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We study the functions of correlation K(n,m) = 〈X(n),X(m)〉 of certain se-
quences: X(n) = Tnx0, x0 ∈ H where T is a contraction in Hilbert space H. By
using the spectral methods of the nonunitary operators, we give the general form
of K(n,m) and its asymptotic behaviour limp→+∞K(n+p,m+p).
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1. Introduction. Let X(n) (n ∈ A = IN or Z) be a sequence of elements of

a separable Hilbert space H. The function of correlation of X(n) is given by

formula

K(n,m)= 〈X(n),X(m)〉. (1.1)

If the function of correlation depends only on the difference of arguments, that

is, K(n,m)=K(n−m), one calls that X(n) is stationary. Kolmogorov (see [4])

showed that if X(n) is stationary and A= Z , then

X(n)=Unx0, x0 =X(0), (1.2)

where U is a unitary operator acting in the subspace HX which is defined as

the closed linear envelope of X = {X(n); n∈ Z}. This representation as well as

the spectral theory of the monoparametric groups of unitary operators allowed

to find the general form of the function K(n,m) in the stationary case. More

exactly, one has (see [4])

K(n,m)=
∫ +π
−π
ei(n−m)λdFX(λ), (1.3)

where FX is real function, continuous on the left and nondecreasing on [−π ;+π]
such that FX(−π)= 0. This function is called spectral function of X(n).

In this paper, we are interested in some sequences of the form

X(n)= Tnx0, x0 ∈H, (1.4)

http://dx.doi.org/10.1155/S0161171203201034
http://dx.doi.org/10.1155/S0161171203201034
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


1856 BERRABAH BENDOUKHA

where T is a linear contraction (‖T‖ ≤ 1) in H. Such sequences are called lin-

early representable and were introduced by Yansevitch [8, 9]. They represent

a natural generalization of the sequences of the form (1.2). But they were es-

pecially introduced like the analogue of the processes of the form

Y(t)= eitAy0, (1.5)

where A is a dissipative ((A−A∗)/i≥ 0) operator in H. The correlation theory

of these processes constituted a remarkable field of application for the spectral

theory of nonselfadjoint operators [2, 3, 5, 10].

Necessary and sufficient criteria in terms of function of correlation for linear

representability (1.4) are established by the following theorem [8].

Theorem 1.1. A given function K(n,m) is the function of correlation of a

certain sequence X(n)= Tnx0 if and only if there exists a constant C (0≺ C ≺
+∞) such that

N∑
n,m=0

K(n,m)λnλm ≥ 0,

∣∣∣∣∣∣
N∑
n=0

M∑
m=0

(
K(n+1,m)−K(n,m))λnµm

∣∣∣∣∣∣
2

≤ C ·
N∑

n,p=0

K(n,p)λnλp ·
M∑

m,q=0

K(m,q)µmµq

(1.6)

for every (λn)Nn=0 and (µm)Mm=0 in the field of complex numbers.

Definition 1.2. LetX(n)= Tnx0 be a linearly representable sequence. The

difference of correlation of X(n) is the function

W(n,m)=K(n,m)−K(n+1,m+1). (1.7)

It is clear that in the stationary case, W(n,m)= 0.

Formula (1.7) implies that, for every natural p ≥ 1,

K(n,m)=K(n+p,m+p)+
p−1∑
j=0

W(n+j,m+j), (1.8)

what gives, for p→+∞,

K(n,m)= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

W(n+j,m+j). (1.9)
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Furthermore, since (I−T∗T) is selfadjoint, then

(
I−T∗T)= r∑

k=1

〈·;gk〉·gk, gk ∈
(
I−T∗T)H, r = dim

(
I−T∗T)H. (1.10)

Hence,

K(n,m)= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

W(n+j,m+j)

= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

〈(
I−T∗T)X(n+j);X(m+j)〉

= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

r∑
k=1

〈
X(n+j);gk

〉·〈gk;X(m+j)〉

= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

r∑
k=1

Φk(n+j)·Φk(m+j),

Φk(n)=
〈
X(n);gk

〉= 〈Tnx0;gk
〉
.

