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The nonlinear boundary-value problem for the diffusion equation, which models
gas interaction with solids, is considered. The model includes diffusion and the
sorption/desorption processes on the surface, which leads to dynamical nonlin-
ear boundary conditions. The boundary-value problem is reduced to an integro-
differential equation of a special kind; existence and uniqueness of the classi-
cal (differentiable) solution theorems are proved. The results of numerical exper-
iments are presented.
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1. Introduction. The hydrogen presence in widely used construction mate-

rials often leads to the worsening of their operational state. Due to the im-

portance of ecological safety, this must be taken into consideration when de-

veloping chemical industry and power engineering objects. Interest in hydro-

gen power engineering has grown in the recent time as it is ecologically safe.

Thus transport and storage problems appear. All that has defined a growing

interest to hydrogen interaction with different solid materials [1, 3, 4, 5]. Seri-

ous experimental and theoretical elaborations in this area are hardly possible

without mathematical modeling. Numerical experiments allow to choose most

adequate models with respect to experimental data, help to improve the un-

derstanding of different mechanisms and stages of the process, reduce needs

for costly experiments, and estimate some parameters.

In this paper, a widely used experimental method of thermodesorption spec-

trometry will be considered (TDS) [4, 5]. Here is its brief description: a plate

from studied material is placed under hydrogen pressure. A plate is electrically

heated to increase the rates of adsorbtion/desorbtion and diffusion. When bal-

ance concentration is obtained, the plate is cooled (turning electric heating off).

The rates of mentioned processes abruptly decrease. Keeping vacuum around a

plate, it is slowly heated again. The hydrogen desorption flux from the surface

is estimated using mass spectrometer.

2. Mathematical model. Let c(t,x) be the concentration of dissolved

(atomic) hydrogen inside the plate (t ≥ 0, x ∈ [0,�]). Initial data is determined

by the fact that the plate had been saturated with the gas c(0,x)= c̄0 = const.
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In the area Qt∗ = (0, t∗)×(0,�), concentration satisfies the diffusion equation

ct(t,x)=D(T)cxx(t,x). (2.1)

Here, t∗ is the duration of the TDS experiment, � is the width of the plate,

D is the diffusion coefficient, and T = T(t) represents the temperature. Limit

values of T are known: T(t) ∈ [T−,T+], 0 < T− < T+, and T(·) ∈ C1[0, t∗].
Linear heating is often used (in the area [T−,T+]). For hydrogen at usual range

of pressure, concentration, and temperature, the dependence of all parameters

on T is well described by Arrhenius rule: D(T)=D0 exp{−ED/[RT]}. Later in

this paper D(t)=D(T(t)).
We describe the boundary conditions. Considering physical and chemical

processes on the surface, the following dynamical conditions will be used [4]:

q̇0,�(t)= µs(T)p(t)−b(T)q2
0,�(t)±D(T)cx(t,x)|x=0,�. (2.2)

This is a differential equation for surface concentrations q0(t), q�(t), on both

faces of the plate: x = 0, x = �. Hydrogen atoms form molecules and des-

orb from the surface. The density of desorption flux for hydrogen depends

quadratically on the concentration of atoms on the face

J0,�(t)= b(t)q2
0,�(t), b(t)= b(T(t)), b(t)= b0 exp

{
− Eb[
RT(t)

]}. (2.3)

Pressure p(t) of gas hydrogen makes some amount of gas to return to the

surface—it defines the first term in the right part of (2.2) (µ, s(T) are the

physical constants). The last term in (2.2) defines the diffusion flux of hydrogen

atoms from the deep to the surface. The experiment is symmetrical

q(t)=q0(t)=q�(t), J(t)=J0(t)=J�(t), c(t,x)=c(t,�−x), x∈[0,�].
(2.4)

The pressure is measured as

p(t)= θ1

∫ t
0
J(τ)exp

{
(τ−t)
θ0

}
dτ, (2.5)

constants θi are defined by technical details of the experimental equipment.

The density of desorption flux can be found from the pressure p(t) for all

t ≥ 0, J(t)= (ṗ(t)+p(t)/θ0)/θ1.

