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ON CENTRALIZERS OF ELEMENTS OF GROUPS ACTING
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A subgroup H of a group G is called malnormal in G if it satisfies the condition
thatif g € G and h € H, h # 1 such that ghg~! € H, then g € H. In this paper, we
show that if G is a group acting on a tree X with inversions such that each edge
stabilizer is malnormal in G, then the centralizer C(g) of each nontrivial element
g of G is in a vertex stabilizer if g is in that vertex stabilizer. If g is not in any
vertex stabilizer, then C(g) is an infinite cyclic if g does not transfer an edge of X
to its inverse. Otherwise, C(g) is a finite cyclic of order 2.

2000 Mathematics Subject Classification: 20F65, 20E07, 20E08.

1. Introduction. There are many groups with the property that centralizers
of nontrivial elements are cyclic. For example, the centralizers of the nontrivial
elements (see [3, Problem 7, page 42]) of free groups are infinite cyclic. It has
been shown in [3, Problem 28, page 196] that the centralizers of the nontrivial
elements of the free product of groups are in a conjugate of a factor or infinite
cyclic. In [1, Theorem 1], Karrass and Solitar proved that the centralizers of
nontrivial elements of the free product of two groups with a malnormal amal-
gamated subgroup are in a conjugate of a factor or infinite cyclic. In this paper,
we generalize such results to groups acting on trees with inversions as follows.
If G is a group acting on a tree X with inversions such that the stabilizer G of
every edge x of X is a malnormal subgroup in G, then the centralizers C(g) of
every nontrivial element g of G is in a vertex stabilizer G, of a vertex v of X if
gisin G,.If g is not in any vertex stabilizer of G, then C(g) is an infinite cyclic
subgroup of G if g does not transfer any edge of X to its inverse. Otherwise,
C(g) is a finite cyclic subgroup of G of order 2.

This paper is divided into five sections. In Section 2, we introduce the con-
cepts of graphs and the actions of groups on graphs. In Section 3, we have a
summary of the structure of groups acting on trees with inversions and ele-
mentary results. In Section 4, we discuss the structure of the centralizers of the
elements of groups acting on trees with inversions. Section 5 is an application
of the results in Section 4.

2. Basic concepts. We begin by giving preliminary definitions.
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By a graph X, we understand a pair of disjoint sets V(X) and E(X) with V (X)
nonempty together with a mapping E(X) — V(X) xV(X), v — (o(y),t(y)),
and a mapping E(X) — E(X), y — ¥, satisfying the conditions that y = y
and o(y) = t(y), for all y € E(X). The case ¥ = y is possible for some
y € E(X). For y € E(X), o(y) and t(y) are called the ends of y, and y is
called the inverse of . There are obvious definitions of subgraphs, trees, mor-
phisms of graphs, and Aut(X), the set of all automorphisms of the graph X
which is a group under the composition of morphisms of graphs. For more
details, see [4, 5]. We say that a group G acts on a graph X if there is a group
homomorphism ¢ : G — Aut(X). If x € X (vertex or edge) and g € G, we
write g(x) for (¢(g))(x).If ¥ € E(X) and g € G, then g(o(y)) = 0(g(y)),
gt(y)) =t(g(y)), and g(¥) = g(). The case g(y) = ¥ for some g € G and
some Yy € E(X) may occur. That is, G acts with inversions on X.

We have the following notations related to the action of the group G on the
graph X.

(1) If x € X (vertex or edge), we define G(x) = {g(x) : g € G}, and this set

is called the orbit containing x.

(2) If x,y € X, we define G(x,y) ={g e G:g(x) =y} and G(x,x) = Gy,
the stabilizer of x. Thus, G(x,y) # & if and only if x and y are in the
same G orbit.Itis clear thatif v € V(X), y € E(X),and u € {o(y),t(y)},
then G(v,y) =9, Gy =Gy, and Gy < Gy.

3. The structure of groups acting on trees with inversions. In this section,
we summarize the structure of groups acting on trees with inversions obtained
by [4].

DEFINITION 3.1. Let G be a group acting on a tree X, and T and Y two
subtrees of X such that T < Y. Then, T is called a tree of representatives for
the action of G on X if T contains exactly one vertex from each G vertex orbit,
and Y is called a fundamental domain for the action G on X, if each edge of Y
has at least one end in T, and Y contains exactly one edge v (say) from each
G edge orbit such that G(¥,y) = &, and exactly one pair x and X from each
G-edge orbit such that G(x,x) # &. It is clear that the properties of T and Y
imply that if u and v are two vertices of T such that G(u,v) # &, and if x and
y are two edges of Y such that G(x,y) + @, thenu =v and x =y or x = y.

