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1. Introduction. Let G be an open set in Rn. A continuous mapping f :G→
Rn is called K-quasiregular, K ≥ 1, if f ∈ W 1,n

loc (G) and if ‖f ′(x)‖n ≤ KJf (x)
a.e., where Jf (x) stands for the Jacobian determinant of f ′(x) and ‖f ′(x)‖ =
sup|f ′(x)h|, where the supremum is taken over all unit vectors h ∈ Rn. A

homeomorphic K-quasiregular mapping is called K-quasiconformal. We will

employ the following distortion coefficients:

Kf (x)=
∥∥f ′(x)∥∥n
Jf (x)

, Lf (x)= Jf (x)
�
(
f ′(x)

)n , Hf (x)=
∥∥f ′(x)∥∥
�
(
f ′(x)

) , (1.1)

that are called the outer, inner, and linear dilatation of f at x, respectively.

Here, �(f ′(x))= inf |f ′(x)h|. These dilatation coefficients are well defined at

regular points of f and, by convention, we let Kf (x) = Lf (x) = Hf (x) = 1 at

the nonregular points and for a constant mapping.

It is well known that if n ≥ 3 and one of the dilatation coefficients of a

quasiregular mapping f , say Lf (x), is close to 1, then f is close to a Möbius

transformation. In spite of this Liouville’s phenomenon, the pointwise condi-

tion Lf (x)→ 1 as x → y , y ∈ G, implies neither conformality for f at y nor

the properties typical for the conformal mappings. The mapping

f(x)= x(1− log |x|), f (0)= 0, (1.2)

shows that |f(x)|/|x| → ∞ as x → 0 although Lf (x) = (1−1/ log |x|)n−1 → 1.

Nevertheless, the conformal behavior of f at a point can be studied in terms of

some other measures of closeness of the distortion coefficient to 1. The first

such result is due to Teichmüller [29] and Wittich [31]. They proved that if f
is a quasiconformal homeomorphism of the unit disk |z| < 1 in the complex
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plane C onto itself normalized by f(0)= 0 and such that

∫
|z|<1

Lf (z)−1

|z|2 dxdy <∞, z = x+iy, (1.3)

then |f(z)|/|z| = C(1+η(|z|)) with some C > 0 and η(t)→ 0 as t→ 0. In what

follows, we call such C the conformal dilatation coefficient of f at 0. Belinskii

[3] derived the conformal differentiability of f at 0 from condition (1.3). The

complete treatment of the classical Teichmüller-Wittich-Belinskii conformality

theorem for quasiconformal mappings in plane is given in [18, Chapter V, Sec-

tion 6]. Similar problems have been studied by Shabat [27], Lehto [17], Reich

and Walczak [23], and Brakalova and Jenkins [6]. Another approach to the in-

vestigation of the pointwise behavior of the quasiconformal mappings based

on the Beltrami equation is due to Bojarskĭı [5] (see also [15, 26]).

Consider the class of space radial mappings f : B → B defined on the unit

ball B in Rn centered at the origin as follows: fix an arbitrary locally integrable

function g on [0,1] with g(t)≥ 1 for a.e. t, and let

f(x)= xe−α(|x|), α
(|x|)=

∫ 1

|x|
g(t)−1

t
dt, f (0)= 0. (1.4)

It follows from (1.4) that g(|x|) = Jf (x)/�(f ′(x))n a.e., and therefore g(|x|)
agrees with the inner dilatation coefficient of f at x. A simple observation

shows that f is conformally differentiable at the origin if and only if the integral

α(0) in (1.4) converges. For an arbitrary quasiregular mapping f : B→ B, f(0)=
0, we may consider a condition similar to (1.3), namely

∫
�

Lf (x)−1

|x|n dx <∞ (1.5)

for some neighborhood � of zero, and one can expect that condition (1.5) is

sufficient for f(x) to be conformal at x = 0. In this direction, we know the

only two following statements. Suominen [28] proved that the condition

∫
�

(
Df (x)

)1/n−1

|x|n dx <∞, (1.6)

equivalent to (1.5), implies that |f(x)| ∼ C|x| as x → 0 for K-quasiconformal

mappings in Riemannian manifolds. Reshetnyak [25, page 204] showed that

the stronger Dini requirement

∫ 1

0

δf (t)
t

dt <∞, (1.7)

where δf (t) = ess sup|x|<t(Kf (x)−1), guarantees the conformal differentia-

bility of f at 0.



ON CONFORMAL DILATATION IN SPACE 1399

In this paper, we give a direct generalization to nonconstant quasiregular

mappings in Rn, n≥ 2, of the classical theorem of Teichmüller and Wittich, re-

placing assumption (1.3) by (1.5), and give bounds for the conformal dilatation

coefficient C = limx→0 |f(x)|/|x|, see Theorem 3.1. The proof is based on the

concept of the infinitesimal space developed in [13] and new Grötzsch-type

modulus estimates for quasiregular mappings in Rn, n ≥ 2, where integrals

similar to (1.5) control the distortion. A uniform version of the theorem as

well as several consequences concerning, in particular, the study of some rec-

tifiability problems for quasispheres, see [1, 2, 8], are also given. The conformal

differentiability under condition (1.5) remains an open problem.

For convenience, we will prove the main statements only for the inner di-

latation coefficient Lf (x) because, for the other dilatations, the corresponding

results follow from the well-known relations (see, e.g., [30, page 44])

Lf (x)≤Kn−1
f (x), Kf (x)≤ Ln−1

f (x), Hn
f (x)=Kf (x)Lf (x) (1.8)

that hold for every n≥ 2.

