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ON A NONLINEAR COMPACTNESS LEMMA IN Lp(0,T ;B)
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We consider a nonlinear counterpart of a compactness lemma of Simon (1987),
which arises naturally in the study of doubly nonlinear equations of elliptic-
parabolic type. This paper was motivated by previous results of Simon (1987),
recently sharpened by Amann (2000), in the linear setting, and by a nonlinear
compactness argument of Alt and Luckhaus (1983).
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1. Introduction. Typical applications where the compactness argument

stated below is useful are those in which the following kind of doubly non-

linear equations arises:

dB(u)
dt

+A(u)= f , (1.1)

where A is elliptic and B is monotone (not strictly). It is the case, for example,

in porous medium, semiconductor equations, and so forth.

In our application, we considered the injection moulding of a thermoplastic

with a mold of small thickness with respect to its other dimensions. By aver-

aging Navier-Stokes equations across the thickness of the mold and under an

assumption (of Hele-Shaw) stating that the velocity field is proportional to the

pressure gradient, the pressure equation can be written as a doubly nonlinear

equation [3].

Note that in this context, the equation can degenerate to an elliptic one. In

order to get existence of a solution, one usually perform a time discretiza-

tion, use some result on elliptic operator, and pass to the limit as the time

step goes to zero. In nonlinear problems, compactness in time and space is

then required. The compactness in space is easily obtained for u from a coer-

civeness assumption on the elliptic part A, but we have no estimate on ∂u/∂t
since B could degenerate. Theorem 2.1 uses the space compactness of u and

some time regularity on B(u) to derive a compactness for B(u), which in turn

can be useful to pass to the limit in nonlinear terms of A (provided A has an

appropriate structure, e.g., B-pseudomonotone [4]).

2. Main result. We consider two Banach spaces E1 and E2. Let T > 0, p ∈
[1,+∞], and B a (nonlinear) compact operator from E1 to E2, that is, which

maps bounded subsets of E1 to relatively compact subsets of E2.
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Theorem 2.1. Let U be a bounded subset of L1(0,T ;E1) such that V = B(U)
is a subset of Lp(0,T ;E2) bounded in Lr (0,T ;E2) with r > 1. Assume that

lim
h→0+

∥∥v(·+h)−v∥∥Lp(0,T−h;E2) = 0 uniformly for v ∈ V. (2.1)

Then V is relatively compact in Lp(0,T ;E2) (and in �(0,T ;E2) if p =+∞).

Remark 2.2. (1) One can easily check that Theorem 2.1 holds if we assume

only U bounded in L1
loc(0,T ;E1) and V bounded in Lrloc(0,T ;E2).

(2) In the case where B is the canonical injection from E1 to E2, the assump-

tion on B corresponds to the compactness of the embedding of E1 into E2, and

the conclusion falls in the scope of previous results of Simon [5, Theorem 3].

(3) The point in this result is that we do not make any structural assumption

on B (e.g., strict monotony which would fall in the scope of results of Visintin

[6]) except compactness. Note that in the case of a compact embedding of E1

into E2, B needs only to be continuous from E1 to E2 for the E2-topology.

Idea of the proof. A sufficient condition for compactness is to prove that

for each couple (t1,t2),
∫ t2
t1 v(t)dt describes a relatively compact subset of E2

as v describes V . First, the u(t), u∈U , are truncated in norm at height M > 0

and form a bounded subset of E1 which B maps to a relatively compact subset

VM(t) of E2. The key point is that, thanks to equi-integrability assumption,∫ t2
t1 v(t)dt can be approximated uniformly in v by Riemann sums involving

truncated elements of the VM(t).

