
IJMMS 2003:19, 1215–1231
PII. S0161171203012237

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

CONTINUOUS HOMOMORPHISMS OF ARENS-MICHAEL
ALGEBRAS

ALEX CHIGOGIDZE

Received 3 March 2001 and in revised form 3 July 2001

It is shown that every continuous homomorphism of Arens-Michael algebras can
be obtained as the limit of a morphism of certain projective systems consisting
of Fréchet algebras. Based on this, we prove that a complemented subalgebra of
an uncountable product of Fréchet algebras is topologically isomorphic to the
product of Fréchet algebras.
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1. Introduction. Arens-Michael algebras are limits of projective systems of

Banach algebras (or, alternatively, closed subalgebras of (uncountable) prod-

ucts of Banach algebras). Quite often, when dealing with a particular Arens-

Michael algebra, at least one projective system arises naturally (e.g., as a result

of certain construction) and, in most cases, it does contain the needed infor-

mation about its limit. The situation is somewhat different if an Arens-Michael

algebra is given arbitrarily and there is no particular projective system associ-

ated with it in a canonical way.

Below (Definition 3.2), we introduce the concept of a projective Fréchet sys-

tem and show (Theorem 3.4) that every continuous homomorphism of Arens-

Michael algebras can be obtained as the limit homomorphism of certain mor-

phism of cofinal subsystems of the corresponding Fréchet systems. This re-

sult applied to the identity homomorphism obviously implies that any Arens-

Michael algebra has essentially unique Fréchet system associated with it. Con-

sequently, any information about an Arens-Michael algebra is contained in the

associated Fréchet system. The remaining problem of restoring this informa-

tion is, of course, still nontrivial, but sometimes can be successfully handled by

using a simple but effective method. This method is based on Proposition 2.5

(applications of Proposition 2.5 in a variety of situations can be found in [1]).

2. Preliminaries

2.1. Projective systems and their morphisms. Below, we consider projec-

tive systems �X = {Xα,pβα,A} consisting of topological algebrasXα,α∈A, and

continuous homomorphisms pβα : Xβ → Xα, α ≤ β, α,β ∈ A (A is the directed

indexing set of �X ). The limit lim←����������������������������������� �X of this system is defined as the closed
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subalgebra of the Cartesian product
∏{Xα : α ∈ A} (with coordinatewise de-

fined operations) consisting of all threads of �X , that is,

lim←����������������������������������� �X =
{
xα ∈

∏{
Xα :α∈A} : pβα

(
xβ
)= xα for any α,β∈A with α≤ β

}
.

(2.1)

The αth limit projection pα : lim←����������������������������������� �X → Xα, α ∈ A, of the system �X is the

restriction (onto lim←����������������������������������� �X ) of theαth natural projectionπα :
∏{Xα :α∈A} →Xα.

If A′ is a directed subset of the indexing set A, then the subsystem {Xα,pβα,
A′} of �X is denoted by �X|A′. We refer the reader to [4, 5] for general prop-

erties of projective systems.

Suppose we are given two projective systems �X = {Xα,pβα,A} and �Y =
{Yγ,qδγ,B} consisting of topological algebras Xα, α∈A, and Yγ , γ ∈ B. A mor-

phism of the system �X into the system �Y is a family {ϕ,{fγ : γ ∈ B}}, con-

sisting of a nondecreasing function ϕ : B→A such that the set ϕ(B) is cofinal

in A, and of continuous homomorphisms fγ :Xϕ(γ) → Yγ defined for all γ ∈ B
such that

qδγfδ = fγpϕ(δ)ϕ(γ), (2.2)

whenever γ,δ∈ B and γ ≤ δ. In other words, we require (in the above situation)

the commutativity of the following diagram:

Xϕ(δ)
fδ

pϕ(δ)ϕ(γ)

Yδ

qδγ

Xϕ(γ)
fγ

Yγ.

(2.3)

Any morphism

{
ϕ,
{
fγ : γ ∈ B}} : �X �→�Y (2.4)

induces a continuous homomorphism, called the limit homomorphism of the

morphism

lim←�����������������������������������
{
ϕ,
{
fγ : γ ∈ B}} : lim←����������������������������������� �X �→ lim←����������������������������������� �Y . (2.5)

To see this, assign to each thread x = {xα :α∈A} of the system �X the point

y = {yγ : γ ∈ B} of the product
∏{Yγ : γ ∈ B} by letting

yγ = fγ
(
xϕ(γ)

)
, γ ∈ B. (2.6)
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It is easily seen that the point y = {yγ : γ ∈ B} is in fact a thread of the system

�Y . Therefore, assigning to x = {xα : α ∈ A} ∈ lim←����������������������������������� �X the point y = {yγ : γ ∈
B} ∈ lim←����������������������������������� �Y , we define a map lim←����������������������������������� {ϕ,{fγ : γ ∈ B}} : lim←����������������������������������� �X → lim←����������������������������������� �Y . Straight-

forward verification shows that this map is a continuous homomorphism.

