
IJMMS 2003:25, 1577–1598
PII. S0161171203209091

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ASYMPTOTICS OF INTEGRODIFFERENTIAL MODELS
WITH INTEGRABLE KERNELS

ANGELINA M. BIJURA

Received 12 September 2002

The additive decomposition singular perturbation method and the theory of frac-
tional integration are used to study asymptotic solutions of singularly perturbed
Volterra integrodifferential equations with kernels having integrable singularity.
The validity of the approximation is also demonstrated.
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1. Introduction. There are various kinds of singularities in mathematical

problems. Problems which are considered here are those which depend on a

parameter in such a way that regions of rapid variation occur, and where there

is a drastic change in the structure of the problem when the limiting oper-

ation is performed. Assumptions are imposed on the data to exclude other

behaviours. In particular, asymptotic solutions of singularly perturbed linear

scalar Volterra integral equations with weakly singular kernels are investi-

gated. Equations of the following form are considered:

εy ′(t)= g(t)+ 1
Γ(1−β)

∫ t
0

k(t,s)
(t−s)β y(s)ds, 0< t ≤ T , y(0)=y0(ε), (1.1)

where 0 < ε� 1 and 0 < β < 1. The functions g(t) and k(t,s) are continuous

and k(t,t) < 0, 0≤ t ≤ T . The initial conditiony0(ε) is regular with respect to ε
as ε tends to zero when g(0)= 0 and singular when g(0)≠ 0. For this reason, it

is appropriate to denote y0(ε)=y0 when g(0)= 0 and y0(ε)= ỹ0/ξ(ε) when

g(0) ≠ 0, where y0 and ỹ0 are constants and ξ(ε)→ 0 when ε → 0. It will be

demonstrated in Section 4 that the assumption k(t,t) < 0 on 0≤ t ≤ T allows

the solution y(t;ε) of (1.1) to have an initial layer and forces the algebraic

decay in the layer region.

This problem exhibits an initial layer at t = 0 like Volterra integral and in-

tegrodifferential equations with continuous kernels as well as integral equa-

tions with weakly singular kernels. However, in this case, it will be shown that

there is a thicker initial layer width, of order O(ε1/(2−β)), as ε→ 0. The kernel

and the forcing function may as well depend on ε but it is assumed here that

they are independent of ε. The motivation to study this problem follows its
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rigorous application to numerous problems of mathematical physics, includ-

ing problems described in Section 2.

The weakly singular equation (1.1) has a solution y(t;ε) in C[0,T ] for all

ε > 0. When ε = 0, (1.1) reduces to the Abel integral equation

0= g(t)+ 1
Γ(1−β)

∫ t
0

k(t,s)
(t−s)β v(s)ds, 0≤ t ≤ T , (1.2)

which certainly does not have a continuous solution if g(0) ≠ 0. The forcing

function g(t) must be smoother than the desired solution. Even if (1.2) has

a solution v(t) in C0[0,T ], it may not approximate y(t;ε) uniformly for all

0≤ t ≤ T as ε→ 0, especially if v(0)≠ limε→0y(0;ε). Therefore, the need is to

develop methodologies for the construction of a uniformly valid asymptotic

solution of problem (1.1).

The introduction of appropriate new independent variable(s) is a basic tech-

nique used in obtaining asymptotic solutions of singular perturbation prob-

lems. In the case considered here, a new variable is introduced in such a way

that the integral operator is regularized. Then, in place of the solution y(t;ε)
of (1.1), an asymptotic solution is thought in an additive form of the solution

depending on the original independent variable which is valid away from the

initial layer (hence called the outer solution) and the solution depending on

a new variable, valid in the initial layer (the inner layer solution). This trans-

forms the whole problem into simpler equations in terms of the inner and

outer equations.

In contrast to singularly perturbed integral equations with continuous ker-

nels, equations with weakly singular kernels have not received much attention.

This is due to the fact that there are difficulties encountered in the singular

perturbation analysis of equations with weakly singular kernels. Singularly per-

turbed integral and integrodifferential equations with continuous kernels have

inner layer solutions which decay exponentially. This simplifies the analysis.

Inner layer solutions corresponding to integral equations with weakly singu-

lar kernels decay algebraically (rather than exponentially) and therefore the

analysis poses some complications including that of facing nonconvergent in-

tegrals. Thus, the rigorous theory of singularly perturbed Volterra integral and

integrodifferential equations with weakly singular kernels is still far from com-

plete. This paper presents a general method for analyzing asymptotic solutions

of (1.1).

Asymptotic solutions of (1.1) have previously been considered in [1]. A vari-

ety of interesting examples have been solved in [1], however the results were

not rigorously established. Moreover, the case g(0) ≠ 0 is not covered in the

analysis presented in [1]. Recently, [2] studied, rigorously, asymptotic solutions

of singularly perturbed linear Volterra integral equations with weakly singu-

lar kernels using the additive decomposition method. It is shown in [2] that

the inner layer solution can explicitly be written in terms of the Mittag-Leffler
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function which tends to zero algebraically at infinity. Adopting the techniques

used in [2] here, the formal asymptotic solution for (1.1) is derived by revealing

the structure of its contents and proof of asymptotic correctness presented.

Hence, this shows the essential difference between the results in this paper

and the results in [1].

The theory of fractional integration and the Laplace transform method will

be employed in most parts of the presentation. There are abnormalities arising

when balancing terms of similar orders of ε. This occurs especially when one

tries to derive the first- (and higher-) order terms in the formal solution. It

appears that higher-order terms depend on a particular value of α. Hence, the

paper restricts attention to the leading-order solution.