(1.11)

Consequently, the study of linearly representable sequences can be carried out

in two stages.

(a) To find the limit limp→+∞K(n+p,m+p).
(b) To give the explicit expression of the quantity Φk(n).

In [8], the case when dim(I−T∗T)H = 1 was considered and the spectrum of

T is made up only of eigenvalues {λk}+∞k=1 such that |λk| ≺ 1, k≥ 1. In this case,

one has [8]

lim
p→+∞K(n+p,m+p)= 0,

K(n,m)=
+∞∑
j=0

Φ(n+j)·Φ(m+j),

Φ(n)=
+∞∑
k=1

f0k · −1
2πi

√
1−∣∣λk∣∣2

∮
Γ

λn

λ−λk
k−1∏
j=1

1−λ·λj
λ−λj ·

∣∣λj∣∣
λj

·dλ,

+∞∑
k=1

∣∣f0k
∣∣2 ≺+∞,

(1.12)

where Γ is a closed contour containing all the spectrum of T .

Let T be a simple contraction (i.e., there is no invariant for T and T∗ subspace

in which, T induces a unitary operator) with spectrum σ(T) on the circle unit.

It is known [1] that there exists an increasing function α on the interval [0, l]
(l� 0) such that

σ(T)= {e−iα(x) : x ∈ [0, l]}. (1.13)
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Definition 1.3. Say that X(n)= Tnx0 belongs to the class D(r)[α] if T is

a contraction such that (1.13) holds and dim(I−T∗T)H ≤ r .

Throughout this paper, we will suppose that α is a continuous function. In

this case, we will prove the following results.

Theorem 1.4. Let Tnx0 be an element of class D(r)[α]. Assume that T is

simple. Then,

K(n,m)= K̃∞(n−m)+F(n−m)+
+∞∑
j=0

r∑
k=1

Φk(n+j)·Φk(m+j),

Φk(n)=− 1
2πi

∮
Γ
λn ·

{ √
2e−x

e−iα(x)−λ
∫ l

0
Ψ0k(x)·e2

∫x
0 (e−iα(t)/e−iα(t)−λ)dtdx

}
dλ,

(1.14)

where Ψ0k ∈ L2
[0;l], Γ is any closed contour containing all the spectrum of T ,

F(n−m) is a Hermitian nonnegative function which equals zero in the case

when dim(I − T∗T)H = 1, and K̃∞(n−m) is defined by the spectrum of T .

Moreover, if T has a singular spectrum or the measurement of the intersection

of its spectrum with the unit circle is null, then K̃∞(n−m)= F(n−m)= 0.

Theorem 1.5. If a function K(n,m) admits the representation (1.14), then

there exists a linearly representable sequence X(n) = Tnx0 such that X(n) ∈
D(r)[α] and the function of correlation of X(n) equals K(n,m).

Throughout this paper,H is a separable Hilbert space and⊕ denotes orthog-

onal sum.

2. On the structure of limp→+∞K(n+p,m+p)
Proposition 2.1. If T is a contraction in H, then the sequence An = T∗nTn

admits a positive strong limit R = s · limn→+∞ T∗nTn which verifies the relation

T∗nRTm = RTm−n (n≥m). (2.1)

Moreover, if T is invertible, then

T∗nR = RT−n. (2.2)

Proof. The existence and positivity of R are a consequence of the fact that

the sequence An is a decreasing and bounded sequence of positive operators.

Formulas (2.1) and (2.2) are verified easily.

Corollary 2.2. If X(n)= Tnx0 ∈D(r)[α], then

lim
p→+∞K(n+p,m+p)=K∞(n−m)=

〈
RTn−mx0,x0

〉
,

lim
p→+∞W(n+p,m+p)= 0.