Morphisms of projective systems which arise most frequently in practice are

those defined over the same indexing set. In this case, the mapϕ :A→A of the

definition of morphism is taken to be the identity. Below, we mostly deal with

such situations and use the following notation: {fα :Xα → Yα; α∈A} : �X →�Y
or sometimes even a shorter form {fα} : �X →�Y .

Proposition 2.1. Let �Y = {Yα,qβα,A} be a projective system and X a topo-

logical algebra. Suppose that for each α ∈ A a continuous homomorphism

fα : X → Yα is given in such a way that fα = qβαfβ whenever α,β ∈ A and

α ≤ β. Then, there exists a natural continuous homomorphism f : X → lim←����������������������������������� �Y
(the diagonal product �{fα : α ∈ A}) satisfying, for each α ∈ A, the condition

fα = qαf .

Proof. Indeed, we only have to note that X, together with its identity map

idX , forms the projective system �. So, the collection {fα : α ∈ A} is in fact a

morphism �→�Y . The rest follows from the definitions given above.

2.2. Arens-Michael algebras. We recall some definitions [3]. A polynormed

space X is a topological linear space X furnished with a collection {‖·‖ν ,Λ}
of seminorms generating the topology of X. This simply means that the col-

lection

{
x ∈X :

∥∥x−x0

∥∥
ν < ε

}
, x0 ∈X, ν ∈Λ, ε > 0, (2.7)

forms a subbase of the topology of X. A polynormed algebra is a polynormed

space X which admits a separately continuous multiplication bioperator m :

X×X →X. A multinormed algebra is a polynormed algebra such that ‖xy‖ν ≤
‖x‖ν ·‖y‖ν for each ν ∈ Λ and any (x,y) ∈ X×X. Finally, an Arens-Michael

algebra is a complete (and Hausdorff) multinormed algebra.

The following result [3, Corollary V.2.19] provides a characterization of

Arens-Michael algebras.

Theorem 2.2. The following conditions are equivalent for a multinormed

algebra X:

(a) X is an Arens-Michael algebra;

(b) X is limit of a certain projective system of Banach algebras;

(c) X is topologically isomorphic to a closed subalgebra of the Cartesian prod-

uct of a certain family of Banach algebras.

2.3. Set-theoretical facts. For the reader’s convenience, we present neces-

sary set-theoretic facts. Their complete proofs can be found in [1].
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Let A be a partially ordered directed set (i.e., for every two elements α,β∈A
there exists an element γ ∈A such that γ ≥α and γ ≥ β). We say that a subset

A1 ⊆A of Amajorates another subset A2 ⊆A of A if for each element α2 ∈A2

there exists an element α1 ∈ A1 such that α1 ≥ α2. A subset which majorates

A is called cofinal in A. A subset of A is said to be a chain if every two elements

of it are comparable. The symbol supB, where B ⊆A, denotes the lower upper

bound of B (if such an element exists in A). Let now τ be an infinite cardinal

number. A subset B of A is said to be τ-closed in A if for each chain C ⊆ B, with

|C| ≤ τ , we have supC ∈ B, whenever the element supC exists in A. Finally,

a directed set A is said to be τ-complete if for each chain C of elements of A
with |C| ≤ τ , there exists an element supC in A.

The standard example of a τ-complete set can be obtained as follows. For

an arbitrary set A, let expA denote, as usual, the collection of all subsets of

A. There is a natural partial order on expA: A1 ≥ A2 if and only if A1 ⊇ A2.

With this partial order, expA becomes a directed set. If we consider only those

subsets of the setAwhich have cardinality≤ τ , then the corresponding subcol-

lection of expA, denoted by expτ A, serves as a basic example of a τ-complete

set.

Proposition 2.3. Let {At : t ∈ T} be a collection of τ-closed and cofinal

subsets of a τ-complete set A. If |T | ≤ τ , then the intersection ∩{At : t ∈ T} is

also cofinal (in particular, nonempty) and τ-closed in A.

Corollary 2.4. For each subset B, with |B| ≤ τ , of a τ-complete set A, there

exists an element γ ∈A such that γ ≥ β for each β∈ B.

Proposition 2.5. Let A be a τ-complete set and L ⊆ A2, and suppose that

the following three conditions are satisfied.

Existence: for each α∈A there exists β∈A such that (α,β)∈ L.

Majorantness: if (α,β)∈ L and γ ≥ β, then (α,γ)∈ L.

τ-closeness: let {αt : t ∈ T} be a chain in A with |T | ≤ τ . If (αt,γ) ∈ L for

some γ ∈A and each t ∈ T , then (α,γ)∈ L where α= sup{αt : t ∈ T}.
Then, the set of all L-reflexive elements of A (an element α∈A is L-reflexive

if (α,α)∈ L) is cofinal and τ-closed in A.

3. Continuous homomorphisms of Arens-Michael algebras. The following

statement is needed in the proof of Theorem 3.4. In the case when all the Xα’s

are Banach algebras, its proof can be extracted from [3, Proposition 0.1.9] (see

also [3, Proof of Proposition V.1.8] and [2, Proof of Proposition 2.1]).