The paper is organized as follows. In Section 2, examples of models arising

from singularly perturbed Volterra integrodifferential equations are discussed.

In Section 3, the review of some of the results which are applied later in the

presentation is outlined. These include notations, definitions, hypotheses im-

posed on the data, and asymptotic evaluation of integrals via integral trans-

forms and fractional integration. In Section 4, the application of the additive

decomposition technique to integral equations of the type (1.1) is described

and the leading-order formal solution, y0(t;ε), is derived under stated condi-

tions. The contents of the derived formal solution are shown to elucidate some

of their properties assumed in the derivation. This is done in Section 5. It is

also shown in Section 5 that if the formal solution satisfies (1.1) approximately

with a residual ρ(t;ε), then ρ(t;ε) = O(ε) as ε → 0, uniformly for 0 ≤ t ≤ T .

The main result in this paper is presented in Section 6, where it is proved

that if y0(t;ε) is a formal approximate solution of (1.1), and y(t;ε) is the ex-

act solution, then |y(t;ε)−y0(t;ε)| is uniformly of order O(εα) as ε → 0, on

0≤ t ≤ T . This supports the finding that (1.1) has a wider initial layer. Finally in

Section 7, the methodology is demonstrated by solving the heat problem which

portrays the diffusion of a gas through a liquid. This model, which is described

in Section 2, has the exact solution, it is only chosen for demonstration. The

conclusion summarizing the results is presented after Section 7.

2. Motivation. The study on solutions of (1.1) is motivated by the study on

various models of mathematical physics including the following.

(A) The remarkably useful equation; the heat equation. Particularly the bou-

ndary value problem

Cxx−Ct = 0, x > 0, t > 0, C(x,0)= 0, x ≥ 0,

εCx(0, t)=
∫ t

0
C(0,s)ds−f(t), 0< ε� 1,

lim
x→∞C(x,t)= 0, t ≥ 0.

(2.1)

This equation models the diffusion of a gas through a liquid with a surface

dissipation effect which depends upon the cumulative level of concentration.
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The function C(x,t) denotes the concentration. The smallness of ε implies a

low diffusivity of the system. The function f(t) is the given input at the surface.

The Laplace transform method can be used to write the solution C(x,t) of (2.1)

as

εC(x,t)=
∫ t

0

1√
π(t−s) exp

[
−x2

4(t−s)

]

×
{
f(s)−

∫ s
0
C(0,σ)dσ

}
ds, t > 0, x ≥ 0.

(2.2)

Observe from (2.2) that C(x,t) can be obtained once C(0, t) is known. Thus, it

is appropriate to formulate a suitable problem for the investigation of C(0, t).
Taking x = 0 above, one obtains a Volterra integrodifferential equation

εy ′(t)=
∫ t

0

1√
π(t−s)

{
f(s)−y(s)}ds, t ≥ 0, (2.3)

where

y(t)=
∫ t

0
C(0,s)ds. (2.4)

(B) An integrodifferential equation that models the motion of a linear vis-

coelastic material. These materials are characterized by constitutive relations

which are functionals of the past history of the material. In particular, consider

a one-dimensional model problem

utt(x,t)= σx(x,t)+f(x,t), 0<x < 1, t > 0,

u(x,t)=φ(x,t), 0≤ x ≤ 1, −∞< t ≤ 0,

ut
(
x,0+

)=ψ(x), 0≤ x ≤ 1,

u(0, t)=u(1, t)= 0, t ≥ 0,

(2.5)

where u(x,t) is the displacement at time t of the particle with reference posi-

tion x on 0≤ x ≤ 1, ux is the strain, σ is the stress, and f is a prescribed body

force. The given functions f , φ, and ψ are real valued. If the body is elastic,

then the stress depends on the strain through a constitutive equation,

σ(x,t)= 1
ε

∫
R+
A(s)

∂
∂t
ux(x,t−s)ds, (2.6)

where the smallness of ε implies that a highly strained material is used. Us-

ing (2.6), (2.5) can be reduced to a scalar Volterra integrodifferential equation

depending parametrically on x and written in an abstract form as

εy ′(t)=
∫ t

0
A(t−s)Ly(s)ds+g(t;ε), t > 0, y(0)=y0, (2.7)
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where

Lχ = χ′′, χ ∈ {ξ′′ ∈ L2(0,2); ξ(0)= ξ(1)= 0
}
. (2.8)

In (2.7), A is the same function as in (2.6) and is the linear stress relaxation

modulus assumed to be nonnegative, nonincreasing, convex on (0,∞), and

integrable on (0,1). The function g includes functions f , ψ, and the strain

history. For a detailed discussion on integrodifferential equations in viscoelas-

ticity, see [10, 13].

Equations (2.3) and (2.7) are special cases of a general class of singularly

perturbed Volterra integrodifferential equations with weakly singular kernels

that are considered here.

3. Mathematical preliminaries

Definition 3.1. (i) The fractional integral of order γ > 0 is defined by

Jγφ(t) := 1
Γ(γ)

∫ t
0
(t−s)γ−1φ(s)ds, t > 0, γ ∈R+. (3.1)

(ii) Using the Laplace convolution between two functions, the above defini-

tion can also be represented as

Jγφ(t) := t
γ−1

Γ(γ)
∗φ(t), t > 0, γ ∈R+. (3.2)

(iii) If one uses the sign ◦ to denote a Laplace transform pair, then it follows

from (3.2) that

Jγφ(t)◦ Φ(s)
sγ

, γ > 0, s ∈ C, (3.3)

where Φ(s) denotes the Laplace transform of φ(t).
(iv) The Mittag-Leffler function of order γ is defined by

Eγ
(
λtγ

)= ∞∑
n=0

λntnγ

Γ(nγ+1)
, t > 0, γ > 0, λ∈ C. (3.4)

3.1. Hypothesis. The following assumptions are to be used:

(Hβ) 0< β< 1;

(Hk) k(t,s) is a C2 function on 0≤ s ≤ t ≤ T with k(t,t)=−1;

(Hg) the function g(t)∈ C2[0,T ] such that g′(0)= 0.