The following standard notations are used in this paper. The norm of a

vector x ∈Rn is written as |x| = 〈x,x〉1/2 = (x2
1+···+x2

n)1/2, where x1, . . . ,xn
are the coordinates of x and 〈x,y〉 denotes the usual inner product of vectors

x and y in Rn. If 0 < a < b < ∞, the domain R(a,b) = B(0,b) \ B(0,a) is

called a spherical annulus, where B(x0,r ) is the ball {x ∈Rn | |x−x0|< r}. A

space ring is a domainD such that the boundary ∂D consists of two nonempty

connected sets A1 and A2 in the compactified space R
n
.

2. Modulus estimates. Let � be a family of arcs or curves in space Rn. A

nonnegative and Borel measurable functionρ defined inRn is called admissible

for the family � if the relation

∫
γ
ρds ≥ 1 (2.1)

holds for every locally rectifiable γ ∈ �. The quantity

M(�)= inf
ρ

∫
Rn
ρndx, (2.2)

where the infimum is taken over all ρ admissible with respect to the family

� is called the modulus of the family � (see, e.g, [30, page 16] and [10]). This

quantity is a conformal invariant and possesses the monotonicity property

which says, in particular, that if �1 < �2, that is, every γ ∈ �2 has a subcurve

which belongs to �1, then (see, e.g., [30, page 16])

M
(
�1
)≥M

(
�2
)
. (2.3)
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Let � be a space ring whose complement consists of two components C0

and C1. A curve γ is said to join the boundary components in � if γ lies in �,

except for its endpoints that lie in different boundary components of �.

In these terms, the modulus of a space ring has the representation (see, e.g.,

[10, 14])

mod�=
(
ωn−1

M(Γ)

)1/(n−1)

, (2.4)

where Γ is the family of curves joining the boundary components in � and

ωn−1 is the (n−1)-dimensional surface area of the unit sphere Sn−1 inRn (see,

e.g., [10, 32]). Note also that the modulus M(Γ) coincides with the conformal

capacity of the space ring � by a result of Loewner [19] (see, e.g., [10]).

In the sequel, we employ only the following two families of curves, lying in

the spherical annulus R(a,b), and its images under quasiconformal mappings.

The first one that we denote by ΓR(a,b) consists of all locally rectifiable curves γ
that join the boundary components in R(a,b). The second family Γ νR(a,b), with

ν ∈ Sn−1 fixed, consists of all locally rectifiable curves γ that join in R(a,b)
the two components of L∩R(a,b), where L= {tν : t ∈ R} is the line through 0

and ν .

In order to derive the desired estimates, we need the following two state-

ments.

Lemma 2.1. Let f : G → G′ be a quasiconformal mapping with the inner

dilatation coefficient Lf (x). Then, for each curve family Γ in G,

M
(
f(Γ)

)≤
∫
G
ρnLf (x)dx (2.5)

for every admissible ρ for Γ .

Proof. To prove (2.5), we first recall the inequality due to Väisälä (see [30,

page 95])

M(Γ)≤
∫
G
ρ∗n

(
f(x)

)∥∥f ′(x)∥∥ndx (2.6)

that holds for every curve family Γ in G and every admissible ρ∗ for Γ ′ = f(Γ).
We give a short proof for (2.6). Let Γ0 denote the family of all locally rectifiable

curves γ ∈ Γ such that f is absolutely continuous on every closed subcurve of

γ. Since f is ACLn, it follows from Fuglede’s theorem (see, e.g., [30, page 95])

that M(Γ \Γ0)= 0. Hence, M(Γ)=M(Γ0).
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Next, let ρ∗ be admissible for Γ ′. Define ρ : Rn → [0,∞] by ρ(x) =
ρ∗(f (x))L(x,f ) for x ∈G and ρ(x)= 0 for x ∉G, where

L(x,f )= limsup
h→0

∣∣f(x+h)−f(x)∣∣
|h| . (2.7)

Then, ρ is a Borel function, and for γ ∈ Γ0,

∫
γ
ρds ≥

∫
f◦γ

ρ∗ds ≥ 1. (2.8)

Thus, ρ is admissible for Γ0, and therefore

M(Γ)=M
(
Γ0
)≤

∫
G
ρndx =

∫
G
ρ∗n

(
f(x)

)
Ln(x,f )dx

=
∫
G
ρ∗n

(
f(x)

)∥∥f ′(x)∥∥ndx (2.9)

since f is differentiable a.e. in G and L(x,f ) = ‖f ′(x)‖ at every point of dif-

ferentiability.

Applying formula (2.6) to the inverse of f , we obtain

M
(
f(Γ)

)≤
∫
G
ρnLf (x)dx (2.10)

for every admissible ρ for Γ .

Lemma 2.2. Let � be a space ring that contains the spherical annulusR(a,b),
and let E1 and E2 be two disjoint subsets of � such that each sphere Sn−1(t),
a < t < b, meets both E1 and E2. If � is the family of all curves joining E1 and

E2 in �\{E1∪E2}, then

M(�)≥ cn log
b
a
, (2.11)

where

cn = 1
2
ωn−2

(∫∞
0
t(2−n)/(n−1)(1+t2)1/(1−n)

)1−n
. (2.12)

If � = R(a,b) and E1 and E2 are the components of L∩R(a,b), where L is a

line through the origin in the direction of a unit vector ν , then

M(�)= cn log
b
a
. (2.13)
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This useful result, the proof of which is based on the combination of the

space moduli technique and Hardy-Littlewood-Polya’s symmetrization princi-

ple, is due to Gehring [11] (see also [30, page 31], [7, page 58], and [24, page

108]).