(2.3)
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Consider now the sequence

Ψ̂(x,n)= T̂ nΨ0(x), Ψ0 ∈ L2
[0;l] (l≺∞), (2.4)

(
T̂ f
)
(x)= e−iα(x)f (x)−2e−iα(x)+x

∫ l
x
e−tf (t)dt. (2.5)

A direct calculation shows that σ(T)= {e−iα(x) : x ∈ [0, l]} and

(
I− T̂∗T̂)= 〈·;g〉·g (

g(x)=
√

2e−x
)
. (2.6)

Hence, the sequence Ψ̂(x,n) is an element of the class D(1)[α].
For every u∈ [0, l], let

L2
[u;l] =

{
f ∈ L2

[0;l] : f(x)= 0 for x ∈ [0, l]}. (2.7)

Let also Pu be the orthoprojector of L2
[0;l] on L2

[u;l].

Proposition 2.3. The sequence An(u)= T∗nPuTn admits a positive strong

limit Ru which verifies the relation T∗nRuTm = RuTm−n (n≥m). Moreover, if

T is invertible, then T∗nRu = RuT−n.

Pose that

L0(n,u)=
〈
Pu
(
Ψ̂(x,n)

)
, Ψ̂(x,n)

〉= ∫ l
u

∣∣Ψ̂(t,n)∣∣2dt,

K̂(n,m,u)= 〈Pu(Ψ̂(x,n)), Ψ̂(x,m)〉,
Ŵ (n,m,u)= K̂(n,m,u)−K̂(n+1,m+1,u)=y(u,n)·y(u,m),

y(u,n)=
√

2eu
∫ l
u
e−t · Ψ̂(t,n)dt.

(2.8)

For n≥m,

K̂(n,m,u)= K̂(n−m,0,u)−
m∑
j=1

Ŵ(n−j,m−j,u)

= K̂(n−m,0,u)−
m−1∑
j=0

Ŵ(n−m+j,j,u).
(2.9)

Thus, for p ≥ 1,

K̂(n+p,m+p,u)= K̂(n−m,0,u)−
m+p−1∑
j=0

Ŵ(n−m+j,j,u). (2.10)
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Let τ =n−m and K̂∞(n−m,u)= limp→+∞ K̂(n+p,m+p,u). Then,

K̂∞(n−m)= K̂(τ,0,u)−
+∞∑
j=0

y(u,τ+j)y(u,j). (2.11)

Let

Lp(τ,u)= K̂(τ,0,u)−
p−1∑
j=0

y(u,τ+j)y(u,j) (p ≥ 1). (2.12)

Then,

K̂∞(τ,u)= lim
p→+∞Lp(τ,u),

Lp(0,u)= K̂(0,0,u)−
p−1∑
j=0

y(u,j)y(u,j)= K̂(p,p,u)= L0(p,u),

K0(u)= lim
p→+∞Lp(0,u)= lim

p→+∞L0(p,u)=
〈
RuΨ0,Ψ0

〉
.

(2.13)

Theorem 2.4. The function K̂∞(τ,u) admits the following representation:

K̂∞(τ,u)=−
∫ l
u
eiτα(x)dK0(x). (2.14)

In particular,

K̂∞(n−m)=−
∫ l

0
ei(n−m)α(x)dK0(x). (2.15)

Proof. Remark that K0 is a decreasing function. Thus integrals in (2.14)

and (2.15) exist. A direct but long calculation makes it possible to affirm that

d
du

(
Lp(τ+1,u)

)= eiα(u)( d
du

Lp(τ,u)
)
+
√

2y(u,τ+p)y(u,p−1)

+2y(u,τ+p)Ψ(u,p−1).
(2.16)

Hence,

d
du

(
Lp(τ,u)

)= eiτα(u)( d
du

L0(p,u)
)

+
√

2y(u,p−1)
τ∑
j=1

ei(1−j)α(u) ·y(u,τ+p−j)

+2Ψ(u,p−1)
τ∑
j=1

ei(1−j)α(u) ·y(u,τ+p−j).