If the vacuum system is powerful, the hydrogen return to the surface can be

considered negligibly small. As all processes are symmetrical with respect to
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the middle of the plate, later in this paper we consider one equation instead

of (2.2)

q̇(t)=−b(t)q2(t)+D(t)cx(t,0). (2.6)

The process of hydrogen remissing is considered fast enough, so linear con-

nection between surface and subsurface concentrations can be efficiently used

c(t,0)= c0(t)= g(t)q(t), g(t)= g0 exp

{
− Eg[
RT(t)

]
}
. (2.7)

In this paper, the dependence of parameter on temperature is not important.

So the model of TDS experiment looks like

ct(t,x)=D(t)cxx(t,x), (t,x)∈Qt∗ ,
c(0,x)= c̄0, c(t,x)= c(t,�−x), x ∈ [0,�],
c(t,0)= g(t)q(t), q̇(t)=−b(t)q2(t)+D(t)cx(t,0).

(2.8)

The main specificity of this boundary-value problem is in nonlinear dynam-

ical boundary conditions.

More general problem from the viewpoint of generalized solutions has been

studied in [8]. Some algorithms of parametric identification of hydrogen pene-

tration models for stratified materials can be found in [3, 9, 10]. In this paper,

the existence of classical solution of the given problem will be studied.

To simplify mathematical operations on the problem, we exclude the vari-

able q and consider new time t′ = ∫ t0D(τ)dτ . New time will be represented by

the same letter t. After these transforms, the problem will be

ct(t,x)= cxx(t,x), (t,x)∈Qt∗ , (2.9)

c(0,x)= c̄0 = const, x ∈ [0,�], (2.10)

ċ0(t)=−α1(t)c2
0(t)+α2(t)c0(t)+g(t)cx(t,0),

c0(t)= c(t,0), α1(t)= b
Dg

, α2(t)= ġg ,
(2.11)

c(t,x)= c(t,�−x), x ∈ [0,�]. (2.12)

3. Reducing the problem to an integrodifferential equation. Let C1,2(Qt∗)
be a space of functions on Qt∗ = [0, t∗]×[0,�], which has continuous partial

derivatives ∂α+β/∂tα∂xβ (here α, β are nonnegative integers, 2α+β ≤ 2) on

Qt∗ and these derivatives can be continuously extended to Qt∗ [7].

Definition 3.1. Classical solution of the boundary-value problem (2.9),

(2.10), (2.11), and (2.12) is a function c(t,x) ∈ C1,2(Qt∗), which is symmet-

rical (2.12) and satisfies the diffusion equation (2.9) in Qt∗ with initial data

(2.10) and dynamical boundary condition (2.11).
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Let A(t)= c0(t)= c(t,0) and assume that classical solution exists. We con-

sider a function c0(t,x) = c(t,x)−A(t). Obviously, c0(t,0) = c0(t,�) = 0,

c0
x(t,0) = −c0

x(t,�). It can be extended oddly to [−�,�] and thus periodically

on R1. Then, c0(t,·) ∈ C1(R1) and on the segment of interest [0,�] it can be

expanded to uniformly converging Fourier series by sine. Thus, it is possible

to try to find the solution in Qt∗ as

c(t,x)=A(t)+
∞∑
n=1

Kn(t)sin
(
πnx
�

)
. (3.1)

Formally substitution c(t,x) to the diffusion equation (2.9) gives

∞∑
n=1

(
K̇n(t)+ Kn(t)π

2n2

�2

)
sin

(
πnx
�

)
=−Ȧ(t). (3.2)

Making a scalar product in L2[0,�] of (3.2) and sin(πnx/�), we obtain the

system of differential equations for Kn(t)

K̇n(t)+ Kn(t)π
2n2

�2
=−4Ȧ(t)

πn
, n= 2k−1,

K̇n(t)+ Kn(t)π
2n2

�2
= 0, n= 2k, k= 1,2,3, . . . .