Let f :Rn →Rn, f(0)= 0, n≥ 2, be a quasiconformal mapping. We will use

the following standard notations:

Mf(r)=max
|x|=r

∣∣f(x)∣∣, mf (r)= min
|x|=r

∣∣f(x)∣∣. (2.14)

Theorem 2.3. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a quasiconformal map-

ping with the inner dilatation coefficient Lf (x). Then, for every spherical annu-

lus R(a,b),

log
b
a
−modf

(
R(a,b)

)

≤ modnf
(
R(a,b)

)
∑n−1
k=1

(
log(b/a)

)n−k
modk f

(
R(a,b)

) 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx.

(2.15)

Proof. Let R(a,b) be a spherical annulus in Rn and let ΓR(a,b) be the family

of curves which join the boundary components of R(a,b). Then, (2.5) yields

M
(
f
(
ΓR(a,b)

))≤
∫
R(a,b)

ρnLf (x)dx (2.16)

for every admissible ρ with respect to a family ΓR(a,b). Using formula (2.4), we

obtain from (2.16)

(
modf

(
R(a,b)

))1−n ≤ 1
ωn−1

∫
R(a,b)

ρnLf (x)dx. (2.17)

On the other hand, the function

ρ0(x)= 1
|x| log(b/a)

(2.18)

is admissible with respect to ΓR(a,b) since for every curve γ ∈ ΓR(a,b),
∫
γ
ρ0ds ≥

∫ b
a

1
r log(b/a)

dr = 1. (2.19)

Substituting ρ0 in (2.17) and noting that

1
ωn−1

∫
R(a,b)

ρn0 (x)dx =
(

log
b
a

)1−n
, (2.20)
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we arrive at the inequality

(
modf

(
R(a,b)

))1−n−
(

log
b
a

)1−n

≤ 1

ωn−1
(
log(b/a)

)n
∫
R(a,b)

Lf (x)−1

|x|n dx
(2.21)

that can be rewritten in the form of (2.15).

Corollary 2.4. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a quasiconformal

mapping with the inner dilatation coefficient Lf (x). Then, for every spherical

annulus R(a,b),

log
b
a
−modf

(
R(a,b)

)≤ 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx. (2.22)

Proof. If log(b/a) ≤ modf(R(a,b)), then inequality (2.22) is trivial. If

log(b/a) >modf(R(a,b)), then (2.21) can be rewritten as

(
β
α

)n−1

−1≤ M
β
, (2.23)

where β= log(b/a),α=modf(R(a,b)), andM is the right-hand side of (2.22).

Now,

β
α
−1≤

(
β
α

)n−1

−1≤ M
β
≤ M
α

(2.24)

and this gives (2.22).

Corollary 2.5. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a quasiconformal

mapping with the inner dilatation coefficient Lf (x). Then, for every spherical

annulus R(a,b),

log
b
a
− log

Mf(b)
mf (a)

≤ 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx. (2.25)

Proof. Since the space ring f(R(a,b)) is contained in the spherical annu-

lus R(mf (a),Mf (b)), the monotonicity principle for the modulus yields

modf
(
R(a,b)

)≤modR
(
mf(a),Mf (b)

)= log
Mf(b)
mf (a)

(2.26)

because for every annulus R(a,b),

modR(a,b)= log
b
a
. (2.27)
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Theorem 2.6. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a quasiconformal map-

ping with the inner dilatation coefficient Lf (x). Then, for every spherical annu-

lus R(a,b) and each ν ∈ Sn−1,

M
(
f
(
Γ νR(a,b)

))−cn log
b
a
≤
∫
R(a,b)

ρn0 (x,ν)
Lf (x)−1

|x|n dx, (2.28)

where

ρ0(x,y)=
(
cn
ωn−2

)1/(n−1)(
1−

〈
x
|x| ,

y
|y|

�2)(2−n)/2(n−1)
(2.29)

and cn is the constant defined by (2.12).

Proof. Fix a unit vector ν = y/|y| ∈ Rn and consider the family Γ νR(a,b)
of curves which join {tν : −b < t < −a} to {tν : a < t < b} in R(a,b). By

Lemma 2.1,

M
(
f
(
Γ νR(a,b)

))≤
∫
R(a,b)

ρnLf (x)dx (2.30)

for each admissible ρ with respect to Γ νR(a,b).
Now, we show that the function ρν(x) = ρ0(x,y)/|x| is admissible for the

family Γ νR(a,b).
Indeed, let γ be a rectifiable curve in Γ νR(a,b) and letϕ(x)= x/|x|. Then,ϕ◦γ

is a curve on Sn−1 and γ joins the antipodal points ±y/|y|. Since ‖ϕ′(x)‖ =
1/|x|, then using the arc length parametrization of γ, we see that

∫
γ
ρν(x)ds =

∫ �(γ)
0

ρ0
(
γ(s),y

) ds∣∣γ(s)∣∣
=
∫ �(γ)

0
ρ0
(
γ(s),y

)∥∥ϕ′(γ(s))∥∥ds
≥
∫ �(γ)

0
ρ0
(
γ(s),y

)∣∣ϕ′(γ(s))γ′(s)∣∣ds
=
∫ �(γ)

0
ρ0
(
ϕ
(
γ(s)

)
,y
)∣∣ϕ′(γ(s))γ′(s)∣∣ds

=
∫
ϕ◦γ

ρ0(x,y)ds.

(2.31)

In order to continue the estimation of the above integral, we rewrite ρ0(x,y)
as

ρ0(x,y)= p−1
n

((
1−〈x/|x|,y/|y|〉2)1/2

2

)(2−n)/(n−1)

(2.32)
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with

pn = 2
∫∞

0
r (2−n)/(n−1)(1+r 2)1/(1−n)dr (2.33)

and introduce a certain coordinate system on the sphere Sn−1.