1582 ANGELINA M. BIJURA

For the readers convenience, the results to be employed later in the presen-

tation are stated below.

3.2. Asymptotic evaluation of integrals by integral transforms

and fractional calculus

Lemma 3.2. Consider the integrodifferential equation,

φ′(t)= κ− t−β

Γ(1−β) ∗φ(t), t > 0, φ(0)=φ0. (3.5)

Suppose κ and β are constants, 0 < β < 1. Then φ(t) admits, to the leading-

order, the asymptotic relations

φ(t)∼ κt
β−1

Γ(β)
+ φ0tβ−2

Γ(β−1)
, t �→∞,

φ(t)∼φ0+κt, t �→ 0.
(3.6)

Proof. Let Φ(s), s ∈ C, denote the Laplace transform of φ(t). If one pro-

ceeds into solving (3.5) using the Laplace transform method,

Φ(s)= φ0s1−β

s2−β+1
+ κs−β

s2−β+1
. (3.7)

To obtain the inverse Laplace transform, the Laplace transform pair

Eγ
(−λtγ)◦ sγ−1

sγ+λ, γ > 0, λ∈ C, (3.8)

developed in [4] is employed and one obtains

φ(t)=φ0E2−β
(−t2−β)+κ

∫ t
0
E2−β

(−s2−β)ds. (3.9)

The asymptotic expansion of the Mittag-Leffler function at infinity, investigated

in [2], implies that

φ(t)= κ
∞∑
i=1

(−1)i+1 t1+(β−2)i

Γ
(
2−(2−β)i)

+φ0

∞∑
i=1

(−1)i+1 t(β−2)i

Γ
(
1−(2−β)i) , t �→∞.

(3.10)

The behaviour at zero follows from (3.4) and the fact that Eγ(0)= 1, γ > 0.

A similar result which has been proved in [8] and will be employed in Section

4.2 is the following lemma.
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Lemma 3.3. Consider the integrodifferential equation

χ′(t)=−
∫ t

0
b(t−s)χ(s)ds, 0< t, χ(0)= χ0. (3.11)

Suppose that

(i) b(t)∈ C(0,∞)⋂L1(0,1),
(ii) (−1)(j)b(j)(t)≥ 0, j = 0,1,2, . . . ,

(iii) b(t) �≡ b(0+).
Then,

χ(n)(t)= o(t−n−1), t �→∞, n= 0,1,2. (3.12)

Lemma 3.4 below is the result obtained by Bleistein and Handelsman [3].

The Mellin transform of a locally integrable function φ(t) on (0,∞) is defined

by

M[φ;z]=
∫∞

0
tz−1φ(t)dt, (3.13)

when the integral converges.

Lemma 3.4. Consider the integral

Iη[ψ : λ]= λη

Γ(η)

∫ 1

0
(1−θ)η−1ψ(λθ)dθ, 0< η< 1, λ > 0. (3.14)

(i) Let ψ(θ)=O(θ−a0), θ→ 0,

(ii) let ψ(θ) = O(θ−a1), θ → ∞, where a0 and a1 are constants such that

a0 <a1,

(iii) there exists a Mellin transform of ψ, denoted by M[ψ;1] and is given by

the integral

M[ψ;1]=
∫∞

0
ψ(θ)dθ, (3.15)

which is absolutely convergent and holomorphic in the strip a0 < 1<a1.

Then, as λ→∞, Iη has the following leading-order asymptotic representation:

Iη[ψ : λ]∼ M[ψ;1]λη−1

Γ(η)
. (3.16)

For more on Mellin transforms and its properties, see [12].

4. Heuristic analysis and formal solution. To start with, one assumes an

asymptotic approximation

y(t;ε)=u(t;ε)+µ(ε)v
(
t
εα

;ε
)
,

t
εα
= τ, (4.1a)
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where

α is a constant,

u(t;ε)=u0(t)+o(1), ε �→ 0,

v(τ ;ε)= v0(τ)+o(1), ε �→ 0.
(4.1b)

Then, the width (εα) of the initial layer and the magnitude µ(ε) of the solution

in the layer are determined formally, assuming that α> 0. The substitution of

(4.1a) into (1.1) yields

εu′(t;ε)+µ(ε)ε1−αv′
(
t
εα

;ε
)
= g(t)+ 1

Γ(1−β)
∫ t

0

k(t,s)
(t−s)β u(s;ε)ds

+ µ(ε)
Γ(1−β)

∫ t
0

k(t,s)
(t−s)β v

(
s
εα

;ε
)
ds.

(4.2)

Expressing the above equation in terms of τ , one obtains

εu′
(
εατ ;ε

)+µ(ε)ε1−αv′(τ ;ε)

= g(εατ)+ εα(1−β)
Γ(1−β)

∫ τ
0

k
(
εατ,εασ

)
(τ−σ)β u(σ ;ε)dσ

+ µ(ε)ε
α(1−β)

Γ(1−β)
∫ τ

0

k
(
εατ,εασ

)
(τ−σ)β v(σ ;ε)dσ.