Lemma 3.1. Let �X = {Xα,pβα,A} be a projective system consisting of Arens-

Michael algebrasXα,α∈A, Y a Banach algebra, and f : lim←����������������������������������� �→ Y a continuous

homomorphism. Suppose that pα(lim←����������������������������������� �) is dense in Xα for each α ∈ A. Then,

there exist an index α ∈ A and a continuous homomorphism fα : Xα → Y such

that f = fα ◦pα.
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Proof. The continuity of f and the definition of the topology on lim←����������������������������������� �

guarantee that there exist an index α ∈ A and an open subset Vα ⊆ Xα such

that

f
(
p−1
α
(
Vα
))⊆ {y ∈ Y : |y| ≤ 1

}
, (3.1)

where |·| denotes the norm of the Banach space Y .

Since Xα is an Arens-Michael algebra, Xα can be identified with a closed sub-

algebra of the product
∏{Bt : t ∈ T} of Banach algebras Bt , t ∈ T (Theorem 2.2).

Let ‖·‖t denote the norm of the Banach space Bt , t ∈ T . For S ⊆ T , letπS :
∏{Bt :

t ∈ T} →∏{Bt : t ∈ S} denote the natural projection onto the corresponding

subproduct. If S ⊆ T is a finite subset of T , then ‖{xt : t ∈ S}‖S =max{‖xt‖t :

t ∈ S} for each {xt : t ∈ S} ∈∏{Bt : t ∈ S}.
Since Vα is open in Xα, the definition of the product topology guarantees

the existence of a finite subset S ⊆ T and of a number ε > 0 such that

{
xα ∈Xα :

∥∥πS(xα)∥∥S ≤ ε}⊆ Vα. (3.2)

Combining (3.1) and (3.2), we have

f
({
x ∈X :

∥∥πS(pα(x))∥∥S ≤ ε})⊆ {y ∈ Y : |y| ≤ 1
}
. (3.3)

It then follows that if x ∈ X and ‖πS(pα(x))‖S ≤ 1, then ‖πS(pα(εx))‖S =
ε‖πS(pα(x))‖S ≤ ε and consequently

ε
∣∣f(x)∣∣= ∣∣f(εx)∣∣≤ 1, that is,

∣∣f(x)∣∣≤ 1
ε
. (3.4)

Since

∥∥∥∥∥πS
(
pα

(
x∥∥πS(pα(x))∥∥S

))∥∥∥∥∥= 1∥∥πS(pα(x))∥∥S ·
∥∥πS(pα(x))∥∥S = 1, (3.5)

we must have (by (3.4))

1∥∥πS(pα(x))∥∥S
∣∣f(x)∣∣=

∣∣∣∣∣f
(

x∥∥πS(pα(x))∥∥S
)∣∣∣∣∣≤ 1

ε
(3.6)

and hence

∣∣f(x)∣∣≤ 1
ε
∥∥πS(pα(x))∥∥S , for each x ∈X. (3.7)
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We now show that the map

h(z)= f (p−1
α
(
π−1
S (z)∩Xα

))
:πS

(
pα(X)

)
�→ Y (3.8)

is well defined. Assuming the contrary, suppose that for some z ∈πS(pα(X))
there exist two pointsx1,x2 ∈ p−1

α (π
−1
S (z)∩Xα) such that f(x1)≠ f(x2). Con-

sequently, |f(x1−x2)|≠ 0. On the other hand,πS(pα(x1−x2))=πS(pα(x1))−
πS(pα(x2))= z−z = 0. Then, (3.7) implies that

0≠
∣∣f (x1−x2

)∣∣≤ 1
ε
∥∥πS(pα(x1−x2

))∥∥
S = 0. (3.9)

This contradiction shows that the map h : πS(pα(X)) → Y is indeed well de-

fined. Note that

f = h◦πS ◦pα, (3.10)

which implies that the map h is linear. Next, consider points z ∈ πS(pα(X))
and x ∈X such that πS(pα(x))= z. By (3.7),

∣∣h(z)∣∣= ∣∣f(x)∣∣≤ 1
ε
∥∥πS(pα(x))∥∥S = 1

ε
‖z‖S . (3.11)

This shows that h is bounded and, consequently, continuous. Next, we show

that h :πS(pα(X))→ Y is multiplicative. Let (x′,y ′)∈πS(pα(X))×πS(pα(X))
and consider a point (x,y)∈X×X such thatπS(pα(x))= x′ andπS(pα(y))=
y ′. Then, by (3.10),

h(x′ ·y ′)= h(πS(pα(x))·πS(pα(y)))
= h(πS(pα(x ·y)))
= f(x ·y)= f(x)·f(y)
= h(πS(pα(x)))·h(πS(pα(y)))
= h(x′)·h(y ′).

(3.12)

Since (Y ,|·|) is complete, h admits the linear continuous extension

g : cl∏{Bt :t∈S}
(
πS
(
pα(X)

))
�→ Y . (3.13)

Since the multiplication on
∏{Bt : t ∈ Tf } is jointly continuous, we conclude

that g is also multiplicative. Finally, define the map fα as the composition

fα = g◦
(
πS|Xα

)
:Xα �→ Y . (3.14)
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Obviously, fα is a continuous homomorphism satisfying the required equality

fα ◦pα = f .