Denote by Vn−1 a hyperplane passing through the origin and orthogonal to

the vector y/|y|. Let t = P(x) : Sn−1 → Vn−1 be the stereographic projection

with the pole at the point y/|y| and F(t) be the inverse mapping. Provide

the sphere Sn−1 with the spherical coordinates α1, . . . ,αn−1 in such a way that

α1 stands for the angle between the radius vectors going from the origin to

the points x and −y/|y| of the unit sphere. In these terms, |t| = tan(α1/2),
and therefore sinα1 = 2|t|/(1+|t|2). On the other hand, 1−〈x/|x|,y/|y|〉2 =
sin2α1, so

ρ0(·,y)◦F(t)= p−1
n

(
1+|t|2
|t|

)(n−2)/(n−1)

. (2.34)

Since x = F(t) is conformal and ‖F ′(t)‖ = 2/(1+|t|2), we get

∫
ϕ◦γ

ρ0ds =
∫
P◦ϕ◦γ

ρ0 ◦F
∥∥F ′(t)∥∥|dt|

≥ 2p−1
n

∫∞
0
|t|(2−n)/(n−1)(1+|t|2)1/(1−n)d|t| = 1,

(2.35)

and hence by (2.31), ρν is admissible for Γ νR(a,b).
Since

∫
R(a,b)

ρnν dx =
∫ b
a

(∫
Sn−1(r)

ρnν dmn−1

)
dr

=
∫ b
a

[∫
Sn−1

ρnν (ru)rn−1dmn−1(u)
]
dr

=
∫ b
a

dr
r

∫
Sn−1

ρn0 dmn−1(x)= cn log
b
a
,

(2.36)

we obtain

∫
Sn−1

ρn0 dmn−1(x)= cn. (2.37)

Inequality (2.30) with ρ = ρν yields

M
(
f
(
Γ νR(a,b)

))−cn log
b
a
≤
∫
R(a,b)

ρn0 (x,y)
Lf (x)−1

|x|n dx (2.38)
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and we arrive at the stated conclusion. As for (2.36),

∫
Sn−1

ρn0 dmn−1(x)Z

= 2n−1
∫
Vn−1

ρn0
(
F(t),y

)
(
1+|t|2)n−1dmn−1(t)

= p−nn 2n−1
∫
Vn−1

|t|n(2−n)/(n−1)(1+|t|2)n(n−2)/(n−1)(
1+|t|2)1−ndmn−1(t)

=ωn−2p−nn 2n−1pn
2
=ωn−2p1−n

n 2n−2 = cn.
(2.39)

Corollary 2.7. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a K-quasiconformal

mapping with the inner dilatation coefficient Lf (x). Then,

∫
Sn−1

M
(
f
(
Γ νR(a,b)

))
dmn−1(ν)≤ cn

∫
R(a,b)

Lf (x)dx
|x|n . (2.40)

Proof. The function ρ0(x,y) is symmetric in the sense that ρ0(x,y) =
ρ0(y,x), x,y ∈ Sn−1, and therefore

∫
Sn−1

ρn0 (x,y)dmn−1(y)=
∫
Sn−1

ρn0 (x,y)dmn−1(x)= cn. (2.41)

If we integrate inequality (2.28) with respect to the parametery over the sphere

Sn−1, then by Fubini’s theorem and relation (2.41), we get the required inequal-

ity (2.40).

Corollary 2.8. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a K-quasiconformal

mapping with the inner dilatation coefficient Lf (x). Then,

log
mf(b)
Mf (a)

− log
b
a
≤ 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx. (2.42)

Proof. If mf(b) ≤ Mf(a), then inequality (2.42) is trivial. Assume that

mf(b) > Mf (a). Then, the space ring � = f(R(a,b)) contains the spherical

annulus R(Mf (a),mf (b)). The curve family � = f(Γ νR(a,b)) satisfies all the as-

sumptions of Lemma 2.2 with respect to R(Mf (a),mf (b)). Therefore, (2.11)

and (2.13) imply that

M
(
f
(
Γ νR(a,b)

))
≥M

(
Γ νR(Mf (a),mf (b))

)
= cn log

mf(b)
Mf (a)

. (2.43)

This, together with (2.40), yields (2.42).

The following statements may be of independent interest.
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Theorem 2.9. Let f be a K-quasiconformal mapping of a spherical annulus

R(a,b) onto another spherical annulus R(c,d) with the inner dilatation coeffi-

cient Lf (x). Then,

− 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx ≤ log
b
a
− log

d
c

≤
(
log(d/c)

)n
∑n−1
k=1

(
log(b/a)

)n−k ·( log(d/c)
)k · 1

ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx.
(2.44)

Proof. The first inequality follows from Corollary 2.8 and the second one

is a consequence of Theorem 2.3.

If f is a K-quasiconformal mapping in the plane, then (2.44) yields

(
b
a

)1/K
≤ d
c
≤
(
b
a

)K
(2.45)

and we recognize the classical Grötzsch inequality for annuli (see, e.g., [18,

page 38]).

Corollary 2.10. Let f be a K-quasiconformal mapping of a spherical an-

nulus R(a,b) onto another spherical annulus R(c,d) with the inner dilatation

coefficient Lf (x). Then,

∣∣∣∣ log
d
c
− log

b
a

∣∣∣∣≤ 1
ωn−1

∫
R(a,b)

Lf (x)−1

|x|n dx. (2.46)

Indeed, if log(d/c) > log(b/a), then (2.46) follows from inequality (2.42). If

log(d/c) < log(b/a), then (2.46) follows from inequality (2.25).

For n= 2, we arrive at the modulus estimations under quasiconformal map-

pings in the plane with the variable dilatation coefficient established by Belin-

skii [3].

Note that all the inequalities proved in this section remain valid also for

ACLn homeomorphisms in Rn with locally integrable dilatation coefficients.

