of Marcel Riesz. Hence R (x) is an ordinary function
if Re(x) > n and is a distribution of « if Re() < n. Let supp R¥ (u) c T, where
supp R (u) denotes the support of R (u).
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DEFINITION 2.2. Let X = (X1,X2,...,X,) € R" and write v = X + x5 + - - - +
x2.
For any complex number f, define the function

v (B-n)/2

Wn(B) " 24

Ri(v) =

where W, (B) = w"/22PT(B)/T((n—B)/2), the function Rg(v) is called the el-
liptic kernel of Marcel Riesz and is ordinary function if Re(8) = n and is a
distribution of B if Re(B) < n.

DEFINITION 2.3. Let x = (x1,X>2,...,X;,) be a point of the space R". Write

22 2 (g2 2
W=X]+X5+ X, — Xy T Xpup 0+ Xpig)s

Z=X{H+XT+ A Xy U(XG X+ Xprg), PHA=n, i=V-L.

(2.5)
For any complex numbers y and v, define
wy-m/2
Sﬂw)=7ﬁxﬂa (2.6)
Z(v-n)/2
Ty(z) = Wo(v) (2.7)
where
T22YT (y/2) 22T (v /2)
W, = —— Whn = — 2.
"= Ty Y T ) =8

LEMMA 2.4 (the convolution product of Rg(v)). The convolution RE * Rg, =
RE+B’ where Rg and Rg' are given by (2.2).

PROOEF. See [5, page 20]. O

LEMMA 2.5 (the convolution product of RE (x)). The convolution product is
given by
@)

cos ((1/2))cos (' (11/2))
cos ((x+p)/2)m Recrors (2.9)

H H _
RY % RY, =

where RY and Rf(, are defined by (2.1) with p even,
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(i) RY «RE =RH . +Anw for p odd, where

2mi C((—x—a')/2) HY . _H-

AD(,D(’ =TC(—(X/2)C(—(X’/2)[ o+’ 0(+0(’]=

Cr)=TT1Q-7),

. _ . (T ,
H} = Hy(x+i0,n) = e*“”/2>‘eiq<"/2”a(§) (u+i0)"m72,

o(5) (5 ()

(u=i0,n) = lir%(u +ie,n)A,
P

(2.10)

u = u(x) is defined by (2.1) and | x| = (x3 + x5 + - - - +x2) 12 in particu-
lar R xR%, =R ,, and RE «RY, =RY .

The proof of this lemma is given by Téllez [6, pages 121-123].

LEMMA 2.6 (the convolutions product of Sy (w) and T,(z)). The convolu-
tions product is given by
1) Sy*Sy = ()28,
(i) Ty * Ty = (—i)4?Ty,, where S, and T, are defined by (2.6) and (2.7),
respectively.

PROOF. (i) Now

1
Wi (y)

(S, (W), (x)) = JWwW—”VZqo(x)dx, @2.11)

where @ € 9 the space of infinitely differentiable function with compact sup-
ports. We have w = x§ +x3 + - + X2 —i(X5, + X5, 0+ - +X2,,), p+q =N.
By changing the variables x1 = Y1, X2 = ¥2,...,Xp = Yp, Xp+1 = yp+1/J?i,
Xp+2 = Vp+2/V—1,-.., and Xpiq = Vp+q//—1. Thus we obtain w = y7 + y3 +
YRV Vi A Vg Let Y =yl yi kYR pd =
Thus (2.11) can be written in the form

- pyngy dX1 X200 Xn)

W‘I’L(y) R7 a(y1’y2v-'-!yn)
1 1

- S |

—D)A2 Woly) Jun' P (2.12)

(l‘)tI/Z

S Wa(y)

<Sy(w),(l9(x)) Ay dys---dyn

(" @).

Thus Sy (w) = (D)4 Jw, (y)ry " = (i)q/2R§(w) by (2.4).
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Consider the convolution Sy, * S,/. We have

Sy xSy = (1)V°RS (w) * (1)V°R, (w)

= (i)1R°, ,(w) by Lemma 2.4 and [1, pages 157-159]

o (2.13)
— ({)4/2({)a/2 :
= ()T (D)VR5,, (W)
= (i)q/25y+y’-
Similarly, for (ii) we also have
Ty *x Ty = (—1)9? Ty, (2.14)
O

3. Main results

THEOREM 3.1. Let Ky g,y be the distributional kernel defined by (1.5). Then
we obtain the following:
(i) Ktx,B,y,v * Ktx’,/S’,y’,v’ = Ktx+¢x’,5+,8’,y+y’,v+v’ fOI’ &, By YV, (X’,ﬁ’,)/,, and v'
positive even numbers with x ==y =v, &' = =y =v';

(i1) Ktx,B,y,v *Ktx’,ﬁ’,y’,v’ = Ba,cx’ 'KO(+0(’,B+ﬁ’,y+y’,v+v’ fOl" p even, ‘XsB: Y,V, 0(,:
B',y’,andv’ any complex numbers, and By, = cos(xTr/2) cos(c'1r/2)/
cos((x+ ') /2)m;

(i) Ktx,[%,y,v * Ko(’,B’,y’,v’ = Ktx+(x’,[§+B’,y+y’,v+v’ +A¢x,¢x’ *prrﬁ’ * Sy+y’ * Ty qyr
for p odd, o, B,y,v,',B,y’, and v' any complex nhumbers Rg, Sy, and
T, defined by (2.4), (2.6), and (2.7), respectively. And

CC(ca-a)/2) (N 2mip o,
Awx =200 2) (-G ) F e~ Hae,

2 4 x+o’ o+’
Cr)=TIra-r),
Hy = Hy(u+i0,n) = ew("/”"eiq("/z)ia<g> (u=i0)""2, (3.1)

(-]

(u+i0)A = ling(u+ie 1x]2)%,
P,
where u = u(x) is defined by (2.1) and

Ix| = (x2+x%+---+x2)'2 (3.2)

PROOF. The proof of (i) follows from [3, Theorem 3.1, page 66]. The proof
of (ii) and (iii) is obtained by Lemmas 2.4, 2.5, and 2.6. O
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