Next, we introduce the concept of projective Fréchet system.

Definition 3.2. Let τ ≥ ω be a cardinal number. A projective system

�X = {Xα,pβα,A} consisting of topological algebras Xα and continuous homo-

morphisms pβα :Xβ→Xα, α≤ β, α,β∈A, is a τ-system if

(1) Xα is a closed subalgebra of the product of at most τ Banach algebras,

α∈A;

(2) the indexing set A is τ-complete;

(3) if {αγ : γ ∈ τ} is an increasing chain of elements in A with α= sup{αγ :

γ ∈ τ}, then the diagonal product (see Proposition 2.1)

�{pααγ : γ ∈ τ} :Xα �→ lim←�����������������������������������
{
Xαγ ,p

αγ+1
αγ ,τ

}
(3.15)

is a topological isomorphism;

(4) pα(X) is dense in Xα for each α∈A.

Fréchet systems are defined as projective ω-systems.

Proposition 3.3. Every Arens-Michael algebra X can be represented as the

limit of a projective Fréchet system �X = {XA,pBA,expωT}. Conversely, the limit

of a projective Fréchet system is an Arens-Michael algebra.

Proof. By Theorem 2.2, X can be identified with a closed subalgebra of the

product
∏{Xt : t ∈ T} of some collection of Banach algebras. If |T | ≤ω, then X

itself is a Fréchet algebra and therefore our statement is trivially true. If |T |>
ω, then consider the set expωT of all countable subsets of T . Clearly, expωT
is ω-complete set (see Section 2.3). For each A ∈ expωT , let XA = clπA(X)
(closure is taken in

∏{Xt : t ∈A}), where

πA :
∏{

Xt : t ∈ T} �→∏{
Xt : t ∈A} (3.16)

denotes the natural projection onto the corresponding subproduct. Also let

pBA =πBA|XB , where

πBA :
∏{

Xt : t ∈ B} �→∏{
Xt : t ∈A} (3.17)

is the natural projection,A,B ∈ expωT ,A≤ B. The straightforward verification

shows that �X = {XA,pBA,expωT} is indeed a projective Fréchet system such

that lim←����������������������������������� �X =X.

Conversely, let �X = {Xα,pβα,A} be a projective Fréchet system. Clearly,

lim←����������������������������������� �X can be identified with a closed subalgebra of the product
∏{Xα :α∈A}

(see Section 2.1). Each Xα, α ∈ A, can obviously be identified with a closed

subalgebra of the product
∏{Bαn :n∈ Tα} of a countable collection of Banach

algebras Bαn . Then lim←����������������������������������� �X , as a closed subalgebra of the product
∏{∏{Bαn :n∈

Tα} : a∈A}, according to Theorem 2.2, is an Arens-Michael algebra.
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The following theorem is one of our main results.

Theorem 3.4. Let f : lim←����������������������������������� �X → lim←����������������������������������� �Y be a continuous homomorphism be-

tween the limits of two projective Fréchet systems �X = {Xα,pβα,A} and �Y =
{Yα,qβα,A}with the same indexing setA. Then, there exist a cofinal andω-closed

subset Bf of A and a morphism

{
fα :Xα �→ Yα,Bf

}
: �X

∣∣Bf �→�Y
∣∣Bf , (3.18)

consisting of continuous homomorphisms fα : Xα → Yα, α ∈ Bf , such that f =
lim←����������������������������������� {fα : Bf }.

If, in particular, lim←����������������������������������� �X and lim←����������������������������������� �Y are topologically isomorphic, then �X =
{Xα,pβα,A} and �Y = {Yα,qβα,A} contain isomorphic cofinal and ω-closed sub-

systems.

Proof. We perform the spectral search by means of the following relation

L= {(α,β)∈A2 :α≤ β and there exists

a continuous homomorphism fβα :Xβ �→ Yα such that fβαpβ = qαf
}
.

(3.19)

We verify the conditions of Proposition 2.5.

Existence condition. By assumption, Yα is a Fréchet algebra. Therefore,

Yα can be identified with a closed subspace of a countable product
∏{Bn :n∈

ω} of Banach algebras. Let πn :
∏{Bm :m ∈ω} → Bn denote the nth natural

projection. For each n ∈ ω, by Lemma 3.1, there exist an index βn ∈ A and

a continuous homomorphism fβn : Xβn → Bn such that πnqαf = fβnpβn . By

Corollary 2.4, there exists an index β∈A such that β≥ βn for each n. Without

loss of generality, we may assume that β ≥ α. Let fn = fβnpββn , n ∈ω. Next,

consider the diagonal product

fβα =�
{
fn :n∈ω} :Xβ �→

∏{
Bn :n∈ω}. (3.20)

Obviously, fβαpβ = qαf . It only remains to show that fβα(Xβ) ⊆ Yα. First, ob-

serve that fβα(pβ(X))⊆ Yα. Indeed, let x ∈X. Then,

fβα
(
pβ(x)

)= {fn(pβ(x)) :n∈ω}
= {fβn(pββn(pβ(x))) :n∈ω}
= {fβn(pβn(x)) :n∈ω}
= {πn(qα(f(x))) :n∈ω}
= qα

(
f(x)

)∈ Yα.