Let T and Y be as above. Define the following subsets Yy, Y1, and Y» of edges
of Y as follows:

(1) Yo =E(T), the set of edges of T,

@ 1={yeEX):0(y)eV(D), t(y) ¢V(T), G(y,y) =D},

(B) Yo={x€E(Y):0(x)eV(T), tix)¢V(T), G(x,x) = D}.

It is clear that G acts with inversions on X if and only if Y» + &.

For the rest of this section, G will be a group acting on a tree X with inver-
sions, T will be a tree of representatives for the action of the group G on X,



ON CENTRALIZERS OF ELEMENTS OF GROUPS ... 1243

and Y will be a fundamental domain for the action of G on X such that T =Y.
We have the following definitions.

DEFINITION 3.2. For each vertex v of X, define v* to be the unique vertex
of T such that G(v,v*) # &. That is, v and v* are in the same G vertex orbit.
It is clear that if v is a vertex of T, then v* = v and, in general, for any two
vertices u and v of X such that G(u,v) # &, we have u* = v*, and G, and
G, are conjugate by an element of G. That is, for every element b of G, there
exist g of G and a of G, such that b = gag~".

DEFINITION 3.3. For each edge v of YouY; UY>, define [ y] to be an element
of G(t(y),(t(y))*). Thatis, [y ] satisfies the condition that [y]((t(y))*)=t(y),
and to be chosen as follows:

[¥y1=1 ifyeYy,, I[yly)=y ifyeY.. (3.1)

Define [¥] to be the element

if v € YUY
[ﬂ:{wl if y € YouYs, 32

[yI7' ifyer.
From above we see that [y](y) = yif y e YouY; and [y](y) =y if y € Y>.

A group is termed a quasifree group if it is a free product of copies of Cs
and C», where C,, denotes infinite cyclic group and C, a cyclic group of order 2.

The following are examples of quasifree groups:

(1) every free group is a quasifree group. That is, a free product of copies
of C, and a zero number of copies of Cy;

(2) the group of the presentation (x,y,z | z2 = 1) = Co * Co x (2 is a
quasifree group;

(3) theinfinite dihedral group (x,y | x2 =1, y? = 1) = (5 % C> is a quasifree
group.

LEMMA 3.4. Let G, X, Y, and T be as above such that the stabilizer of each
vertex of X is trivial. Then, G is a quasifree group.

PROOF. By [4, Theorem 3.6], G has the presentation

<Gv,y,x [relGy, Gm =G, ¥ - [¥17'Gy[¥]- v =Gy,

3.3)
X Gy X1 =Gy, x?= [X]2>

via the map G, — Gy, ¥ — [y], and x — [x] where v € V(T), m € Yy, y € Y1,
and x € Y,.

Since the stabilizer of each vertex of X is trivial, Gy, G, Gy, and G are
trivial for all v € V(T), m € Yy, y € Y1, and x € Y». This implies that [x]? =1
for all x € Y». Then, G has the presentation (y,x | x* = 1), where y € Y; and
x € Y>. Then, G is a free product of C, generated by y, and C, generated by x.
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This implies that G is a quasifree group. This completes the proof. O

COROLLARY 3.5. Let G, X, Y, and T be as above, and H a subgroup of G
such that HN G, is trivial for all v € V(X). Then H is a quasifree group.

DEFINITION 3.6. For each edge y of Y, define the following.

(1) Define —y to be the edge —y = [y] ' (y) if o(y) € V(T), otherwise
-y=Y.

(2) Define +y to be the edge +y = [y](—y).

Itis clear thatt(-y) = (t(¥))*,0(+y) = (0(¥))*, G-y < Guyy*,and G4, <
Go(y))*. Moreover, if y € YouY>, then G_,, = G+ = Gy.

(3) Define ¢, to be the map ¢, : Gy — G+, givenby ¢, (g) = [¥1gly]1".

It is clear that ¢, is an isomorphism.

(4) Define 6, to be the element 6, = [y][}].

Itis clear that 6, =1if y € YouYj, and 6, = [v]?if v € Y. Consequently,
0y €Gy, 05 =0y, and ¢, (5,) = 5,.