(3.3)

Initial conditions come from fixing t = 0 in (3.1), and from initial data (2.10)

we see that Kn(0)= 0, Kn(t)≡ 0 if n= 2k, and for n= 2k−1

Kn(t)=− 4
πn

∫ t
0
Ȧ(τ)εn(t−τ)dτ, εn(t)= exp

{
−
(
πn
�

)2

t
}
. (3.4)

Later in this paper, the symbol
∑′ will be used as a sum by odd natural n. Ob-

viously, c(t,x) = c(t,�−x) and only boundary condition (2.11) is unsatisfied

(formally yet). After substituting (3.1) into (2.11), assuming that series can be

differentiated term by term, we obtain the main equation for A(t)

Ȧ(t)=−α1(t)A2(t)+α2(t)A(t)−α3(t)
∑′∫ t

0
Ȧ(τ)εn(t−τ)dτ,

α1(t)= b
Dg

, α2(t)= ġg , α3(t)= 4g
�
,

εn(t)= exp
{
−
(
πn
�

)2

t
}
,

∑′ =
∑

n=1,3,5,...
.

(3.5)

Definition 3.2. The solution of (3.5) on segment I = [0, t+] is a function

A(t)∈ C1(I), which satisfies (3.5) for all t ∈ I as well as initial conditionA(0)=
c̄0. The series in the right part converge for all t ∈ I, derivatives on the ends of

I are left or right.
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Specificity of this equation is in the term
∑′ ∫ t

0 . If, instead of it, there was

a function of time only, not depending on A, it would be a Riccati equation,

which is well studied in the theory of differential equations. The derivative Ȧ
is present in both parts of the equation. It is impossible to use integration by

parts (to remove Ȧ) for one of the series will become divergent. Here appears

an analogy with functional differential equations of neutral type [6]. Due to

divergence, it is impossible to interchange an integral and a sum in the right

part of (3.5). All this makes the study of (3.5) an interesting mathematical

problem.

It is important to note that if there exists a solution on I, then series

∑′∫ t
0
Ȧ(τ)εn(t−τ)dτ (3.6)

converges on I uniformly and absolutely as |Ȧ| ≤ L (is limited),
∣∣∣∣∣
∫ t

0
Ȧ(τ)εn(t−τ)dτ

∣∣∣∣∣≤ L
∫ t

0
εn(t−τ)dτ ≤ L�2

π2n2
. (3.7)

This numerical series converges. The value of the sum is estimated by L�2/8.

The initial boundary-value problem is reduced to this integrodifferential

equation (3.5) in the following sense. Assume that the solution A(t) exists

on I = [0, t+]. We define the following boundary-value problems:

ct(t,x)= cxx(t,x), c(0,x)= c0, c(t,0)= c(t,�)=A(t). (3.8)

Such problems are well studied in [7]. The symmetry of initial and boundary

conditions implies that c(t,x) = c(t,�−x). Classical solution which exists is

unique and can be found as a convergent in C1,2 trigonometric series. Thus a

formal series (3.1), built earlier, will present a classical solution and all opera-

tions at it were legal.

4. Obtaining solution A(t). Equation (3.5) differs from Riccati equation by

the fact that instead of differential operator d/dt the integrodifferential one is

present, containing a series
∑′. So we consider a functional differential prob-

lem on I = [0, t+]

Ȧ(t)+α3(t)
∑′∫ t

0
Ȧ(τ)εn(t−τ)dτ = f(t),

A(0)= c0, α3 = 4g
�
∈ C1(I), f ∈ C(I).

(4.1)

Let B(t)= Ȧ(t) and define an iterative process

B0(t)= 0
(
A0(t)= c̄0

)
, Bk+1(t)+α3(t)

∑′∫ t
0
Bk(τ)εn(t−τ)dτ = f(t).

(4.2)
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In case Bk is continuous, |Bk| ≤ Lk on I and
∑′ converges absolutely and uni-

formly (being majorized by a convergent series as explained above). Due to

B0,B1 = f ∈ C(I), one can obtain that a sequence Bk(t) on I is defined cor-

rectly and Bk ∈ C(I).
We now study the convergence. Consider a series B0+(B1−B0)+(B2−B1)+

··· which is equal to the sequence Bk. Later, we will use a norm C(I): ‖·‖ =
‖·‖C(I). The following estimations are true:

∥∥B0

∥∥= 0,
∥∥B1−B0

∥∥= ‖f‖,
∣∣B2(t)−B1(t)

∣∣=
∣∣∣∣∣α3(t)