(3.21)
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Finally,

fβα
(
Xβ
)= fβα(clXβ pβ(X)

)⊆ cl∏{Bn :n∈ω}f
β
α
(
pβ(X)

)⊆ cl∏{Bn :n∈ω}Yα
= Yα.

(3.22)

Majorantness condition. The verification of this condition is trivial. In-

deed, it suffices to consider the composition fγα = fβαpγβ .

ω-closeness condition. Suppose that for some countable chainC={αn :

n∈ω} inAwithα= supC and for some β∈Awith β≥α, the maps fβαn :Xβ→
Yαn have already been defined in such a way that fβαnpβ = qαnf for each n∈ω
(in other words, (αn,β)∈ L for each n∈ω). Next, consider the composition

fβα = i−1 ◦�{fβαn :n∈ω} :Xβ �→ Yα, (3.23)

where i : Yα → lim←����������������������������������� {Yαn,q
αn+1
αn ,ω} is the topological isomorphism indicated in

condition (3) of Definition 3.2. Observe that for each x ∈X,

fβα
(
pβ(x)

)= i−1(�{fβαn :n∈ω})(pβ(x))
= i−1(�{qαn :n∈ω})(f(x))
= i−1(�{qααn :n∈ω})(qα(f(x)))
= (�{qααn :n∈ω})−1(�{qααn :n∈ω})(qα(f(x)))
= qα

(
f(x)

)
.

(3.24)

This shows that (α,β) ∈ L and finishes the verification of the ω-closeness

condition.

Now, denote by Bf the set of all L-reflexive elements inA. By Proposition 2.5,

Bf is a cofinal andω-closed subset ofA. One can easily see that the L-reflexivity

of an element α ∈A is equivalent to the existence of a continuous homomor-

phism fα = fαα :Xα → Yα satisfying the equality fαpα = qαf . Consequently, the

collection {fα : α ∈ Bf } is a morphism of the cofinal and ω-closed subspec-

trum �X|Bf of the spectrum �X into the cofinal and ω-closed subspectrum

�Y |Bf of the spectrum �Y . It only remains to remark that the original map f
is induced by the constructed morphism. This finishes the proof of the first

part of our theorem.

The second part of this theorem can be obtained from the first part as fol-

lows. Let f : lim←����������������������������������� �X → lim←����������������������������������� �Y be a topological isomorphism. Denote by f−1 :

lim←����������������������������������� �Y → lim←����������������������������������� �X the inverse of f . By the first part proved above, there exist a

cofinal and ω-closed subset Bf of A and a morphism

{
fα :Xα �→ Yα :α∈ Bf

}
: �X

∣∣Bf �→�Y
∣∣Bf (3.25)



1224 ALEX CHIGOGIDZE

such that f = lim←����������������������������������� {fα : α ∈ Bf }. Similarly, there exist a cofinal and ω-closed

subset Bf−1 of A and a morphism

{
gα : Yα �→Xα :α∈ Bf−1

}
: �Y

∣∣Bf−1 �→�X
∣∣Bf−1 (3.26)

such that f−1 = lim←����������������������������������� {gα :α∈ Bf−1}.
By Proposition 2.3, the set B = Bf ∩Bf−1 is still cofinal and ω-closed in A.

Therefore, in order to complete the proof, it suffices to show that for each

α∈ B the map fα :Xα → Yα is a topological isomorphism. Indeed, take a point

xα ∈ pα(lim←����������������������������������� �X) ⊆ Xα. Also choose a point x ∈ lim←����������������������������������� �X such that xα = pα(x).
Then,

gαfα
(
xα
)= gαfαpα(x)= gαqαf(x)= pαf−1f(x)= pα(x)= xα. (3.27)

This proves that gαfα|pα(lim←����������������������������������� �X) = idpα(lim←���������� �X). Similar considerations show

that fαgα|qα(lim←����������������������������������� �Y ) = idqα(lim←���������� �Y ) for each α ∈ B. Since pα(lim←����������������������������������� �X) is dense

in Xα and qα(lim←����������������������������������� �Y ) is dense in Yα (Definition 3.2, condition (4)), it follows

that gαfα|Xα = idXα and fαgα|Yα = idYα . It is now clear that fα, α ∈ B, is a

topological isomorphism (whose inverse is gα).

Remark 3.5. A similar statement remains true (with the identical proof) for

projective τ-systems for any cardinal number τ >ω.

Remark 3.6. Theorem 3.4 is false for countable projective systems. Indeed,

consider the following two projective sequences

�even =
{
C2n,π2(n+1)

2n ,ω
}
, �odd =

{
C2n+1,π2(n+1)+1

2n+1 ,ω
}
, (3.28)

where

π2(n+1)
2n :C2n×C2 �→ C2n, π2(n+1)+1

2n+1 : C2n+1×C2 �→ C2n+1 (3.29)

denote the natural projections. Clearly, the limits lim←����������������������������������� �even and lim←����������������������������������� �odd of these

projective systems are topologically isomorphic (both are topologically iso-

morphic to the countable infinite power Cω of C), but �even and �odd do not

contain isomorphic cofinal subsystems.