DEFINITION 3.7. By a word w of G, we mean an expression of the form
w=go-Y1-gr-YVe-geVYn-gn,n=0,y;€E(Y), fori=1,2,...,n such that
(1) go € G+
(2) gi € G(t(yi))* fori= 1,2,...,m,
3) (t(y))* =(o(yi1))* fori=1,2,...,n—-1.
If w =1, then w is called a trivial word of G.
Let w be the word defined above. We have the following concepts:
(@) w is called reduced if w contains no expression of the form y; - g;y; !
ifgieG_y,oryi-gi-yiif gi € Gy, and G(y,¥;) * D;
(b) we define o(w) = (o(y1))* and t(w) = (t(yu))*. If o(w) = t(w) = v,
then w is called a closed word of G of type v;
(c) the value of w denoted by [w] is defined as the element [w] =
gol1g1[y2192 - - - [Ynlgn of G;
(d) nm is called the length of w and is denoted by |w| = n;
(e) the inverse of w denoted by w~! is defined as the word w~=' = g;;! - ¥y, -
S5 gty gt y2- 65 gt - 65 g0t of G.
It is clear that [w~!'] = [w]~! but (w~!)~! # w if w contains an edge y (say)
such that G(y, V) # @. Otherwise, (w~1)~1 =w.

PROPOSITION 3.8. Every element of G is the value of a closed and reduced
word of G. Moreover, if w is a nontrivial closed and reduced word of G, then
[w] is not the identity element of G. Moreover, if w, and w» are two closed and
reduced words of G such that w, and w, are of the same type and of the same
value, then |w, | = |w>]|.

PROOF. See [5, Corollary 3.6]. O

4. The mainresult. The main result of this section is the following theorem.
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THEOREM 4.1. Let G be a group acting on a tree X with inversions such that
each edge stabilizer is malnormal in G. Let g be a nontrivial element of G and
C(g) the centralizer of g in G. Then,

(i) if g is in a vertex stabilizer, then C(g) is in that vertex stabilizer;

(ii) if g is not in any vertex stabilizer, then C(g) is an infinite cyclic subgroup
of G if g does not transfer an edge of X to its inverse. Otherwise, C(g)
is a finite cyclic subgroup of G of order 2.

PROOF. (i) Let v be a vertex of X such that g € G,. We need to show that
C(g) is contained in G, . Let f be an element of G such that fg = gf. We need
to show that f is in G,. We consider two cases.

CASE 1 (g isin Gy, where x is an edge of X such that v is an end of x). Since
the edge stabilizer for each edge of X is malnormal in G, then G, is malnormal
in G,. This implies that f is in Gy. Consequently, f is in G, or, equivalently,
C(g) is contained in G, .

CASE 2 (g is not in any edge stabilizer of G). Then, there exists a unique
vertex v* of T such that G(v,v*) = &, that is, v and v* are in the same G
vertex orbit. Then, there exist a € G and b € G+ such that g = aba~!. This
implies thatv = a(v*) anda~! fab = ba ! fa.Leth = a~! fa.Since g ¢ G for
all x € E(X), t(x) = v, therefore h ¢ G_,,, for all y € E(Y) such that (t(y))* =
v. By Proposition 3.8, there exists a reduced word w =go->1-91-**Yn - 9n
of G such that w is of type v* and of value h. That is, (o(y))* = (t(y))* =
v* and [w] = h. Since h ¢ G_,,, then w - h and h - w are reduced words
of G of value 1, the identity element of G. Therefore, by Proposition 3.8, the
wordw-h-wl-h™l=go-y1-g1--Yn-gGnhgy' - In-651 0,1 97" -2
65 g1" - 3165190 h! is not reduced. The only way that the indicated word
can fail to be reduced is that g,hg,' € G-,,. Replacing a subword of the
form y; - g; - y; if g; € G_,, by ¢,,(gid,,), or replacing a subword of the
form y;-g;- ;i if gi € G, and G(yy, i) = @, by ¢,,(gi6y,), we see that each
Li=gn-iby, (Li,l)ggli isinG_,, , fori=1,...,n with the convention that
Lo = gnhgy' and Ly, = gody, (Lu-1)gy h~' = 1. Then h = go,, (Ln-1)9y -

Since (0(¥1))* =v*, ¢y, (Ln-1) € G4, < Gy, and go € Gy+, then h € Gyx.
This implies that a~! fa € G,+. Therefore, f € aG,+a~' = G,. Consequently
C(g) is contained in G,.