∑′∫ t
0
f(τ)εn(t−τ)dτ

∣∣∣∣∣≤
∥∥α3

∥∥·‖f‖·Ψ(t), (4.3)

where

Ψ(t)=
∑′∫ t

0
εn(t−τ)dτ =

∑′ �2

(nπ)2

[
1−exp

{
−
(
nπ
�

)2

t
}]
. (4.4)

A series for Ψ on I is majorized by
∑′�2/(πn)2. A function Ψ(t) has the follow-

ing properties: Ψ(0)= 0, Ψ(t) > 0 when t > 0, Ψ(t) grows on t, and Ψ(t)≤ �2/8.

Each term is continuous, so Ψ ∈ C(I) and ‖Ψ‖ = Ψ(t+).
We have obtained an estimation ‖B2−B1‖ ≤ ‖α3‖ · ‖f‖ ·Ψ(t+). Now, only

local solution will be constructed since its continuation is a subject of a special

study. Let t+ be such that ‖α3‖Ψ(t+)≤ r < 1. Then,

∥∥B2−B1

∥∥≤ r‖f‖,
∥∥B3−B2

∥∥≤
∣∣∣∣∣α3(t)

∑′∫ t
0

∣∣B2(τ)−B1(τ)
∣∣εn(t−τ)dτ

∣∣∣∣∣
≤ ∥∥α3

∥∥·∥∥B2−B1

∥∥·Ψ(t+)≤ r∥∥B2−B1

∥∥≤ r 2‖f‖.

(4.5)

Continuing this process, one obtains Bk⇒ B ∈ C(I) and

‖B‖ ≤ ∥∥B0

∥∥+∥∥B1−B0

∥∥+··· ≤ ρ‖f‖, ρ = 1
1−r . (4.6)

Estimation (4.6) implies continuous dependence B = Ȧ of f .

Theorem 4.1. For sufficiently small t+ (‖α3‖·Ψ(t+) < 1), the unique solu-

tion A∈ C1(I) of (4.1) exists for all f ∈ C(I).
The existence is proved, A(t) = c̄0 +

∫ t
0 B(τ)dτ . Suppose that there exists

one more solution F ∈ C1(I). Using linearity of (4.1), from (4.6), one obtains

‖B− Ḟ‖ = 0, which means that A = F on I. If F exists on a smaller segment

J = [0, t0], then t+ is reduced to t0 (Ψ(t)→ 0 monotonically when t→ 0). Then,

A = F on J and a solution A can be considered as continuation of F from J
to I.
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Remark 4.2. The condition ‖α3‖·Ψ(t+) < 1 is true without any limitations

on t+ if ‖g‖ < 2/�, for α3 = 4g/�, Ψ ≤ �2/8. These limitations are tributes to

the method of contractive mappings.

Theorem 4.3. The unique solution A∈ C1(I) of (4.1) with continuous right

part f exists on any segment I = [0, t+], the following estimation is true: ‖Ȧ‖ ≤
R‖f‖.

Proof. As T(t) ∈ [T−,T+], we choose t+1 so that the following inequality

holds: ‖α3‖·Ψ(t+1 )≤ r < 1. The solution will be constructed on I1 = [0, t+1 ] in

accordance with Theorem 4.1. From (4.6), it follows that ‖Ȧ‖I1 ≤ (1−r)−1‖f‖I1 .

We consider (4.1) on the next segment I2 = [t+1 ,2t+1 ] with initial data A(t+1 )

Ȧ(t)+α3(t)
∑′∫ t

t1+
Ȧ(τ)εn(−τ)dτ = f̃ (t),

f̃ (t)= f(t)−α3(t)
∑′

εn(t)
∫ t1+

0
Ȧ(τ)εn(−τ)dτ.

(4.7)

Noting that

εn(t)= εn
(
t−t+1

)
εn
(
t+1
)
, εn(−τ)= εn

(
t+1 −τ

)
εn
(−t+1 ), εn(0)= 1, (4.8)

and moving the origin to t+1 , one obtains problem (4.1) with modified right part.