Proof. Thanks to the equi-integrability (2.1) of V and results of [5], we only

have to prove that for each (t1, t2) such that 0< t1 < t2 < T , the set

K =
{∫ t2

t1
v(t)dt, v ∈ V

}
(2.2)

is relatively compact in E2. For that purpose, we introduce for u∈U andM > 0

the measurable subset of [0,T ] defined by

GMu =
{
t ∈ [0,T ], ∥∥u(t)∥∥E1

>M
}
. (2.3)

From our assumptions on U , there exists a constant C > 0 such that

∀u∈U, ‖u‖L1(0,T ;E1) ≤ C, (2.4)

and since we have

meas
(
GMu

)=
∫
GMu

1dt ≤
∫
GMu

∥∥u(t)∥∥E1

M
dt ≤ C

M
, (2.5)
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that gives

lim
M→+∞

meas
(
GMu

)= 0, uniformly in u. (2.6)

Introducing the truncated functions

uM(t)=

u(t) if t �∈GMu ,

0 otherwise,
(2.7)

we have by construction

∀M > 0, ∀u∈U, ∀t ∈ [0,T ], ∥∥uM(t)∥∥E1
≤M. (2.8)

Lemma 2.3. Under condition (2.1), K can be uniformly approximated by Rie-

mann sums involving elements of the form vM(t) = B(uM(t)) in the following

sense: given ε > 0, there exist integers N and M such that for all v = B(u)∈ V ,

there exists sN,Mv ∈ ]0,h[ such that

∥∥∥∥∥∥
∫ t2
t1
v(t)dt−

N∑
i=1

hvM
(
ξNi−1+sN,Mv

)∥∥∥∥∥∥
E2

< ε, (2.9)

where h= (t2−t1)/N and ξNi = t1+ih.

Proof. We first note that

∫ t2
t1
v(t)dt−

N∑
i=1

hvM
(
ξNi−1+sN,Mv

)

=
∫ t2
t1


v(t)− N∑

i=1

vM
(
ξNi−1+sN,Mv

)
χ]ξNi−1,ξ

N
i ]
(t)


dt.

(2.10)

Then we prove the following inequality, where r ′ stands for the conjugate

exponent of r :

1
h

∫ h
0

∫ t2
t1

∥∥∥∥∥∥v(t)−
N∑
i=1

vM
(
ξNi−1+s

)
χ]ξNi−1,ξ

N
i ]
(t)

∥∥∥∥∥∥
E2

dtds

≤ 2T 1−1/p sup
σ∈[−h,h]

∥∥v(·+σ)−v∥∥Lp(0,T−σ ;E2)

+2
(
measGMu

)1/r ′∥∥v−B(0)∥∥Lr (0,T ;E2).

(2.11)
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Denote by I the left-hand side of the stated inequality. Then

I = 1
h

∫ h
0

N∑
i=1

∫ ξNi
ξNi−1

∥∥v(t)−vM(ξNi−1+s
)∥∥
E2
dtds

= 1
h

N∑
i=1

∫ ξNi
ξNi−1

∫ ξNi
ξNi−1

∥∥v(t)−vM(s)∥∥E2
dtds.

(2.12)

Using Fubini’s theorem and setting σ = s−t, we get

I = 1
h

N∑
i=1

∫ ξNi
ξNi−1

∫ ξNi −t
ξNi−1−t

∥∥v(t)−vM(t+σ)∥∥E2
dσ dt, (2.13)

which gives, thanks to a new application of Fubini’s theorem,

I = 1
h

∫ h
−h

N∑
i=1

∫min(ξNi ,ξ
N
i −σ)

max(ξNi−1,ξ
N
i−1−σ)

∥∥v(t)−vM(t+σ)∥∥E2
dtdσ

≤ 1
h

∫ h
−h

∫min(t2,t2−σ)

max(t1,t1−σ)

∥∥v(t)−vM(t+σ)∥∥E2
dtdσ.

(2.14)

From the definition of vM , we thus have

I ≤ 1
h

∫ h
−h

∫min(t2,t2−σ)

max(t1,t1−σ)

∥∥v(t)−v(t+σ)∥∥E2
dtdσ

+ 1
h

∫ h
−h

∫min(t2,t2−σ)

max(t1,t1−σ)
χGMu (t+σ)

∥∥v(t)−B(0)∥∥E2
dtdσ.