(ii) Now, suppose that g is not in any vertex stabilizer of G. Then, C(g) has
trivial intersection with each vertex stabilizer of G.If a + 1isin C(g), and a is
in a vertex stabilizer G, of G, for the vertex v of X, then g is in C(a) and, by
above, g is in G,. This contradicts the assumption that g is not in any vertex
stabilizer of G. Hence, by Corollary 3.5, C(g) is a free product of a number
of infinite cyclic groups and a number of finite cyclic groups of order 2. Since
C(g) has a nontrivial center, and the center (see [3, Corollary 4.5, page 211])
of free product of groups of more than one factor is trivial, then C(g) is an
infinite cyclic groups, or C(g) is a finite cyclic groups of order 2. If g transfers
an edge of X to its inverse, then, by [7, Corollary 4.3], C(g) is a finite cyclic
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group of order 2. Otherwise, C(g) is an infinite cyclic group. This completes
the proof. |

DEFINITION 4.2. Let n be a positive integer and g a nontrivial element of
the group H. We say that g has at most nth root if whenever g = a™ = b", for
a, b in H, then a = b.

In the next corollaries, the group G satisfies the hypothesis of Theorem 4.1.

COROLLARY 4.3. Any element of G that is not in any vertex stabilizer of G
has at most nth root.

PROOF. Llet g, a, and b be elements of G such that g is not in any vertex
stabilizer of G, and g = a™ = b™. We need to show that a = b. By Theorem 4.1,
C(g) is an infinite cyclic group or is a finite cyclic group of order 2.

Since ga = ag and gb = bg, then a and b are in C(g). Then, it is clear that
g = a™ = b" implies that a = b. This completes the proof. O

COROLLARY 4.4. Let g be an element of G. Then, g is not in any vertex
stabilizer of G if and only if g" is not in any vertex stabilizer of G, where n is a
positive integer.

PROOEF. Since g™ commutes with g, then g™ is in C(g) which, by Theorem
4.1, is not in any vertex stabilizer of G and the result follows. This completes
the proof. O

COROLLARY 4.5. Let f and g be two elements of G, and m and n two positive
integers such that f and g are not in any vertex stabilizer of G and f™g" =

gtf™. Then fg=gf.

PROOF. From Corollary 4.4, we get
fmgn :gnfm :fmgnf—m :gn
= (fmgf ™" =g"
= f"gf™M=g

= f"=gf"g"! (4.1)
= f"=(gfg )"
= f=gfg”"
= fg=4f.
This completes the proof. O

COROLLARY 4.6. Let f and g be two elements of G such that f and g are
not in any vertex stabilizer of G and f € C(g). Then C(f) = C(g).
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PROOF. By Theorem 4.1, C(f) and C(g) are cyclic subgroups of G. Then,
there exist two elements a and b of G such that a and b are not in any vertex
stabilizer of G, C(f) = (a), and C(g) = (b). It is clear that if a € C(g), then
C(f) = C(g). There exist two positive integers m and n such that f = a™
and g = b". Since fg = gf, a™b™ = b"a™. Then, Corollary 4.5 implies that
ab = ba. This implies that ab™ = b™a. Then a € C(b"™) = C(g). This completes
the proof. |

5. Applications. This section is an application of Theorem 4.1 and its corol-
laries. Free groups, free product of groups, free product of groups with amal-
gamation subgroup, tree product of groups, and HNN groups are examples
of groups acting on trees without inversions. A new class of groups called
quasi-HNN groups, defined in [2], are examples of groups acting on trees with
inversions. In fact, free product of groups, free product of groups with amalga-
mation subgroup are special cases of tree product of groups and free groups
and HNN groups are special cases of quasi-HNN groups.

PROPOSITION 5.1. Let G = H;“E,(Al—,U ik = Ukj) be a nontrivial tree product
of the groups A;, i € I, such that U;j are malnormal subgroups of G. Let g be a
nontrivial element of G and C(g) be the centralizer of g in G. Then,

(i) C(g) isin a conjugate of A; for some i,i € I, if g is in a conjugate of A;;
(ii) if g is not in a conjugate of A;, for alli € I, then C(g) is an infinite cyclic
group and g has at most nth root.