(4.3)

Using (4.1b), the equation above can similarly be written as

ε1−αµ(ε)v′0(τ)

= g(0)+εατg′(0)+ ε
α(1−β)

Γ(1−β)
∫ τ

0

k(0,0)
(τ−σ)βu0

(
εασ

)
dσ

+ µ(ε)ε
α(1−β)

Γ(1−β)
∫ τ

0

k(0,0)
(τ−σ)β v0(σ)dσ +O(εα)+O(ε), ε �→ 0.

(4.4)

To balance the dominant terms, one has to distinguish the two cases: g(0)≠ 0

and g(0)= 0. When g(0)≠ 0, one needs to choose

µ(ε)= ε−α(1−β), α= 1
2−β. (4.5)

And when g(0)= 0, one chooses

µ(ε)= 1, α= 1
2−β. (4.6)
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It then follows that 0< β<α< 1 and therefore the singularly perturbed prob-

lem (1.1) has an initial layer width of order O(εα), ε → 0. The magnitude de-

pends on whether g(0) = 0, when it is of order O(1), as ε → 0, or g(0) ≠ 0,

when it is of order O(ε−α(1−β)), as ε→ 0.

Note that for ε > 0, ϕ(τ ;ε)= εα(1−β)y(εατ ;ε), τ > 0, satisfies

ϕ′(τ ;ε)= g(εατ)
+ 1
Γ(1−β)

∫ τ
0

k
(
εατ,εασ

)
(τ−σ)β ϕ(σ,ε)dσ, 0< τ ≤ T

εα
, ϕ(0;ε)=y0(ε).

(4.7)

The limiting equations for g(0)≠ 0 and g(0)= 0 obtained by letting ε→ 0 are,

respectively,

ϕ′
0(τ)= g(0)+

1
Γ(1−β)

∫ τ
0

k(0,0)
(τ−σ)βϕ0(σ)dσ, ϕ0(0)= ỹ0

ξ(ε)
,

ϕ′
0(τ)=

1
Γ(1−β)

∫ τ
0

k(0,0)
(τ−σ)βϕ0(σ)dσ, ϕ0(0)=y0.

(4.8)

This leads to the approximation

ỹ0

ξ(ε)
E2−β

(
k(0,0)τ2−β)+g(0)

∫ τ
0
E2−β

(
k(0,0)σ 2−β)dσ, g(0)≠ 0 (4.9a)

or

y0E2−β
(
k(0,0)τ2−β), g(0)= 0, (4.9b)

the solution in the initial layer region. While the case k(0,0)= 0 does not give

rise to an initial layer, k(0,0) > 0 yields algebraic growth in the layer region

and therefore it is of less interest.

Next, the formal approximate solution of (1.1) is derived. This is accom-

plished by deriving integral equations governing u0 and v0 in (4.1). As will be

shown, these equations are much simpler to be analyzed than (1.1). The anal-

ysis presented in the derivation of the formal solution distinguishes the cases

when g(0)≠ 0 and g(0)= 0, due to their differences. The differences between

the two cases are twofold. Not only is the form of the asymptotic expansion

different, but also the initial layer correction solution can be constructed first

in the case g(0)≠ 0 whereas the outer solution must be found first in the case

g(0)= 0. Hence, in what follows in this section and in Section 5, the two cases

will be treated separately.
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4.1. Formal solution corresponding to the case when g(0)≠ 0. This is the

case where the reduced equation, obtained by setting ε = 0, does not have a

solution, resulting in large magnitude of the solution in the initial layer. As

shown below, due to this large magnitude, there is a nontrivial contribution to

the outer solution from the integral (1.1) in the initial layer limit as ε→ 0 with

t > 0 fixed. Thus, in this section, (1.1) is considered with y0(ε)= ỹ0/εα(1−β).
The form of (4.9a) suggests that one has to seek an approximate solution in

the form of

y(t;ε) :=y0(t;ε)=u0(t)+ε−α(1−β)v0

(
t
εα

)
, α= 1

2−β. (4.10)

Equations governing v0 and u0 will be derived assuming that

v0(τ)∼ g(0)τ
β−1

Γ(β)
, τ �→∞, (4.11)

holds. Condition (4.11) will be proved, once the approximate solution is de-

rived. Suppose y0(t;ε) satisfies (1.1) approximately, with a residual ρ(t;ε),
then

εu′0(t)+v′0
(
t
εα

)
= g(t)+ 1

Γ(1−β)
∫ t

0

k(t,s)
(t−s)β u0(s)ds

+ ε
−α(1−β)

Γ(1−β)
∫ t

0

k(t,s)
(t−s)β v0

(
s
εα

)
ds−ρ(t;ε).

(4.12)

Expressing (4.12) in terms of τ yields

ρ
(
εατ ;ε

)+εu′0(εατ)+v′0(τ)= g(εατ)+ εα(1−β)Γ(1−β)
∫ τ

0

k
(
εατ,εασ

)
(τ−σ)β u0

(
εασ

)
dσ

+ 1
Γ(1−β)

∫ τ
0

k
(
εατ,εασ

)
(τ−σ)β v0(σ)dσ.

(4.13)

This can equivalently be written as

ρ
(
εατ ;ε

)+εu′0(εατ)=
{
−v′0(τ)+g(0)+

1
Γ(1−β)

∫ τ
0

k(0,0)
(τ−σ)β v0(σ)dσ

}

+g(εατ)−g(0)
+ 1
Γ(1−β)

∫ τ
0

k
(
εατ,εασ

)−k(0,0)
(τ−σ)β v0(σ)dσ

+ ε
α(1−β)

Γ(1−β)
∫ τ

0

k
(
εατ,εασ

)
(τ−σ)β u0

(
εασ

)
dσ.