Estimation (4.6) implies that ‖Ȧ‖I2 ≤ ρ‖f̃‖I2 . We estimate ‖f̃‖I2 as follows:

∣∣f̃ (t)∣∣≤ ∣∣f(t)∣∣+∣∣α3(t)
∣∣∑′

εn
(
t−t+1

)
εn
(
t+1
)∫ t+1

0

∣∣Ȧ(τ)∣∣εn(−τ)dτ
≤ ∣∣f(t)∣∣+∥∥α3

∥∥
I2 ·‖Ȧ‖I1 ·Ψ

(
t+1
)
, 0< εn

(
t−t+1

)≤ 1, t ∈ I2,∥∥f̃∥∥I2 ≤ ‖f‖I2+r‖Ȧ‖I1 ≤ ‖f‖I2+r(1−r)−1‖f‖I1 .

(4.9)

From here, the following is easily obtained:

‖Ȧ‖I2 ≤ ρ
∥∥f̃∥∥I2 ≤ ρ(‖f‖I2+rρ‖f‖I1)

≤ ρ(1+rρ)‖f‖I1∪I2 = ρ2‖f‖I1∪I2 .
(4.10)

Comparing this result with ‖Ȧ‖I1 ≤ (1− r)−1‖f‖I1 , 0 < r < 1, we have the

following:

‖Ȧ‖I1∪I2 ≤ ρ2‖f‖I1∪I2 , ρ = 1
(1−r) . (4.11)

In the same way, one can consider the next segment I3 = [2t+1 ,3t+1 ]

Ȧ(t)+α3(t)
∑′

εn(t)
∫ t

2t+1
Ȧ(τ)εn(−τ)dτ = f̂ (t),

f̂ (t)= f(t)−α3(t)
∑′

εn(t)
∫ 2t+1

0
Ȧ(τ)εn(−τ)dτ.

(4.12)
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Using the same technique, the following estimation is obtained:

‖Ȧ‖I1∪I2∪I3 ≤ (1−r)−3‖f‖I1∪I2∪I3 . (4.13)

In this way, the continuous function A(t) on I is constructed. On any segment

with length t+1 , it satisfies (4.1). The way of construction guarantees that dis-

continuities of Ȧ(t) can be only of the one kind and can exist only on the

ends of the segments. But even in this case all terms in
∑′ are continuous,

and boundness of |Ȧ| on I implies absolute and uniform convergence. Thus

continuity of the second term of (4.1) implies the continuity of the derivative

Ȧ, which means that A ∈ C1(I). The uniqueness of the solution follows from

the way of constructing consequently on I1, I2, . . . . The estimation is true on

the segment I: ‖Ȧ‖ ≤ R‖f‖, R = (1−r)−N .

Now, remember that in the initial equation (3.5), square function α1(t)A2(t)
+α2(t)A(t) is instead of f(t). We consider a new iterative process A0(t)= c̄0,

B0(t)= 0,

Bk+1(t)+α3(t)
∑′∫ t

0
Bk+1(τ)εn(t−τ)dτ

=−α1(t)A2
k(t)+α2(t)Ak(t),

(4.14)

Ak+1(t)= c̄0+
∫ t
0 Bk+1(τ)dτ , which is the same with

Ȧk+1(t)+α3(t)
∑′∫ t

0
Ȧk+1(τ)εn(t−τ)dτ

=−α1(t)A2
k(t)+α2(t)Ak(t).

(4.15)

The sequences Bk ∈ C(I) and Ak ∈ C1(I) are defined correctly on any given

segment [0, t+]. The solutions Bk+1 with given Ak are defined by (4.1) (which is

linear with respect to unknown function Bk+1)—it follows from Theorems 4.1

and 4.3.

Theorem 4.4. When t+ is small enough, Bk is bounded, that is, the following

estimation holds: ‖Bk‖C(I) ≤M = const.