(2.15)

As V is a bounded subset of Lr (0,T ;E2), one has the second term bounded by

1
h

∫ h
−h

(∫min(t2,t2−σ)

max(t1,t1−σ)
χGMu (t+σ)dt

)1/r ′(∫ t2
t1

∥∥v(t)−B(0)∥∥rE2
dt
)1/r

dσ

≤ 2
(
measGMu

)1/r ′∥∥v−B(0)∥∥Lr (0,T ;E2),

(2.16)

and the Hölder inequality gives the announced estimation (2.11).

Using (2.1) and (2.6), and as v belongs to a bounded subset V of Lr (0,T ;E2),
we conclude from (2.11) that

1
h

∫ h
0

∫ t2
t1

∥∥∥∥∥∥v(t)−
N∑
i=1

vM
(
ξNi−1+s

)
χ]ξNi−1,ξ

N
i ]
(t)

∥∥∥∥∥∥
E2

dtds �→ 0, (2.17)
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whenM,N go to infinity, uniformly in v . We claim that there exists at least one

s = sN,Mv ∈ [0,h] such that

∫ t2
t1

∥∥∥∥∥∥v(t)−
N∑
i=1

vM
(
ξNi−1+sN,Mv

)
χ]ξNi−1,ξ

N
i ]
(t)

∥∥∥∥∥∥
E2

dt �→ 0, (2.18)

when M , N go to infinity, uniformly in v . Indeed, we set, for the sake of read-

ability,

fvN,M(s)=
∫ t2
t1

∥∥∥∥∥∥v(t)−
N∑
i=1

vM
(
ξNi−1+s

)
χ]ξNi−1,ξ

N
i ]
(t)

∥∥∥∥∥∥
E2

dt (2.19)

so that the uniform convergence (2.17) reads

1
h

∫ h
0
fvN,M(s)ds �→ 0, (2.20)

when M,N = 1/h go to infinity, uniformly in v . Then for fixed v , N, and M ,

there exists at least one s = sN,Mv ∈ [0,h] such that

fvN,M
(
sN,Mv

)≤ 1
h

∫ h
0
fvN,M(s)ds. (2.21)

If not, we would have the reverse strict inequality for all s ∈ [0,h] which by

averaging on [0,h] would lead to a contradiction. Then as fvN,M is positive, the

uniform convergence (2.20) implies

fvN,M
(
sN,Mv

)
�→ 0, (2.22)

when M,N = 1/h go to infinity, uniformly in v , which is exactly (2.18).

A fortiori, (2.9) holds thanks to (2.10) and since

∥∥∥∥∥∥
∫ t2
t1


v(t)− N∑

i=1

vM
(
ξNi−1+sN,Mv

)
χ]ξNi−1,ξ

N
i ]
(t)


dt

∥∥∥∥∥∥
E2

≤
∫ t2
t1

∥∥∥∥∥∥v(t)−
N∑
i=1

vM
(
ξNi−1+sN,Mv

)
χ]ξNi−1,ξ

N
i ]
(t)

∥∥∥∥∥∥
E2

dt.

(2.23)

This proves Lemma 2.3.
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To conclude the proof of Theorem 2.1, note that Lemma 2.3 means that K ⊂
εBE2+KM,N , where BE2 is the unit open ball of E2 and

KM,N =



N∑
i=1

hvM
(
ξNi−1+sN,Mv

)
, vM = B(uM), u∈U


. (2.24)

For fixed M , N and from (2.8), we note that uM(ξNi−1+sN,Mv ) is bounded in E1

uniformly in u∈U . As B is compact, KM,N is thus a relatively compact subset

of E2. Thus, K is also relatively compact in E2.

Corollary 2.4. Let U be a bounded subset of L1(0,T ;E1) such that V =
B(U) is bounded in Lr (0,T ;E2) with r > 1. Assume that

∂V
∂t

=
{
∂v
∂t
, v ∈ V

}
(2.25)

is bounded in L1(0,T ;E2). Then V is relatively compact in Lp(0,T ;E2) for any

p <+∞.

Proof. Condition (2.1) is satisfied (see [5, Lemma 4]).
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