(4.14)
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For ε small, the above equation is the same as

ρ
(
εατ ;ε

)= {−v′0(τ)+g(0)
+ 1
Γ(1−β)

∫ τ
0

k(0,0)
(τ−σ)β v0(σ)dσ

}
+O(εα), ε �→ 0.

(4.15)

If ρ(εατ ;ε)= o(1) as ε→ 0, we have for a fixed τ > 0, the leading-order inner

equation,

v′0(τ)= g(0)+
1

Γ(1−β)
∫ τ

0

k(0,0)
(τ−σ)β v0(σ)dσ, τ > 0, v0(0)= ỹ0. (4.16)

To obtain the leading-order outer equation, express (4.16) in terms of t = εατ
and substitute into (4.12) giving

ρ(t;ε)+εu′0(t)= g(t)−g(0)+
1

Γ(1−β)
∫ t

0

k(t,s)
(t−s)β u0(s)ds

+ ε
−α(1−β)

Γ(1−β)
∫ t

0

k(t,s)−k(0,0)
(t−s)β v0

(
s
εα

)
ds.

(4.17)

The dominated convergence theorem and (4.11) imply that, as ε→ 0,

ε−α(1−β)

Γ(1−β)
∫ t

0

k(t,s)−k(0,0)
(t−s)β v0

(
s
εα

)
ds �→ g(0)

Γ(β)Γ(1−β)
∫ t

0

k(t,s)−k(0,0)
(t−s)βs1−β ds.

(4.18)

Thus, if ρ(t;ε)= o(1) as ε→ 0 for a fixed t > 0, (4.17) implies that the leading-

order outer solution satisfies

0= g(t)−g(0)+ g(0)
Γ(β)Γ(1−β)

∫ t
0

k(t,s)−k(0,0)
(t−s)βs1−β ds

+ 1
Γ(1−β)

∫ t
0

k(t,s)
(t−s)β u0(s)ds.

(4.19)

If v0(τ) and u0(t) satisfy (4.16) and (4.19), respectively, then ρ(t;ε) obeys

ρ(t;ε)=−εu′0(t)+
ε−α(1−β)

Γ(1−β)
∫ t

0

k(t,s)−k(0,0)
(t−s)β v0

(
s
εα

)
ds

− g(0)
Γ(β)Γ(1−β)

∫ t
0

k(t,s)−k(0,0)
(t−s)βs1−β ds.

(4.20)
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4.2. Formal solution corresponding to the case wheng(0)=0. In this case,

the reduced equation has a solution. For clarity, consider cases similar to the

model described by (2.3), let

k(t,s)=−1, 0≤ s ≤ t ≤ T . (4.21)

However, a similar analysis can be applied to equations with more general

kernels as in (1.1). Thus, consider the singularly perturbed equation

εy ′(t)= g(t)− 1
Γ(1−β)

∫ t
0
(t−s)−βy(s)ds, y(0)=y0, g(0)= 0.

(4.22)

The form of (4.9b) suggests the following definition:

y(t;ε) :=y0(t;ε)=u0(t)+v0

(
t
εα

)
, α= 1

2−β, (4.23)

for the formal approximate solution. The following will be assumed during the

derivation of the approximate solution,

v0(τ)=O(1), τ �→ 0, (4.24a)

lim
τ→∞v

′
0(τ)= 0, (4.24b)

v0(τ)∼ v0

Γ(β−1)
τβ−2, τ �→∞. (4.24c)

In a similar manner as in Section 4.1, it is assumed that y0(t;ε) satisfies (1.1)

approximately with a residual ρ(t;ε), so that

ρ(t;ε)+εu′0(t)+ε1−αv′0
(
t
εα

)
= g(t)− 1

Γ(1−β)
∫ t

0
(t−s)−βu0(s)ds

− 1
Γ(1−β)

∫ t
0
(t−s)−βv0

(
s
εα

)
ds.

(4.25)

Equation (4.25) can equivalently be written as

ρ(t;ε)+εu′0(t)+ε1−αv′0
(
t
εα

)
= g(t)− 1

Γ(1−β)
∫ t

0
(t−s)−βu0(s)ds

− t1−β

Γ(1−β)
∫ 1

0
(1−s)−βv0

(
ts
εα

)
ds.

(4.26)
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If (4.24a) and (4.24c) are true, then conditions of Lemma 3.4 are satisfied and

therefore

(
t/εα

)1−β

Γ(1−β)
∫ 1

0
(1−s)−βv0

(
ts
εα

)
ds

= εαβM
[
v0;1

]
t−β

Γ(1−β) , as ε �→ 0, t > 0,
(4.27)

where M[v0;1] is the Mellin transform of v0. Then, one writes (4.26) as

ρ(t;ε)+ε1−αv′0
(
t
εα

)
= g(t)− 1

Γ(1−β)
∫ t

0
(t−s)−βu0(s)ds

+O(εα)+O(ε), ε �→ 0.
(4.28)

If ρ(t;ε) = o(1), ε → 0, then by fixing t > 0 in (4.26) and letting ε → 0, using

(4.24b), the governing outer equation becomes

0= g(t)− 1
Γ(1−β)

∫ t
0
(t−s)−βu0(s)ds. (4.29)

To derive the inner layer equation, substitute (4.29) into (4.25) and express all

terms in terms of τ = t/εα. This yields

−ρ(εατ ;ε
)= εu′0(εατ)+εα(1−β)v′0(τ)

+ ε
α(1−β)

Γ(1−β)
∫ τ

0
(τ−σ)−βv0(σ)dσ.