Proof. Let time instant t+ be chosen such that both inequalities ‖α3‖I ·
Ψ(t+) ≤ r < 1 and (4.6) are true. By the way, on the initial stage there is no

need to bound t+ due to Theorem 4.3 (‖Ȧ‖ ≤ R‖f‖). With respect to (4.14),

one obtains (α4 =−α1c̄2
0+α2c̄0, α5 =α2−2α1c̄0)

∥∥Bk+1

∥∥
I ≤ ρ

∥∥−α1A2
k+α2Ak

∥∥
I

= ρ
∥∥∥∥∥α4+α5

∫ t
0
Bkdτ−α1

(∫ t
0
Bkdτ

)2∥∥∥∥∥
I

≤ ρ
[∥∥α4

∥∥
I+t+

∥∥α5

∥∥
I ·
∥∥Bk∥∥I+t+2

∥∥α1

∥∥
I ·
∥∥Bk∥∥2

I

]
.

(4.16)
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Thus, the following estimation is obtained:

∥∥Bk+1

∥∥≤ β0+β1t+
∥∥Bk∥∥+β2t+2

∥∥Bk∥∥2. (4.17)

Note that while t+ becomes smaller, constantsβi cannot grow, yet stay positive.

Consider the square function f(x) = β1t+x+β2t+2x2, x ≥ 0. For any con-

dition 0 ≤ x ≤M , it is possible to take t+ ≤ ε so small so that 0 ≤ f(x) ≤ γx,

0< γ < 1. For instance, β1t+ ≤ γ/2 and β2t+2M ≤ γ/2.

Let t+ be so small so that the following inequalities are true:

∥∥α3

∥∥·Ψ(t+)≤ r < 1,
∥∥Bk+1

∥∥≤ β0+γ
∥∥Bk∥∥, 0< γ < 1,

∥∥Bk∥∥≤M. (4.18)

It is important here to note that the inequality for Bk+1 is written assuming

that ‖Bk‖ ≤ M . Constant M , which can be made bigger reducing t+, will be

specified later.

As B0 = 0, ‖B1‖ ≤ β0. Quantity β0 = ρ‖α4‖ cannot grow while t+ reduces,

but at the same time does not tend to be zero. LetM >β0 (this can be obtained

using t+). Then,

∥∥B2

∥∥≤ β0+γ
∥∥B1

∥∥≤ β0+γβ0. (4.19)

If β0+γβ0 <M , then it would be possible to continue a simpler estimation

∥∥B3

∥∥≤ β0+γ
∥∥B2

∥∥≤ β0+γβ0+γ2β0. (4.20)

Note that if choosing small enough t+, the following is made true (for instance,

if M = 1/t+):

β0
(
1+γ+γ2+···)= β0(1−γ)−1 ≤M, (4.21)

then all simplified estimations will be true and ‖Bk‖ ≤M for all k≥ 0.

Remark 4.5. The choice t+ is constructive. We consider the simplest case.

Choose r < 1 and t+ from condition 4g(t+)Ψ(t+)/� ≤ r . Series for Ψ(t) con-

verges quickly. Calculate βi with given r , t+, known initial concentration c̄0,

and coefficients D, g, and b. Then, for some γ ∈ (0,1), by reducing t+, if nec-

essary, we obtain

β1t+ ≤ γ
2
, β2t+ ≤ γ

2
, M = 1

t+
≥ β0(1−γ)−1. (4.22)

After that, it is possible to come back to old times.

Theorem 4.6. For a small enough t+, the unique solution A ∈ C1(I) of the

initial functional differential equation (3.5) on a segment I = [0, t+] exists.
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Proof. The following is obtained from (4.14) using Ak(0)= c̄0, Ȧk = Bk:

Bk+2(t)−Bk+1(t)+α3(t)
∑′∫ t

0

(
Bk+2(τ)−Bk+1(τ)

)
εn(t−τ)dτ

−α1(t)
(
A2
k+1(t)−A2

k(t)
)+α2(t)

(
Ak+1(t)−Ak(t)

)

=
{
α5−α1

∫ t
0

(
Bk+1−Bk

)
dτ
}
·
∫ t

0

(
Bk+1−Bk

)
dτ.