Moreover, estimates (2.44) and (2.46) are sharp. For instance, the radial map-

pings of type (1.4) provide the equality in (2.46).

3. Conformal dilatation coefficient. We apply estimates proved in Section 2

to establish a space version of the regularity problem studied by Teichmüller

[29] and Wittich [31].

Theorem 3.1. Let f : Rn → Rn, n ≥ 3, f(0) = 0, be a nonconstant K-qua-

siregular mapping with the inner dilatation coefficient Lf (x) and

I(r)= 1
ωn−1

∫
�

Lf (x)−1

|x|n dx <∞ (3.1)
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for some neighborhood � of 0. Then, the radius of injectivity of f at 0, Rf (0),
satisfies Rf (0) > 0 and there exists a constant C with

min
|x|=R

∣∣f(x)∣∣e−I(R)
R

≤ C ≤max
|x|=R

∣∣f(x)∣∣eI(R)
R
, 0<R ≤ Rf (0), (3.2)

∣∣f(x)∣∣
|x| �→ C as x→ 0. (3.3)

Remark 3.2. The statement of Theorem 3.1 is also valid if n= 2 and f is a

homeomorphism.

Corollary 3.3. Let f : Rn → Rn, f(0) = 0, n ≥ 2, be a K-quasiconformal

mapping satisfying (3.1). Then, (3.3) holds and (3.2) can be replaced by estimates

min
|x|=1

∣∣f(x)∣∣e−I(1) ≤ C ≤max
|x|=1

∣∣f(x)∣∣eI(1). (3.4)

In the case n= 2, we arrive at the Teichmüller-Wittich result for K-quasicon-

formal mappings in the plane (see also [18, Lemma 6.1]). For n≥ 3, the asymp-

totic behavior of f described in Corollary 3.3 has been proved by Suominen

[28] for K-quasiconformal mapping in Riemannian manifolds.

It is well known that a sense-preserving locally L-bilipschitz mapping f :

G→Rn is L2(n−1)-quasiregular; a locally L-bilipschitz mapping f satisfies, for

each L′ > L, x ∈G, and for some δ > 0, the double inequality

1
L′
≤
∣∣f(y)−f(z)∣∣

|y−z| ≤ L′, (3.5)

whenever y,z ∈ B(x,δ). A more general class than sense-preserving locally

bilipschitz mappings is provided by the class of mappings of bounded length

distortion (BLD), see [21]. These mappings also form a subclass of quasiregular

mappings.

Corollary 3.4. Let f :G→Rn be a bilipschitz mapping and

∫
�

Lf (x)−1

|x−a|n dx <∞ (3.6)

for some neighborhood � of a∈G. Then, there is a constant C > 0 such that

∣∣f(x)−f(a)∣∣
|x−a| �→ C as x �→ a. (3.7)

This statement was also proved in [16].
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Remark 3.5. If we replace (3.1) by the following stronger requirement:

∫ 1

0

δf (t)
t

dt <∞, (3.8)

where

δf (t)= ess sup
|x|<t

(
Kf (x)−1

)
, (3.9)

then, by the well-known theorem of Reshetnyak (see [25, page 204]), f(x) will

be conformally differentiable at the origin.

The well-known theorem of Liouville states that if the dilatation coefficient

of a quasiregular mapping is close to 1, then f is close to a Möbius transforma-

tion. The next lemma that gives a weak integral condition for this phenomenon

will be used for the proof of Theorem 3.1. We recall some basic notions from

the space infinitesimal geometry studied in [13].

Let f : G → Rn, n ≥ 2, be a nonconstant K-quasiregular mapping, y ∈ G,

t0 = dist(y,∂G), and R(t)= t0/t, t > 0. For x ∈ B(0,R(t)), we set

Ft(x)= f(tx+y)−f(y)τ(y,f ,t)
, (3.10)

where

τ(y,f ,t)=
(

measf
(
B(y,t)

)
Ωn

)1/n
. (3.11)

Here, Ωn denotes the volume of the unit ball B in Rn. Let T(y,f ) be a class

of all the limit functions for the family of the mappings Ft as t→ 0, where the

limit is taken in terms of the locally uniform convergence. The set T(y,f ) is

called the infinitesimal space for the mapping f at the point y . The elements

of T(y,f ) are called infinitesimal mappings, and the family (3.10) is called an

approximating family for f at y . The family T(y,f ) is not empty and consists

only of nonconstant K-quasiregular mappings F :Rn→Rn for which F(0)= 0,

F(∞)=∞, and measF(B)=Ωn, see [13, Theorem 2.7].

Lemma 3.6. Let f :G→Rn,n≥ 2, be a nonconstantK-quasiregular mapping

with the inner dilatation coefficient Lf (x), and let E be a compact subset of G.

If

1
Ωntn

∫
|x−y|<t

(
Lf (x)−1

)
dx �→ 0 as t �→ 0 (3.12)

uniformly in y ∈ E, then

(i) for n ≥ 3, the infinitesimal space T(y,f ) consists of linear isometric

mappings only;

(ii) for n≥ 3, the mapping f is locally homeomorphic in E;
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(iii) the mapping f preserves infinitesimal spheres and spherical annuli cen-

tered at y in the sense that

max|x−y|=r
∣∣f(x)−f(y)∣∣

min|x−y|=r
∣∣f(x)−f(y)∣∣ �→ 1 as r �→ 0, (3.13)

and for each c ≥ 1, c−1 ≤ |x|/|z| ≤ c,

∣∣f(x+y)−f(y)∣∣∣∣f(z+y)−f(y)∣∣ −
|x|
|z| �→ 0 (3.14)

as x,z→ 0 uniformly in y ∈ E.

Proof of Lemma 3.6. (i) Let Ft be the approximating family for f at y .