(4.30)

Multiplying throughout the above equation by ε−α(1−β) gives

−ε−α(1−β)ρ(εατ ;ε
)= v′0(τ)+ 1

Γ(1−β)
∫ τ

0
(τ−σ)−βv0(σ)dσ +O

(
εα
)
. (4.31)

Then assuming that ε−α(1−β)ρ(εατ ;ε)=O(εα) as ε→ 0, fixing τ > 0, and letting

ε→ 0, the desired equation becomes

v′0(τ)=
−1

Γ(1−β)
∫ τ

0
(τ−σ)−βv0(σ)dσ, v0(0)=y0−u0(0). (4.32)

If u0(t) and v0(τ) satisfy (4.29) and (4.32), respectively, then it follows from

(4.25) that the residual function satisfies

ρ(t;ε)=−εu′0(t). (4.33)
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5. Properties of the formal solution. It is shown here that the components

of the derived formal solution, v0(τ) and u0(t), have the required properties

(to match those of y(t;ε), ε > 0) and those properties assumed in their deriva-

tion. It is also shown that ρ(t;ε)=O(ε), ε→ 0, uniformly for all 0≤ t ≤ T . The

cases g(0)≠ 0 and g(0)= 0 are again treated separately.

5.1. Properties of the formal solution for case when g(0) ≠ 0. The stan-

dard theory of Volterra integral equations and Lemma 3.2 justify the following

result.

Proposition 5.1. Suppose that (Hβ), (Hk), and (Hg) hold. Then, (4.16) has a

continuous solution for all τ ≥ 0. Moreover, v0(τ) satisfies (4.11).

Proposition 5.2 follows the results on Abel integral equation by Hille and

Tamarkin [9] and by Gorenflo and Vessella [5]. The proof is therefore omitted.

Proposition 5.2. Suppose that (Hβ), (Hk), and (Hg) hold. Then, (4.19) has a

unique solution, u0(t)∈ C1[0,T ].

Proposition 5.3. Suppose that ρ(t;ε) satisfies (4.20), then there exists a

constant C0 independent of ε and ε0 such that

∣∣ρ(t;ε)∣∣≤ C0ε, (5.1)

for all 0≤ t ≤ T and 0< ε ≤ ε0.

Proof. The proof follows from (4.20), the dominated convergence theorem,

and Propositions 5.1 and 5.2 with

C0 = sup
0≤t≤T

∣∣u′0(t)∣∣. (5.2)

5.2. Properties of the formal solution for case when g(0) = 0. A similar

result to Proposition 5.2 is the following proposition.

Proposition 5.4. Suppose that (Hβ), (Hk), and (Hg) hold. Then, (4.29) has a

unique continuously differentiable solution u0(t) for all 0≤ t ≤ T .

Proposition 5.5. Suppose that (Hβ), (Hk), and (Hg) hold. Then, (4.32) has a

continuous solution for all τ ≥ 0. Moreover, v0(τ) satisfies (4.24).

Proof. The proof follows from the application of Lemmas 3.2 and 3.3.

Proposition 5.4 and (4.33) imply that the following proposition holds.

Proposition 5.6. Suppose that ρ(t;ε) satisfies (4.33), then there exists a

constant C1 independent of ε and ε0 such that

∣∣ρ(t;ε)∣∣≤ C1ε, (5.3)

for all 0≤ t ≤ T and 0< ε ≤ ε0.
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6. Proof of asymptotic correctness. It is established in this section that the

formal approximate solution, y0(t;ε), given in (4.1), is an asymptotic solution.

The proof incorporates both cases: g(0) ≠ 0 and g(0) = 0. The main result in

this paper is presented in the following theorem.

Theorem 6.1. Suppose that (Hβ), (Hk), and (Hg) are satisfied. Suppose also

that Propositions 5.3 and 5.6 hold. Let y(t;ε) ∈ C[0,T ], ε > 0, be the exact

solution of (1.1). Then, (1.1) has an asymptotic solution y0(t;ε) ∈ C[0,T ] with

the property that there exist positive constants C� and ε0 such that

∣∣y(t;ε)−y0(t;ε)
∣∣≤ C�εα, (6.1)

uniformly for all 0≤ t ≤ T and all 0< ε ≤ ε0.

It is convenient to introduce r(t;ε) = y(t;ε)−y0(t;ε) which satisfies the

equation

εr ′(t;ε)= ρ(t;ε)+ 1
Γ(1−β)

∫ t
0

k(t,s)
(t−s)β r(s;ε)ds, 0< t ≤ T , r(0;ε)= 0.

(6.2)

Proof. The standard theory (see, e.g., [6]) of linear Volterra integrodiffer-

ential equations of the second kind ensures that for each 0 < ε < ε0, (6.2) has

a continuous solution r(t;ε) on [0,T ] given by

r(t;ε)= 1
ε

∫ t
0
χ(t,s;ε)ρ(s;ε)ds, 0≤ t ≤ T , (6.3)

where χ(t,s;ε) is the differential resolvent which satisfies

ε∂1χ(t,s;ε)= 1
Γ(1−β)

∫ t
s

k(t,σ)
(t−σ)β χ(σ,s;ε)dσ, χ(t,t;ε)= 1, (6.4)

on 0 ≤ s ≤ t ≤ T . Again, the standard theory of Volterra equations ensures

the existence, continuity, and uniqueness of χ(t,s;ε) for 0 < ε < ε0, refer to

[6, 7, 11]. Following Propositions 5.3 and 5.6 to prove the theorem, one needs

to show that there exists a positive constant C2, which does not depend on ε
such that

∫ t
0

∣∣χ(t,s;ε)∣∣ds ≤ C2εα, (6.5)

for all 0≤ t ≤ T and all 0< ε ≤ ε0.