(2.17)
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Let

I1 =−
∫ l
u
eiτα(x)

(
d
dx

L0(p,x)
)
dx,

I2 =−
√

2
∫ l
u
y(x,p−1)

τ∑
j=1

ei(1−j)α(x) ·y(x,τ+p−j)dx,

I3 =−2
∫ l
u
Ψ(x,p−1)

τ∑
j=1

ei(1−j)α(x) ·y(x,τ+p−j)dx,

(2.18)

then

Lp(τ,u)= I1+I2+I3. (2.19)

By using the theorem of Lebesgue about dominated convergence, one can show

that I2 = I3 = 0. Thus,

Lp(τ,u)=−
∫ l
u
eiτα(x)d

(
L0(p,x)

)
. (2.20)

Furthermore,

L0(p,x)=
∫ l
x

∣∣Ψ̂(t,p)∣∣2dt (2.21)

is an absolutely continuous function in x. Moreover, since operator T̂ is a

contraction, then

L0(p,x)=
∫ l
x

∣∣Ψ̂(t,p)∣∣2dt ≤
∫ l

0

∣∣Ψ̂(t,p)∣∣2dt ≤ ∥∥Ψ̂0

∥∥2. (2.22)

That means that the sequence Vp (p ≥ 1) of total variation of L0(p,x) on [0, l]
is bounded. Moreover, function eiτα(x) is continuous. Thus,

lim
p→+∞Lp(τ,u)=−

∫ l
u
eiτα(x) d

(
lim
p→+∞L0(p,x)

)
=−

∫ l
u
eiτα(x) dK0(x).

(2.23)

It is known [6] that if the X(n) = Tnx0 ∈ D(1)[α] and T is simple, then

T = U−1T̂U where U is a unitary operator from H into L2
[0;l]. Hence, from

Theorem 2.4, the following theorem follows.

Theorem 2.5. Let X(n) = Tnx0 ∈D(1)[α]. Suppose that T is simple. Then,

there exists an increasing function β on [0, l] such that

K∞(n−m)= lim
p→+∞K(n+p,m+p)=

∫ l
0
ei(n−m)α(x) dβ(x). (2.24)
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Consider now the space Lr2 = L2
[0;l] ⊕···⊕ L2

[0;l] (r times), with scalar product:

〈f ;g〉r =
r∑
j=1

∫ l
0
fj(x)·gj(x)dx, f = (f1, . . . ,fr

)
, g = (g1, . . . ,gr

)
. (2.25)

In this space, define the operator T(r)= T̂ ⊕···⊕ T̂ as follows:

(
T(r)

)(
f1, . . . ,fr

)= (T̂ f1, . . . , T̂ fr
)
. (2.26)

Every sequence of the form

Ψ̃(x,n)= (T(r))n(Ψ̃0(x)
)= (T̂ n(Ψ̃01

)
, . . . , T̂ n

(
Ψ̃0r

))
,

Ψ̃0 =
(
Ψ̃01, . . . , Ψ̃0r

)∈ Lr2 , (2.27)

is an element of class D(r)[α] (see [1]). The following relations hold immedi-

ately:

K̃∞(n−m)= lim
p→+∞K̃(n+p,m+p)=

r∑
j=1

K̂(j)∞ (n−m),

K̂(j)∞ (n−m)=−
∫ l

0
ei(n−m)α(x)dK(j)0 (x),

K(j)0 (x)= 〈RxΨ0j ,Ψ0j
〉
, (j = 1, . . . ,r ).