Corollary 3.7. Let �X = {Xα,pβα,A} be a projective Fréchet system. If lim←����������������������������������� �

is a Fréchet algebra, then there exists an index α ∈ A such that the βth limit

projection pβ : lim←����������������������������������� �→Xβ is a topological isomorphism for each β≥α.

Proof. Consider a trivial projective Fréchet system �′ = {Xα,qβα,A}, where

Xα = lim←����������������������������������� � and qβα = idlim←���������� � for each α,β ∈ A. By Theorem 3.4 (applied to the

identity homomorphism f = idlim←���������� �), there exist an index α∈A and a continu-

ous homomorphism gα : Xα → lim←����������������������������������� � such that idlim←���������� � = gα ◦pα. Clearly, in this

situation, pα| lim←����������������������������������� � : lim←����������������������������������� �→Xα is an embedding with a closed image. But this
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image pα(lim←����������������������������������� �) is dense in Xα (Definition 3.2, condition (4)). Therefore, pα
(and, consequently pβ for any β≥α) is a topological isomorphism.

Corollary 3.8. Suppose that X is a Fréchet subalgebra of an uncountable

product
∏{Bt : t ∈ T} of Fréchet (Banach) algebras, then there exists a countable

subset TX of the indexing set T such that the restriction πTX |X : X →πTX (X) of

the natural projection πTX :
∏{Bt : t ∈ T} → ∏{Bt : t ∈ TX} is a topological

isomorphism.

3.1. Arens-Michael ∗-algebras. The concept of projective Fréchet system

can naturally be adjusted to handle variety of situations. Below it will always

be completely clear in what content this concept is being used. We consider

Arens-Michael ∗-algebras, that is, Arens-Michael algebras with a continuous

involution. It is known that every such an algebra can be identified with a closed

∗-subalgebra of the product of Banach ∗-algebras (see, e.g., [3, Proposition

V.3.41]). Therefore, one can obtain an alternative description of such algebras

as limits of projective systems consisting of Banach∗-algebras and continuous

∗-homomorphisms (compare with Theorem 2.2). This, as in Proposition 3.3,

leads us to the conclusion recorded in the following proposition.

Proposition 3.9. Every Arens-Micheal ∗-algebra X can be represented as

the limit of a projective Fréchet system �X = {Xα,pβα,A} consisting of Fréchet

∗-algebras Xα, α ∈ A and continuous ∗-homomorphisms pβα : Xβ → Xα, α ≤ β,

α,β∈A. Conversely, the limit of any such projective Fréchet system is an Arens-

Michael ∗-algebra.

The analog of Theorem 3.4 is also true.

Proposition 3.10. Let f : lim←����������������������������������� �X→ lim←����������������������������������� �Y be a continuous∗-homomorphism

between the limits of two projective Fréchet systems �X = {Xα,pβα,A} and �Y =
{Yα,qβα,A}, consisting of Fréchet∗-algebras and continuous∗-homomorphisms

and having the same indexing set A. Then, there exist a cofinal and ω-closed

subset Bf of A and a morphism

{
fα :Xα �→ Yα,Bf

}
: �X

∣∣Bf �→�Y
∣∣Bf , (3.30)

consisting of continuous ∗-homomorphisms fα : Xα → Yα, α ∈ Bf , such that

f = lim←����������������������������������� {fα;Bf }.
If, in particular, lim←����������������������������������� �X and lim←����������������������������������� �Y are topologically ∗-isomorphic, then �X =

{Xα,pβα,A} and �Y = {Yα,qβα,A} contain isomorphic cofinal and ω-closed sub-

systems.

Proof. By Theorem 3.4, there exists a cofinal and ω-closed subset Bf of A
and a morphism

{
fα :Xα �→ Yα,Bf

}
: �X

∣∣Bf �→�Y
∣∣Bf , (3.31)
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consisting of continuous homomorphisms fα : Xα → Yα, α ∈ Bf , such that

f = lim←����������������������������������� {fα;Bf }.
We show that fα, α ∈ Bf , is actually a ∗-homomorphism. Indeed, let xα ∈

pα(X) and x ∈X such that pα(x)= xα. Then,

fα
(
x∗α
)= fα(pα(x)∗)= fα(pα(x∗))
= qα

(
f
(
x∗
))= qα(f(x)∗)

= qα
(
f(x)

)∗ = fα(pα(x))∗
= fα

(
xα
)∗.

(3.32)

4. Complemented subalgebras of uncountable products of Fréchet alge-

bras. In this section, we show (Theorem 4.2) that the complemented subal-

gebras of (uncountable) products of Fréchet algebras are products of Fréchet

algebras. We begin with the following lemma.