To arrive at this inequality, integrate both sides of (6.4) with respect to t
giving

χ(t,s;ε)= 1+ 1
εΓ(2−β)

∫ t
s
h(t,σ)(t−σ)1−βχ(σ,s;ε)dσ, (6.6)
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where

h(t,s)= (1−β)
∫ 1

0

k
(
s+(t−s)σ ,s)

σβ
dσ. (6.7)

Thus, h(t,s) is a C2 function on 0≤ s ≤ t ≤ T and h(t,t)=−1 for all 0≤ t ≤ T .

It can be shown that there exists a positive constant � such that

h(t,s)≤−�, 0≤ s ≤ t ≤ T . (6.8)

This therefore implies that

0≤ χ(t,s;ε)≤ 1, ∀0≤ s ≤ t ≤ T , ∀0< ε ≤ ε0. (6.9)

Thus, (6.6) can be converted into

χ(t,s;ε)≤ 1− �
εΓ(2−β)

∫ t
s
(t−σ)1−βχ(σ,s;ε)dσ. (6.10)

If t is replaced by t+s, the above inequality becomes

χ(t+s,s;ε)≤ 1− �
εΓ(2−β)

∫ t+s
s
(t+s−σ)1−βχ(σ,s;ε)dσ (6.11)

or equivalently,

χ(t+s,s;ε)≤ 1− �
ε
J2−βχ(t+s,s;ε). (6.12)

In this form, s is simply a parameter and if the role of this parameter is sup-

pressed, one writes (6.10) as

χ̃(t;ε)≤ 1− �
ε
J2−βχ̃(t;ε), (6.13)

with χ̃(t;ε) := χ(t,s;ε), for all 0≤ s ≤ t ≤ T and all 0< ε ≤ ε0.

To this point, comparison theorems are employed and one deals with

φ(t;ε)= 1− �
ε
J2−βφ(t;ε), (6.14)

where

0≤ χ̃(t;ε)≤φ(t;ε)≤ 1, ∀0≤ t ≤ T , ∀0< ε ≤ ε0. (6.15)
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Therefore, to accomplish the proof, it suffices to show that there exists a pos-

itive constant, C3 say, which does not depend on ε such that

∫ t
0
φ(σ ;ε)dσ ≤ C3εα, (6.16)

uniformly for all 0≤ t ≤ T and all 0< ε ≤ ε0.

Now, consider solving (6.14) using the Laplace transform method. LetΦ(s;ε),
s ∈ C, denote the Laplace transform of φ(t;ε), then

Φ(s;ε)= s1−β

s2−β+�/ε . (6.17)

Applying the inverse Laplace transformation in (6.17) and using the pair in

(3.8), one obtains

φ(t;ε)= E2−β
(
− �
ε
t2−β

)
, (6.18)

the Mittag-Leffler function of order 2−β. By definition,

E2−β
(
− �
ε
t2−β

)
=

∞∑
n=0

(−�/ε)ntn(2−β)
Γ
(
n(2−β)+1

) , t > 0, E2−β(0)= 1. (6.19)

Since the interest here is in the boundedness of this function for small values

of ε, one writes

φ(t;ε)= 1
2πi

∫
C̃

s1−β

s2−β+�/ε e
stds, (6.20)

where C̃ consists of a line Res = η, for some η > (�/ε)α.

Properties of the function eγ(t;λ) := Eγ(−λtγ), 0< γ ≤ 3, defined by

eσ (t;λ)= 1
2πi

∫
C̃

sγ−1

sγ+λe
stds, (6.21)

have been discussed in [4]. Following a similar analysis, it can be shown that,

by bending the path of integration in (6.20), φ(t;ε) can be written as a sum of

two functions

φ(t;ε)=ϕ(t;ε)+ψ(t;ε), 0≤ t ≤ T , 0< ε ≤ ε0, (6.22)
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where −ϕ is completely monotone, tends to zero (algebraically) as t tends

to infinity and ψ is of oscillatory character with an exponentially decaying

magnitude. On performing complex integration (details omitted), one obtains

ϕ(t;ε)= �/εsin(π/α)
π

∫∞
0

e−σtσ 1−β

σ 2(2−β)+2(�/ε)cos(π/α)σ 2−β+�2/ε2
dσ,

ψ(t;ε)= 2αexp

((
�
ε

)α
cos(απ)t

)
cos

(
t sin(απ)

)
, 0< β<α< 1.

(6.23)

If one puts sin(π/α) = υ0, cos(π/α) = υ1, cos(απ) = υ2, and sin(απ) = υ3,

then υ0 < 0, υ2 < 0, υ3 > 0, υ1 ∈ (−1,1), and

φ(t;ε)= �υ0

π

∫∞
0

e−σt/εασ 1−β

σ 2(2−β)+2�υ1σ 2−β+�2
dσ +2αeυ2(�/ε)αt cos

(
υ3t

)
(6.24)

such that

∫∞
0

σ 1−β

σ 2(2−β)+2�υ1σ 2−β+�2
dσ = (1−2α)π

�υ0
. (6.25)

The fact that the denominator of the integrand in (6.24) is always positive

implies that −ϕ is completely monotone. The functionψ has an exponentially

decaying amplitude. The relation in (6.25) follows by putting t = 0 in (6.14) or

in (6.19). The required result then follows from (6.24) as

0≤
∫ t

0
φ(s;ε)ds ≤ 4αεα∣∣υ2

∣∣� , 0≤ t ≤ T , 0< ε ≤ ε0. (6.26)

This implies that

∣∣r(t;ε)∣∣≤ 4Cαεα∣∣υ2

∣∣� , 0≤ t ≤ T , 0< ε ≤ ε0, (6.27)

where C is a positive constant which depends on T .