(4.23)

Let t+ be so small so that from Theorem 4.4

∥∥α3

∥∥
I ·Ψ

(
t+
)≤ r < 1,

∥∥Bk∥∥I ≤M = 1
t+
. (4.24)

Using the estimation (4.6) from (4.1),

∥∥Bk+2−Bk+1

∥∥≤ ρ{∥∥α5

∥∥+2
∥∥α1

∥∥Mt+}·∥∥Bk+1−Bk
∥∥t+ = βt+∥∥Bk+1−Bk

∥∥
(4.25)

is obtained. Choose β and obtain the contraction (reducing t+)

∥∥Bk+2−Bk+1

∥∥≤ s∥∥Bk+1−Bk
∥∥, 0< s < 1. (4.26)

Then, the well-known method of contracting mappings is used to prove the

existence of unique solution A ∈ C1(I) to (3.5). Its derivative B(t) = Ȧ(t) can

be estimated (B0 = 0): ‖B‖ ≤ ‖B1‖/(1−s).

5. Numerical results. Difference schemes with fourth-order approximation

(O(h4), where h is the spatial step) are constructed for numerical experiments

with the model. The stability is studied in [2]. The desorption flux curves have

been calculated for different initial data and parameters. The curves are quite

close to those obtained from physical experiments.

Local maximum points of the curve J(t) (density of desorption flux) are of

interest. On Figure 5.1 there are three plots for the values (one after another)

in Table 5.1.

For all plots, the flux is items per cm2 per second.

The first maximum appears because the rates of diffusion and desorption

grow together with temperature. Then the decrease of the gas amount in the

plate implies lowering of the curve. Existence of the second maximum (note

that gas interaction with traps is not taken into consideration) is explained

by difference between rates of the processes on surface and in depth. Quick

decrease of the surface concentration q(t) implies big gradient of volume con-

centration c(t,x) near x = 0, which defines a significant diffusion flux towards

the surface. Desorption flux quickly decreases, but later, because of arraying

gas, it increases again, forming the second maximum.
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Figure 5.1

Table 5.1

D0 = 5·10−3 cm2/s g0 = 100 cm−1 b0 = 0.12 cm2/s Ṫ = 10K/s

ED = 20kJ/mol Eg = 10−3 kJ/mol Eb = 84kJ/mol T0 = 279K

D0 = 5·10−3 cm2/s g0 = 100 cm−1 b0 = 0.12 cm2/s Ṫ = 10K/s

ED = 16kJ/mol Eg = 10−3 kJ/mol Eb = 85kJ/mol T0 = 279K

D0 = 5·10−2 cm2/s g0 = 100 cm−1 b0 = 0.12 cm2/s Ṫ = 10K/s

ED = 20kJ/mol Eg = 10−3 kJ/mol Eb = 84kJ/mol T0 = 279K

Here are some more examples of how the coefficients affect the curve J(t)=
b(t)q2(t). The curves on Figures 5.2, 5.3, 5.4, 5.5, and 5.6 differ by only one pa-

rameter, its values are given up-to-down, left-to-right with respect to the maxi-

mum ED = 16,19,22; b0 = 0.3,0.12,0.06; Eb = 76,78,90; D0 = 14e-3,5e-3,1e-3;

and Eg = 2,1,1e-3. Other parameters are given in Table 5.2.

Table 5.2

D0 = 5·10−3 cm2/s g0 = 100 cm−1 b0 = 0.12 cm2/s Ṫ = 10K/s

ED = 20kJ/mol Eg = 10−3 kJ/mol Eb = 84kJ/mol T0 = 279K

The influence of energy of activation of diffusion (it defines the exponential

part of the Arrhenius law) is well seen. The difference is insignificant when

temperatures are low (in the beginning of the experiment), but important for

how gas leaves the plate; when the parameter is low, gas leaves quicker, but

when high, then slower and fluently, and the second maximum appears. The

coefficient D(T(t)) is the most difficult to vary as it appears in the stability

conditions for the difference schemes.
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Figure 5.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28
s

20
40
60

80
100

120

140
160

180
200

220

240
260
280
300

320

D
es

o
rp

ti
o
n

fl
u

x
d

en
si

ty
J(
t)
·1

0
1

2

Figure 5.3

Note that the desorption coefficient b nearly does not affect the end of the

experiment. All three curves meet at the same point. Probably, at high tem-

peratures, the exponential part of b = b(T) “eats” any difference. The time of

degassing is nearly the same (≈ 22s on the upper plot and ≈ 20s on the lower).
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Figure 5.4
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Figure 5.5

Now, we return to the problem of the second maximum of the flux. Illustra-

tions given show that the most important for the second maximum appearance

process is diffusion (thus parameters D0 and ED).