Assume that tj → 0 as j→∞ and Ftj (x)→ F(x) locally uniformly as j→∞. By

formula (3.10), we get that

KFtj (x)=Kf
(
tjx+y

)
a.e., (3.15)

and hence (3.12) can be written as

∫
|x|<R

(
KFtj (x)−1

)
dx �→ 0 as j �→∞ (3.16)

for every positive constant R. The latter limit implies that KFtj (x)→ 1 as j→∞
in measure in Rn. Without loss of generality, we may assume that KFtj (x)→ 1

a.e. This can be achieved by passing to a subsequence. By [12, Theorem 3.1], the

limit mapping F is a nonconstant 1-quasiregular mapping. Applying Liouville’s

theorem, we see that F is a Möbius mapping. Since F(0) = 0, F(∞) = ∞, and

measF(B)=Ωn, we come to the conclusion that F is a linear isometry.

(ii) By [20, Lemma 4.5], we see that

limsup
j→∞

iFtj (0)≤ iF (0)= 1, (3.17)

where if (x) denotes the local topological index of f at x. Thus, all the map-

pings Ftj (x) are locally injective at 0 for j > j0. By (3.10), we deduce that f is

locally injective at y , too.

(iii) Assume the converse. Then, there exist c ≥ 1, sequences yj ∈ E, and

xj,zj → 0 as j→∞ satisfying the condition c−1 ≤ |xj|/|zj| ≤ c, such that

∣∣∣∣∣
∣∣f (xj+yj)−f (yj)∣∣∣∣f (yj+yj)−f (yj)∣∣ −

∣∣xj∣∣∣∣yj∣∣
∣∣∣∣∣≥ ε > 0. (3.18)
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Consider the following auxiliary family of nonconstant K-quasiregular map-

pings:

Fj(x)= f
(∣∣xj∣∣x+yj)−f (yj)
τ
(
yj,f ,

∣∣xj∣∣) (3.19)

with the distortion coefficientsKFj (x)=Kf (|xj|x+yj). Then, the convergence

1
Ωntn

∫
|x−yj |<t

(
Lf (x)−1

)
dx �→ 0 as t �→ 0, (3.20)

is uniform in y ∈ E with t = |xj|R, R > 0, and hence

∫
|x|<R

(
LFj (x)−1

)
dx �→ 0 as j �→∞, (3.21)

for every positive R. Since E is a compact subset of G, then we can repeat the

corresponding sequential arguments to show that every limit function for the

family of the mappings Fj , as j → ∞, is a linear isometry F . Without loss of

generality, we may assume that Fj → F as j→∞.

Setζj = xj/|xj| andwj = zj/|xj|. We may assume thatζj → ζ0, |ζ0| = 1, and

wj →w0, c−1 ≤ |w0| ≤ c, as j →∞. Otherwise, we can pass to some appropri-

ate subsequences. Since Fj(ζj) = (f (xj+yj)−f(yj))/τ(yj,f ,|xj|)→ F(ζ0),
Fj(wj)= (f (zj+yj)−f(yj))/τ(yj,f ,|xj|)→ F(w0), and F is linear isometry,

it follows that

0=
∣∣F(ζ0

)∣∣∣∣F(w0
)∣∣ −

∣∣ζ0

∣∣∣∣w0

∣∣
= lim
j→∞

∣∣∣∣∣
∣∣Fj(ζj)∣∣∣∣Fj(wj

)∣∣ −
∣∣xj∣∣∣∣zj∣∣

∣∣∣∣∣
= lim
j→∞

∣∣∣∣∣
∣∣f (xj+yj)−f (yj)∣∣∣∣f (zj+yj)−f (yj)∣∣ −

∣∣xj∣∣∣∣zj∣∣
∣∣∣∣∣.

(3.22)

Formula (3.22) provides a contradiction to inequality (3.18). Now, (3.13) is a

consequence of (3.14).

Proof of Theorem 3.1. Let f : G → Rn, n ≥ 3, be a nonconstant K-qua-

siregular mapping. For every such mapping f(x) and every y ∈ G, we define

the radius of injectivity Rf (y) of f at y as a supremum over all ρ > 0 such

that f(x1)≠ f(x2) for x1 ≠ x2 in the ball |x−y|< ρ in G, see [20].

Assume that the integral

I(r)= 1
ωn−1

∫
|x|<r

Lf (x)−1

|x|n dx (3.23)
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converges for some r > 0. Now,

1
rn

∫
|x|<r

(
Lf (x)−1

)
dx ≤

∫
|x|<r

Lf (x)−1

|x|n dx, (3.24)

and hence

1
Ωnrn

∫
|x|<r

(
Lf (x)−1

)
dx �→ 0, as r �→ 0, (3.25)

and we make use of the weak conformality result stated in Lemma 3.6. In par-

ticular, the mapping f is locally homeomorphic at the origin Rf (0) > 0, and

that

lim
r→0

log
Mf(r)
mf (r)

= 0. (3.26)

Hence, in order to deduce (3.3), it suffices to show that

lim
r→0

log
Mf(r)
r

= a (3.27)

and we do this by showing that the Cauchy criterion

−ε < log
Mf

(
r2
)

Mf
(
r1
) − log

r2

r1
< ε (3.28)

holds for 0< r1 < r2 < δ.

Fix a positive number R, 0<R <Rf (0) and first prove the first inequality in

(3.28).