(2.28)

Theorem 2.6. Let X(n) = Tnx0 ∈D(r)[α]. Suppose that T is simple. Then,

there exists r increasing functions {βj}rj=1 on [0, l] and there exists a Hermitian

nonnegative function F(n−m) such that

K∞(n−m)=
r∑
j=1

∫ l
0
ei(n−m)α(x) dβj(x)+F(n−m). (2.29)

Proof. According to [1], there exists a unitary operator B defined in a

Hilbert space M such that operator T is unitarily equivalent to the restric-

tion of operator B(r) = T(r)⊕B on a certain invariant subspace Θ ⊂ Lr2⊕M ,

that is, T =U−1B(r)U where U is a unitary operator from H into Θ. Thus,

K(n+p,m+p)= 〈Tn+px0;Tm+px0
〉

= 〈U−1B(r)n+pU
(
x0
)
;U−1B(r)m+pU

(
x0
)〉

= 〈B(r)n+p(f0
)
;B(r)m+p

(
f0
)〉
,

(2.30)

where f0 =U(x0)= Ψ̃0+xM ∈Θ (Ψ̃0 ∈ Lr2 , xM ∈M).
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Since B(r)n = T(r)n⊕Bn, then

K(n+p,m+p)= 〈T(r)n+p(Ψ̃0
)
;T(r)m+p

(
Ψ̃0
)〉

+〈Bn+p(xM);Bm+p(xM)〉
= 〈T(r)n+p(Ψ̃0

)
;T(r)m+p

(
Ψ̃0
)〉

+〈Bn−m(xM);xM〉.
(2.31)

Let F(n−m)= 〈Bn−m(xM);xM〉. It is clear that function F(n−m) satisfies all

conditions of Theorem 2.6. Finally, one has

K∞(n−m)= lim
p→+∞K(n+p,m+p)

= lim
p→+∞

〈(
T(r)

)n+p(Ψ̃0
)
;
(
T(r)

)m+p(Ψ̃0
)〉+F(n−m)

= K̃∞(n−m)+F
(
n−m).

(2.32)

To complete the demonstration, it is enough to notice that

K̃∞(n−m)=
r∑
j=1

K̂(j)∞ (n−m)=
r∑
j=1

∫ l
0
ei(n−m)α(x) dβj(x). (2.33)

We now will see two situations where K∞(n−m)= 0.

Proposition 2.7. Let X(n) = Tnx0 ∈ D(r)[α]. If T is simple and the mea-

surement of the intersection of its spectrum with the circle unit is null, then

K∞(n−m)= 0.

Proof. One has

∣∣K(n+p,m+p)∣∣2 = ∣∣〈Tn+px0;Tm+px0
〉∣∣2

≤ ∥∥Tn+px0

∥∥2 ·∥∥Tm+px0

∥∥2.
(2.34)

Under these assumptions, one has according to [7]

lim
p→+∞

∥∥Tn+px0

∥∥2 = lim
p→+∞

∥∥Tm+px0

∥∥2 = 0. (2.35)

Theorem 2.8. Let Tnx0 be an element of class D(r)[α] and let σ(t) =
mes·{x ∈ [0, l] :α(x)≺ t}, t ∈ [α(0);α(l)], be the repartition function of α. If

T is simple and σ singular, then K∞(n−m)= 0.

Proof. Under these assumptions, operator T is unitarily equivalent to

operator T(r) (see [1]). Thus, K∞(n−m) = K̃∞(n−m). But in this case, the
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characteristical function S̃(λ) of operator T(r) satisfies the following relations

(see [1, 7]):

det S̃(λ)= exp

{∫ l
0

(
eiα(t)+λ)(eiα(t)−λ)−1dt

}

= exp

{
−
∫ α(l)
α(0)

(
eit+λ)(eit−λ)−1dσ(t)

}

= exp

{
−
∫ 2π

0

(
eit+λ)(eit−λ)−1dν(t)

}
,

(2.36)

where

ν(t)=
σ(t), t ∈ [0, l],

0, t ∉ [0, l]
(2.37)

is a singular function. Thus det S̃(λ) is an interior function and according to [1],

for every Ψ̃ = (Ψ̃1, . . . , Ψ̃r )∈ Lr2, limp→+∞‖Tn+px0‖2 = 0. By using the same rea-

soning that in Proposition 2.7, one shows that K∞(n−m) = K̃∞(n−m) = 0.