PROOF. By [6], there exists a tree X on which G acts without inversions such
that any tree of representatives for the action of G on X equals the correspond-
ing fundamental domain for the action of G on X, and for every vertex u of X
and every edge x of X, G, is isomorphic to A;, i € I, and G, is isomorphic to
Ujx for some i, k in I. Moreover, G contains no invertor elements. Therefore,
by Theorem 4.1 and Corollary 4.3, the proof of Proposition 5.1 follows. This
completes the proof. O

COROLLARY 5.2. LetG=A >|C<B be a free product of the groups A and B with

amalgamation subgroup C such that C is a malnormal subgroup of G. Let g be
a nontrivial element of G and C(g) the centralizer of g in G. Then,
(i) C(g) is in a conjugate of A or B if g is in a conjugate of A or B;
(ii) if g is not in a conjugate of A or B, then C(g) is an infinite cyclic group
and g has at most nth root.

COROLLARY 5.3. Let G = A% B be a free product of the groups A and B. Let
g be a nontrivial element of G and C(g) the centralizer of g in G. Then,
(i) C(g) is in a conjugate of A or B if g is in a conjugate of A or is in a
conjugate of B;
(ii) if g is not in a conjugate of A or B, then C(g) is an infinite cyclic group
and g has at most nth root.
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PROPOSITION 5.4. Let G* be the quasi-HNN group
G* = (G,t;,t; | 1elG, tiAit;' = B, t;Cit;' = Cj, t3=cj, i€l, jeJ) (5.1)

such that A;, B, and Cj, i € I and j € ], are malnormal subgroups of G*. Let g
a nontrivial element of G* and C(g) the centralizer of g in G*. Then,
(i) C(g) isin a conjugate of G if g is in a conjugate of G;
(ii) if g is not in a conjugate of G, then C(g) is an infinite cyclic group or a
finite cyclic group of order 2 and g has at most nth root.

PROOF. By [8, Lemma 5.1], there exists a tree X on which G* acts with
inversions such that G* is transitive on V(X), and for every vertex v of X
and every edge x of X, G} is isomorphic to G and G is isomorphic to A;,
i € I, or isomorphic to Cj, j € J. Moreover, G* contains the invertor elements
conjugate to an element t;, j € J. Therefore, by Theorem 4.1, the proof of
Proposition 5.4 follows. This completes the proof. ]

COROLLARY 5.5. Let G* be the HNN group
G* = (G,t; | relG, t;Ait;' =B;, i€1) (5.2)

such that A; and B;, i € I, are malnormal subgroups of G*. Let g a nontrivial
element of G* and C(g) the centralizer of g in G*. Then,
(i) C(g) isin a conjugate of G if g is in a conjugate of G;
(ii) if g is not in a conjugate of G, then C(g) is an infinite cyclic group and
g has at most nth root.

COROLLARY 5.6. If g is a nontrivial element of a free group F, then the
centralizer C(g) of g inF is an infinite cyclic group and g has at most nth root.

ACKNOWLEDGMENT. The author would like to thank the referee for his sin-
cere evaluation and constructive comments which improved the paper consid-
erably.

REFERENCES

[1]  A.Karrass and D. Solitar, The free product of two groups with a malnormal amal-
gamated subgroup, Canad. J. Math. 23 (1971), 933-959.

[2] M. I Khanfar and R. M. S. Mahmood, On quasi HNN groups, J. Univ. Kuwait Sci. 29
(2002), no. 2, 13-24.

[3] W.Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Presentations
of Groups in Terms of Generators and Relations, Dover Publications, New
York, 1976.

[4] R. M. S. Mahmood, Presentation of groups acting on trees with inversions, Proc.
Roy. Soc. Edinburgh Sect. A 113 (1989), no. 3-4, 235-241.

[5] |, The normal form theorem of groups acting on trees with inversions, J. Univ.

Kuwait Sci. 18 (1991), 7-16.

, The subgroup theorem for groups acting on trees, Kuwait J. Sci. Eng. 25

(1998), no. 1, 17-33.

(6]




ON CENTRALIZERS OF ELEMENTS OF GROUPS ... 1249

[7] R.M.S. Mahmood and M. I. Khanfar, On invertor elements and finitely generated
subgroups of groups acting on trees with inversions, Int. J. Math. Math. Sci.
23 (2000), no. 9, 585-595.

[8] ___, Subgroups of quasi-HNN groups, Int. J. Math. Math. Sci. 31 (2002), no. 12,
731-743.

R. M. S. Mahmood: College of Education and Basic Science, Ajman University of Sci-
ence and Technology, Abu Dhabi, United Arab Emirates
E-mail address: rasheedmsm@yahoo . com


mailto:rasheedmsm@yahoo.com