The convergence of the integral (3.23) implies that given ε > 0, there exists

δ > 0 such that I(δ) < ε/2. Therefore, for every 0< r1 < r2 < δ by Corollary 2.5,

log
r2

r1
− log

Mf
(
r2
)

mf
(
r1
) ≤ I(δ) < ε

2
. (3.29)

By (3.26), we can assume as well that

log
Mf

(
r2
)

mf
(
r1
) = log

Mf
(
r2
)

Mf
(
r1
) + log

Mf
(
r1
)

mf
(
r1
) ≤ log

Mf
(
r2
)

Mf
(
r1
) + ε

2
. (3.30)

From (3.29) and (3.30), we derive the first inequality in (3.28).
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For the second inequality in (3.28), we may assume that, by Corollary 2.8,

log
mf

(
r2
)

Mf
(
r1
) − log

r2

r1
≤ I(δ) < ε

2
. (3.31)

From (3.26), we see that

log
Mf

(
r2
)

Mf
(
r1
) − log

mf
(
r2
)

Mf
(
r1
) = log

Mf
(
r2
)

mf
(
r2
) < ε

2
. (3.32)

Combining (3.31) with (3.32), we obtain the second inequality of (3.28) and,

therefore, the aforementioned Cauchy criterion.

In order to prove inequalities (3.2), first note that by Corollary 2.5,

log
R
r
− log

Mf(R)
mf (r)

< I(R) (3.33)

for every 0< r ≤ R. Using relation (3.26), we deduce that

log
Mf(r)
r

< log
Mf(R)
R

+I(R)+ε(r), (3.34)

where ε(r)→ 0 as t→ 0. Thus,

lim
r→0

log
Mf(r)
r

≤ log
Mf(R)
R

+I(R). (3.35)

Next, by Corollary 2.8,

log
mf(R)
Mf (r)

− log
R
r
< I(R). (3.36)

Since (3.36) implies that

lim
r→0

log
Mf(r)
r

≥ log
mf(R)
R

−I(R), (3.37)

the proof is complete.

The following statement is a stronger version of Theorem 3.1.

Theorem 3.7. Let f :G→Rn, n≥ 3, be a nonconstant K-quasiregular map-

ping, and let E be a compact set in G. If the improper integral

I(y,�)= 1
ωn−1

∫
�

Lf (x)−1

|x−y|n dx (3.38)
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converges uniformly in y ∈ E for some neighborhood � of E, then there exists

a positive continuous function C(y), y ∈ E, such that

∣∣f(x)−f(y)∣∣
|x−y| �→ C(y) as x �→y (3.39)

uniformly in y ∈ E, and for 0<R <Rf (y),

min
|x−y|=R

∣∣f(x)−f(y)∣∣e−I(y,B(y,R))
R

≤ C(y)≤ max
|x−y|=R

∣∣f(x)−f(y)∣∣eI(y,B(y,R))
R

.
(3.40)

Here, Rf (y) stands for the radius of injectivity of f at y .

Proof. For each fixed y ∈ E, we consider the following auxiliary K-quasi-

regular mappings:

F(x)= f(x+y)−f(y) (3.41)

defined for |x −y| < dist(y,∂G). Denoting by LF(x,y) the inner dilatation

coefficient for F , we see that LF(x,y) = Lf (x+y) a.e. in a neighborhood of

the point y ∈ E. Then, the convergence of I(y,�) in E implies that for every

fixed y ∈ E, there exists an r > 0 such that

∫
B(r)

LF(x,y)−1
|x|n dx <∞. (3.42)

So, the mapping F satisfies all the conditions of Theorem 3.1, and hence

∣∣F(x)∣∣
|x| =

∣∣f(x+y)−f(y)∣∣
|x| �→ C(y) as x �→ 0 (3.43)

for every fixed y ∈ E.

In order to show that the limit (3.43) is uniform with respect to y ∈ E, we

have to analyze the proof of Theorem 3.1 and to make use of the uniform

convergence of I(y,�) in y ∈ E. Recall that its proof is based on the following

two distortion estimates of Corollaries 2.8 and 2.5:

log
r2

r1
− log

MF
(
r2
)

mF
(
r1
) ≤ 1

ωn−1

∫
R(r1,r2)

LF(x,y)−1
|x|n dx, (3.44)

log
mF

(
r2
)

MF
(
r1
) − log

r2

r1
≤ 1
ωn−1

∫
R(r1,r2)

LF(x,y)−1
|x|n dx, (3.45)
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and the weak conformality result

log
MF(r)
mF(r)

�→ 0 as r �→ 0, (3.46)

provided by Lemma 3.6. Now the uniform convergence of I(y,�) with respect

to y ∈ E and Lemma 3.6 imply the uniform convergence in (3.46). Hence, from

(3.44) and (3.46) and the uniform convergence of I(y,�), we obtain that for

every ε > 0, there is δ > 0 such that 0< r1 < r2 < δ implies that

∣∣∣∣∣ log
MF

(
r2
)

MF
(
r1
) − log

r2

r1

∣∣∣∣∣< ε (3.47)

for every y ∈ E, where

MF(r)=max
|x|=r

∣∣F(x)∣∣=max
|x|=r

∣∣f(x+y)−f(y)∣∣. (3.48)

Thus, we have arrived at the Cauchy criterion for the function MF(r)/r to

converge to a nonzero limit uniformly in y ∈ E. The proof is complete.

Corollary 3.8. Let f : G→ Rn be a locally bilipschitz mapping, let E be a

compact set in G, and let the integral

∫
�

L(x)−1
|x−y|n dx (3.49)

converge uniformly in y ∈ E for some neighborhood � of E. Then, there exists

a positive continuous function C(y), y ∈ E, such that

∣∣f(x)−f(y)∣∣
|x−y| �→ C(y) as x �→y (3.50)

uniformly in y ∈ E.

This statement follows immediately from Theorem 3.7 if we recall that every

locally L-bilipschitz mapping in G is K-quasiregular with K ≤ L2(n−1).