Lemma 4.1. Let p :X → Y be a surjective continuous homomorphism of topo-

logical algebras and suppose that X is a closed subalgebra of the product Y×B,

where B is a topological algebra. Assume also that there exists a continuous

homomorphism r : Y ×B→X satisfying the following conditions:

(i) pr =πY , where πY : Y ×B→ Y denotes the natural projection;

(ii) r(x)= x for each x ∈X.

Then, there exists a topological isomorphismh :X → Y×kerp such thatπYh=p.

Proof. If x ∈X, then

p
(
x−r(p(x),0))= p(x)−p(r(p(x),0))

by (i)= p(x)−πY
(
p(x),0

)
= p(x)−p(x)
= 0.

(4.1)

This shows that the formula

h(x)= (p(x),x−r(p(x),0)), x ∈X, (4.2)

defines a continuous linear map h :X → Y ×kerp. Moreover, h is a topological

isomorphism between X and Y×kerp considered as topological vector spaces

(to see this observe that the continuous and linear map g : Y ×kerp → X de-

fined by letting g(y,x) = r(y,0)+x for each (y,x) ∈ Y ×kerp has the fol-

lowing properties: g◦h = idX and h◦g = idY×kerp). We now show that h is an

isomorphism of the category of topological algebras as well.

Let x1,x2 ∈ X. We need to show that h(x1) ·h(x2) = h(x1 ·x2). Since X ⊆
Y ×B, we can write xi = (ai,bi), where ai ∈ Y and bi ∈ B, i = 1,2. Observe

that since xi ∈ X, it follows from (ii) that r(xi) = xi. Consequently, by (i),
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p(xi)= p(r(xi))=πY(xi)=πY(ai,bi)= ai. Then,

h
(
xi
)= (p(xi),xi−r(p(xi),0))= (ai,(ai,bi)−r(ai,0)), i= 1,2. (4.3)

Consequently,

h
(
x1
)·h(x2

)= (a1,
(
a1,b1

)−r(a1,0
))·(a2,

(
a2,b2

)−r(a2,0
))

= (a1 ·a2,
[(
a1,b1

)−r(a1,0
)]·[(a2,b2

)−r(a2,0
)])

= (a1 ·a2,
[
r
(
a1,b1

)−r(a1,0
)]·[r(a2,b2

)−r(a2,0
)])

= (a1 ·a2,r
(
0,b1

)·r(0,b2
))= (a1 ·a2,r

[(
0,b1

)·(0,b2
)])

= (a1 ·a2,r
(
0,b1 ·b2

))=(a1 ·a2,r
[(
a1 ·a2,b1 ·b2

)−(a1 ·a2,0
)])

= (a1 ·a2,r
(
a1 ·a2,b1 ·b2

)−r(a1 ·a2,0
))

= (a1 ·a2,
(
a1 ·a2,b1 ·b2

)−r(a1 ·a2,0
))

= h(a1 ·a2,b1 ·b2
)

= h((a1,b1
)·(a2,b2

))
= h(x1 ·x2

)
.

(4.4)

This shows that h is a homomorphism and, consequently, a topological iso-

morphism as required.

For algebras with trivial multiplication, the following theorem is contained

in [2].

Theorem 4.2. A complemented subalgebra of the product of uncountable

family of Fréchet algebras is topologically isomorphic to the product of Fréchet

algebras. More formally, if X is a complemented subalgebra of the product∏{Bt : t ∈ T} of Fréchet algebras Bt , t ∈ T , then X is topologically isomor-

phic to the product
∏{Fj : j ∈ J}, where Fj is a complemented subalgebra of

the product
∏{Bt : t ∈ Tj} with |Tj| =ω for each j ∈ J.

Proof. Let X be a complemented subalgebra of the uncountable product

B =∏{Bt : t ∈ T} of Fréchet algebras Bt , t ∈ T , where T is an indexing set with

|T | = τ > ω. There exists a continuous homomorphism r : B → X such that

r(x) = x for each x ∈ X. A subset S ⊆ T is called r -admissible if πS(r(z)) =
πS(z) for each point z ∈π−1

S (πS(X)).

Claim 1. The union of an arbitrary family of r -admissible sets is r -ad-

missible.

This derives from the fact that for x,y ∈ B, πS(x) = πS(y) if and only if

πt(x)=πt(y) for each t ∈ S.

Claim 2. If S ⊆ T is r -admissible, then πS(X) is a closed subalgebra of

BS =
∏{Bt : t ∈ S}.
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Indeed, let iS : BS → B be the canonical section of πS (this means that iS =
idBS�0 : BS → BS×BT−S = B). Consider a continuous linear map rS =πS ◦r ◦iS :

BS →πS(X). Obviously, iS(y)∈π−1
S (πS(X)) for any point y ∈πS(X). Since S

is r -admissible, the latter implies that

y =πS
(
iS(y)

)=πS(r(iS(y)))= rS(y). (4.5)

This shows that πS(X) is closed in BS .