Consider the area below J(t). Quantity 2S I, where I = ∫ t∗0 J(τ)dτ , t∗ � 1,

is the number of hydrogen atoms, passing through both surfaces of the plate
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Figure 5.6

(each has the area S) during all the experiment. Initial amount of gas is de-

fined by that dissolved in the volume (c(0,x)= c̄0) and atoms on the surfaces

(q(0) = c̄0/g(0)). So, the following is true: I = c̄0/(2�)+ c̄0/g(0). Then, it is

obvious that any two curves J(t) with equal parameters g0 and Eg must have

the same area below the curve. With different g0 and Eg (and other parameters

are equal), the areas will be noticeably different due to different amount of gas

initially kept on the surface. And what is more, even if g0 and Eg are equal,

parameter g(0) in different experiments on different temperatures T(0) will

be different.

Parameter g also influences the maximum value of the flux. As J(t) =
b(t)q2(t), q(t)= c(t,0)/g(t), so the lower g—the greater number of atoms—

will go out to the surface at the unit time and later desorb. Note that considered

values of g nearly do not influence the last part of the experiment and its finish

time t∗. But the maximum of J “neatly” responds to Eg . This gives an oppor-

tunity to select the parameter Eg only with the maximum value. Here are some

illustrations.

Among the experimental curves, there are some curves with two humps,

even the first is smaller than the second. It means that the second raise of

the flux, conditioned by the delay of the “deep" amount of gas coming to the

surface, is less significant than the first one, conditioned by growing rates of

the processes. Such curves can be also obtained in the numerical experiment

at special parameters values. On Figure 5.7 (parameters are in Table 5.3), there

is an example: curves differ in the energies of activation of diffusion and des-

orption.
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Figure 5.7

Table 5.3

D0 = 5·10−3 cm2/s g0 = 800 cm−1 b0 = 0.12 cm2/s Ṫ = 15K/s

ED = 26,30,35kJ/mol Eg = 10−6 kJ/mol Eb = 60,70,90kJ/mol T0 = 270K

The curves with three humps (also present in the experimental results) are

hardly possible to be explained using only diffusion and surface processes.

Although, such curves were also obtained in the considered model, taking the

traps into consideration. The traps are different defects of the structure of the

material, which can capture hydrogen and later release it, while the tempera-

ture grows. To consider traps, the model must be slightly modified

ct(t,x)=D(T)cxx(t,x)−a1(T)c(t,x)+a2(T)z(t,x), (t,x)∈Qt∗ ,
zt(t,x)= a1(T)c(t,x)−a2(T)z(t,x), T = T(t),
c(0,x)= c̄0, c(t,x)= c(t,�−x), x ∈ [0,�],
c(t,0)= g(T)q(t), q̇(t)=−b(T)q2(t)+D(T)cx(t,0).

(5.1)

Here, ai are the rates of capture (i = 1) and release (i = 2) of hydrogen by

the traps. Their dependence on temperature is described by Arrhenius rule

together with other parameters ai(t) = ai0 exp{−Eai/[RT(t)]}. A function

z(t,x) is the concentration of hydrogen in the traps at the time t in the point

x. Below is an example of how the delay conditioned by the traps makes three
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Figure 5.8

humps at the desorption flux curve. The common parameters for the three

curves on Figure 5.8 are in Table 5.4, a2 = 0.1,0.2,0.5.

Table 5.4

D0 = 5·10−3 cm2/s g0 = 800 cm−1 b0 = 0.12 cm2/s Ṫ = 15K/s

ED = 30kJ/mol Eg = 5·10−2 kJ/mol Eb = 70kJ/mol T0 = 230K

a1 = 10−3 s−1 Ea1 = 0 s−1 Ea2 = 15 s−1 t = 120s

Note that the time interval is taken significantly larger than that in the ex-

periments without traps as, because of the delay conditioned by the traps, it

takes more time for hydrogen to desorb. One more point to note is that at low

temperatures the difference in the trapping rates is insignificant, yet at high

temperatures even a small difference completely changes a curve.

Thus, numerical experiments corroborate the adequacy of the model.
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