3. General form of K(n,m)

Theorem 3.1. Let Tnx0 be an element of class D(r)[α]. Assume that T is

simple. Then,

K(n,m)= K̃∞(n−m)+F(n−m)+
+∞∑
j=0

r∑
k=1

Φk(n+j)·Φk(m+j),

Φk(n)= −1
2πi

∮
Γ
λn ·

{ √
2e−x

e−iα(x)−λ
∫ l

0
Ψ0k(x)·e2

∫x
0 (e−iα(t)/e−iα(t)−λ)dtdx

}
dλ,

(3.1)

where Ψ0k ∈ L2
[0;l] and F(n−m) is a Hermitian nonnegative function.

Proof. Using the same reasoning that in Theorem 2.6, one can affirm that

K(n,m)= K̃(n,m)+F(n−m), (3.2)

where F(n−m) satisfies the conditions of Theorem 3.1. According to (1.11),

K̃(n,m)= lim
p→+∞K(n+p,m+p)+

+∞∑
j=0

r∑
k=1

Φk(n+j)·Φk(m+j),

Φk(n)=
〈(
T(r)

)n(Ψ̃0
)
;gk
〉
,

(
I−(T(r))∗(T(r)))= r∑

k=1

〈·;gk〉·gk.
(3.3)
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One has (see [1])

gk = hk ·ek, hk(x)=
√

2e−x, (3.4)

where ek (k= 1, . . . ,r ) is the canonical basic in Cr . Thus,

Φk(n)=
〈(
T(r)

)n(Ψ̃0
)
;gk
〉= Φk(n)= 〈T̂ n(Ψ̃0k

)
;hk

〉
. (3.5)

Since T̂ is bounded, then

T̂ n = −1
2πi

∮
Γ
λn
(
T̂ −λ·I)−1dλ, (3.6)

where Γ is a closed contour containing all the spectrum of T̂ .

Consequently,

Φk(n)= −1
2πi

∮
Γ

〈
λn
(
T̂ −λ·I)−1(Ψ̃0k

)
;hk

〉
dλ

= −1
2πi

∮
Γ
λn
〈
Ψ̃0k;

(
T̂∗−λ·I)−1(hk)〉. (3.7)

A direct calculation shows that the form Φk(n) is as in (3.1).

Theorem 3.1 admits the following reciprocal.

Theorem 3.2. If a function K(n,m) admits the representation (3.1), then

there exists a linearly representable sequence X(n) = Tnx0 such that X(n) ∈
D(r)[α] and the function of correlation of X(n) equals K(n,m).

Proof. Since F(n−m) is a Hermitian nonnegative function, there exists

(see [4]) a unitary operator S defined in a Hilbert space M such that

F(n−m)= 〈SnxM,SmxM〉, (
xM ∈M

)
. (3.8)

By the functions α and {Ψ̃0k}rk=1 appearing in representation (3.1), construct,

in the space Lr2, the sequence

Ψ̃(x,n)= (T(r))n(Ψ̃0(x)
)= (T̂ n(Ψ̃01

)
, . . . , T̂ n

(
Ψ̃0r

))
, (3.9)

where operator T is defined in L2
[0;l] by formula (2.5). Let H denotes the Hilbert

space L2
r ⊕M with scalar product:

〈
g+YM,g′ +Y ′M

〉= 〈g,g′〉L2
r
+〈YM,Y ′M〉M. (3.10)
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In this space, define the operator T = T(r) ⊕ S by T(g + yM) = T(r)(g)
+ S(yM). Operator T is a contraction and dim(I −T∗T)H = r . Thus, the se-

quence X(n) = Tn(f + xM) = X(n)+ SnxM is an element of class D(r)[α]
whose function of correlation equals the given function K(n,m).
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ory, Teor. Funktsĭı Funktsional. Anal. i Prilozhen. (1986), no. 45, 139–141
(Russian).

[9] , Nonstationary sequences in Hilbert space. II. Spectral representations,
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