Corollary 3.9. Let f : G → Rn, n ≥ 2, be a K-quasiconformal mapping,

and let E be a compact subset of G. If the improper integral

∫
�

Lf (x)−1

|x−y|n dx (3.51)

converges uniformly in y ∈ E for some neighborhood � of E, then there exists

a positive constant L such that

1
L
|x−z| ≤ ∣∣f(x)−f(z)∣∣≤ L|x−z|, (3.52)

whenever x,z ∈ E.
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Proof. We first show that

M = sup
x,z∈E,x≠z

∣∣f(x)−f(z)∣∣
|x−z| <∞. (3.53)

Assume the converse. Then, there exist sequences xj,zj ∈ E such that

lim
j→∞

∣∣f (xj)−f (zj)∣∣∣∣xj−zj∣∣ =∞. (3.54)

Without loss of generality, we may assume that xj → x0 and zj → z0. Since E
is a compact set, then x0,z0 ∈ E. If x0 ≠ z0, then

lim
j→∞

∣∣f (xj)−f (zj)∣∣∣∣xj−zj∣∣ =
∣∣f (x0

)−f (z0
)∣∣∣∣x0−z0

∣∣ ≠∞. (3.55)

If x0 = z0 =y , then

lim
j→∞

∣∣f (xj)−f (zj)∣∣∣∣xj−zj∣∣ = C(y) (3.56)

by Theorem 3.7. Since C(y) <∞, then (3.56) provides a contradiction to (3.54).

Repeating the preceding arguments and taking into account both the injec-

tivity of f in G and the inequality C(y) > 0, y ∈ E, we get that

N = inf
x,z∈E,x≠z

∣∣f(x)−f(z)∣∣
|x−z| > 0. (3.57)

Inequalities (3.53) and (3.57) imply the existence of a positive constant L such

that (3.52) holds whenever x,z ∈ E.

It is well known that a quasiconformal mapping f : G→ Rn being an ACLn

homeomorphism need not preserve the Hausdorff dimension of some subsets

E of G of a smaller dimension than n, and the image f(γ) of a rectifiable

curve γ ⊂ G under quasiconformal mapping f may fail to be rectifiable. The

following statement, a consequence of (3.52), provides a sufficient condition

for the rectifiability of f(γ).

Corollary 3.10. Let f : G → Rn, n ≥ 2, be a K-quasiconformal mapping,

and let γ be a compact rectifiable curve in G. If the improper integral

∫
�

Lf (x)−1

|x−y|n dx (3.58)
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converges uniformly in y ∈ γ for some neighborhood � of γ, then Γ = f(γ) is

rectifiable.

Formula (3.52) provides the following double inequality:

1
L
≤ length f(γ)

length γ
≤ L, (3.59)

and the constant L can be also estimated by means of formula (3.40).

Theorem 3.7 provides a bilipschitz condition for f on compact subsets E of

G and hence the rectifiability of f(E) and the absolute continuity properties

of f on such sets E can be derived from Theorem 3.7 as in Corollary 3.10.

In particular, rectifiability properties of quasispheres, that is, images of Sn−1

under quasiconformal mappings can be derived from Theorem 3.7. We first

recall some definitions and previous results.

For a set E ⊂Rn and for δ > 0, let

Λδα(E)= γn,α inf
{Bj}

∑
j
d
(
Bj
)α, (3.60)

where the infimum is taken over all countable coverings {Bj} of E with d(Bj) <
δ. Here, the Bj are balls of Rn and d(Bj) is the diameter of Bj (see [9, page 7]).

The constant γn,α in (3.60) is the normalizing constant. The quantity

Λα(E)= lim
δ→0

Λδα(E), (3.61)

finite or infinite, is called the α-dimensional normalized Hausdorff measure of

the set E.

Mattila and Vuorinen [22] proved that if f : Rn → Rn is K-quasiconformal,

K(t) = K(f | (B(x,1+ t) \ B(x,1− t))), 0 < t < 1, where K(f) denotes the

maximal dilatation of the mapping f , then the Dini condition

∫ 1

0

K(t)1/(n−1)−1
t

dt <∞ (3.62)

implies that Λn−1(f (Sn−1)) <∞.

This result can be extended. First, the well-known theorem of Reshetnyak

states that the Dini condition (3.62) implies the uniform conformal differen-

tiability of the mapping f in Sn−1 (see [25, page 204]). Hence, (3.62) gives a

sufficient condition for the quasisphere f(Sn−1) to be smooth. On the other

hand, the following statement provides a condition weaker than (3.62) for the

rectifiability of f(Sn−1).
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Corollary 3.11. Let f : Rn → Rn, n ≥ 2, be a K-quasiconformal mapping

and suppose that the improper integral

∫
�

Lf (x)−1

|x−y|n dx (3.63)

converges uniformly in y ∈ Sn−1 for some neighborhood � of Sn−1. Then,

Λn−1
(
f
(
Sn−1))≤ Ln−1ωn−1, (3.64)

where

L= sup
x,y∈Sn−1,x≠y

∣∣f(x)−f(y)∣∣
|x−y| . (3.65)

Finally, we note one interesting aspect of Theorems 3.1 and 3.7. These state-

ments can give new results for quasiconformal mappings in the plane by first

extending them to higher dimension. For example, consider a quasiconformal

mapping f of the plane to itself which conjugates the actions of two Kleinian

groups. The dilatation of such a mapping may be uniformly bounded away

from 1 a.e., and hence the two-dimensional versions of the results due to Te-

ichmüller, Wittich, and Belinskii tells us nothing. However, such a mapping

can be extended to three dimensions in a conformally natural way, and in

some cases, one can show that the extension satisfies (3.1) a.e. with respect

to the Patterson-Sullivan measure on the limit set. This particular example is

described in detail in [4].
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