7. Example. In this section, the methodologies developed in the previous

sections are employed to find an approximate asymptotic solution C(x,t) of
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(2.2). In particular, the analysis in Section 4.2 is used to derive the formal as-

ymptotic solution, y0(t;ε), of (2.3) and then demonstrate that it is asymptoti-

cally valid.

The exact solution of (2.3) obtained using the application of Laplace trans-

forms is

y(t;ε)= 1
3
f(t)− f(0)

3
et/ε

2/3
erfc

{ √
t

ε1/3

}

− 1
3

∫ t
0

exp
[
(t−s)
ε2/3

]
erfc

[√
t−s
ε1/3

]
f ′(s)ds

+ 2ε−1/3
√

3π

∫ t
0

f(t−s)
s1/2

∫∞
0
σ exp

[
−σ 2+ σ

√
s

ε1/3

]
sin

(√
3sσ
ε1/3

)
dσ ds

− 2ε−1/3

3
√
π

∫ t
0

f(t−s)
s1/2

∫∞
0
σ exp

[
−σ 2+ σ

√
s

ε1/3

]
cos

(√
3sσ
ε1/3

)
dσ ds.

(7.1)

The presence of terms which cannot be expanded in a series of nonnegative

powers of ε in a neighborhood of ε = 0 shows that the solution of problem

(2.2) depends on ε in a singular manner.

However, the approximate solution obtained using the analysis in Section 4.2

is

y0(t;ε)= f(t)− f(0)
3

{
et/ε

2/3
erfc

( √
t

ε1/3

)

+ 4√
π

∫∞
0

exp

[
−σ 2+ σ

√
t

ε1/3

]
cos

(√
3tσ
ε1/3

)
dσ

}
,

(7.2)

where

u0(t)= f(t) (7.3)

is the outer solution and

v0(τ)=−f(0)
3

{
eτ erfc

(√
τ
)+ 4√

π

∫∞
0
e−σ

2+σ√τ cos
(√

3τσ
)
dσ

}
(7.4)

is the inner layer correction solution. It can be shown that bothu0(t) and v0(τ)
satisfy the conditions that led to their derivation.
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To see that the remainder term is uniformly of order O(ε2/3), consider the

difference r(t;ε)=y(t;ε)−y0(t;ε);

r(t;ε)=y(t;ε)−y0(t;ε)

=−2
3
f(t)− 1

3

∫ t
0

exp
[
(t−s)
ε2/3

]
erfc

[√
t−s
ε1/3

]
f ′(s)ds

+ 4f(0)
3

∫∞
0

exp

[
−σ 2+ σ

√
t

ε1/3

]
cos

(√
3tσ
ε1/3

)
dσ

+ 2ε−1/3
√

3π

∫ t
0

f(t−s)
s1/2

∫∞
0
σ exp

[
−σ 2+ σ

√
s

ε1/3

]
sin

(√
3sσ
ε1/3

)
dσ ds

− 2ε−1/3

3
√
π

∫ t
0

f(t−s)
s1/2

∫∞
0
σ exp

[
−σ 2+ σ

√
s

ε1/3

]
cos

(√
3sσ
ε1/3

)
dσ ds.

(7.5)

Integrating the integrals by parts, twice, both with respect to s and σ , one

obtains

r(t;ε)=−ε2/3 f ′(0)
3
et/ε

2/3
erfc

{ √
t

ε1/3

}

− ε
2/3

3

∫ t
0

exp
[
(t−s)
ε2/3

]
erfc

[√
t−s
ε1/3

]
f ′′(s)ds

+ 2ε2/3f ′(0)
3
√
π

∫∞
0

exp

[
−σ 2+ σ

√
t

ε1/3

]

×
{

cos

(√
3tσ
ε1/3

)
−
√

3sin

(√
3tσ
ε1/3

)}
dσ

− ε
2/3

3
√
π

∫ t
0

f ′′(t−s)
s1/2

∫∞
0

exp

[
−σ 2+ σ

√
s

ε1/3

]

×
{

cos

(√
3sσ
ε1/3

)
−
√

3sin

(√
3sσ
ε1/3

)}
dσ ds.

(7.6)

Since

∫∞
0

exp

[
−σ 2+ σ

√
t

ε1/3

]{
cos

(√
3tσ
ε1/3

)
−
√

3sin

(√
3tσ
ε1/3

)}
dσ <∞, 0≤ t ≤ T ,

(7.7)

it follows that

∣∣y(t;ε)−y0(t;ε)
∣∣=O(ε2/3), ε �→ 0, (7.8)
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uniformly for all 0≤ t ≤ T . Note that the first term in (7.6) decays algebraically

as t tends to infinity while the remaining terms are of oscillatory character.

This example verifies the possibility of weakening assumption Hg .

8. Concluding remarks. The most interesting part of this investigation is

the application of the properties of the Mittag-Leffler function in proving that

the approximate solution is asymptotically valid. It is also interesting to see

that, in this case where the region of nonuniformity in the solution is thicker

(compared to similar equations with smooth kernels), the approximate solu-

tion converges slower to the exact solution than it does for solutions with

smooth kernels.

The asymptotic solution constructed in Section 4 is limited only to the

leading-order. It is of great interest to develop a methodology which yields

asymptotic solution to all orders, as has been done for equations with contin-

uous kernels.

The nonlinear version of (1.1) is currently being investigated by the author.

There still, however, much work to be done in this particular area of singular

perturbation.
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