Claim 3. Let S and R be r -admissible subsets of T and S ⊆ R ⊆ T . Then, the

map πRS :πR(X)→πS(X) is topologically isomorphic to the natural projection

π :πS(X)×ker(πRS |πR(X))→πS(X).
Obviously, πR(X) ⊆ πS(X)×BR−S ⊆ BR = BS ×BR−S . Consider the map iR =

idBR�0 : BR → BR×BT−R = B. Also, let rR =πR ◦r ◦iR : BR →πR(X).
Observe that πRS ◦ rR|(πS(X)× BR−S) = πRS |(πS(X)× BR−S). Indeed, if x ∈

πS(X) × BR−S , then iR(x) ∈ π−1
S (πS(X)). Since S is r -admissible, we have

πS(r(iR(x)))=πS(iR(x)). Consequently,

πRS
(
rR(x)

)=πRS (πR(r(iR(x))))=πS(r(iR(x)))
=πS

(
iR(x)

)=πRS (πR(iR(x)))=πRS (x). (4.6)

Next, observe that rR(x) = x for any point x ∈ πR(X). Indeed, since R is

r -admissible and since iR(x)∈π−1
R (πR(X)), we have

rR(x)=πR
(
r
(
iR(x)

))=πR(iR(x))= x. (4.7)

Application of Lemma 4.1 (with X = πR(X), Y = πS(X), B = BR−S , p =
πRS |πR(X), and r = rR) finishes the proof of Claim 3.

Claim 4. Every countable subset of T is contained in a countable r -admis-

sible subset of T .

LetA be a countable subset of T . Our goal is to find a countable r -admissible

subset C such that A⊆ C . Consider the projective system

�B =
{∏{

Bt : t ∈ C},πC′C ,expωT
}

(4.8)

representing the product B and associated to the subalgebra X projective sys-

tem

�X =
{

cl∏{Bt :t∈C}
(
πC(X)

)
,πC

′
C |cl∏{Bt :t∈C′}

(
πC′(X)

)
, C ∈ expωT

}
(4.9)

representing X.
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By Theorem 3.4 applied to the homomorphism r : lim←����������������������������������� �B → lim←����������������������������������� �X , there

exist a countable subset C of T and a continuous homomorphism rC : BC →
clBC (πC(X)) such that A ⊆ C (i.e., A ≤ C in the natural order on expωT ) and

πC ◦r = rC ◦πC . Consider a point y ∈πC(X). Also pick a point x ∈X such that

πC(x)=y . Then,

y =πC(x)=πC
(
r(x)

)= rC(πC(x))= rC(y). (4.10)

This shows that rC |πC(X)= idπC(X). It also follows that πC(X) is closed in BC .

In order to show that C is r -admissible, we consider a point z ∈π−1
C (πC(X)).

By the observation made above, rC(πC(z))=πC(z). Finally,

πC(z)= rC
(
πC(z)

)=πC(r(x)) (4.11)

which implies that C is r -admissible.

Since |T | = τ , we can write T = {tα : α < τ}. Since the collection of count-

able r -admissible subsets of T is cofinal in expωT (see Claim 4), each element

tα ∈ T is contained in a countable r -admissible subset Aα ⊆ T . According to

Claim 1, the set Tα =
⋃{Aβ : β ≤ α} is r -admissible for each α < τ . Consider

the projective system

�= {Xα,pα+1
α , α < τ

}
, (4.12)

where

Xα =πTα(X), pα+1
α =πTα+1

Tα |πTα+1(X) for each α< τ. (4.13)

Since T =⋃{Tα :α< τ}, it follows thatX = lim←����������������������������������� �. Obvious transfinite induction

based on Claim 3 shows that

X = lim←����������������������������������� �=X0×
∏{

ker
(
pα+1
α

)
:α< τ

}
. (4.14)

In order to demonstrate this, consider the well-ordered projective system �′ =
{Zα,qα+1

α , α < τ} where

Zα =

X0, if α= 0,

X0×
∏{

ker
(
pβ+1
β

)
: β <α

}
, if 0<α< τ

(4.15)

and, for 0<α< τ ,

qα+1
α :X0×

∏{
ker

(
pβ+1
β

)
: β <α+1

}
�→X0×

∏{
ker

(
pβ+1
β

)
: β <α

}
(4.16)
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denotes the natural projection (which forgets the last coordinate). For each

α < τ , we construct a topological isomorphism hα : Xα → Zα as follows. We

start by letting h0 = idX0 . Suppose that topological isomorophism hγ :Xγ → Zγ
has already been constructed for each γ < α in such a way that qγ+1

γ ◦hγ+1 =
hγ ◦pγ+1

γ whenever γ +1 ≤ α. We construct a topological isomorphism hα :

Xα → Zα.

If α is the limit ordinal number, let hα = lim{hγ : γ <α}.
If α = γ + 1 for some γ < τ , then, by Claim 3, there exists a topological

homomorphism h :Xγ+1→Xγ×ker(pγ+1
γ ) such that the following diagram

Xγ+1
h

pγ+1
γ

Xγ×ker
(
pγ+1
γ

)
π1

Xγ
id Xγ

(4.17)

commutes (π1 denotes the natural projection onto the first coordinate space).

Then, the required topological homomorphism hγ+1 : Xγ+1 → Zγ+1 is defined

as the composition hγ+1 = h◦(hγ× id). The following diagrams illustrates the

situation

Xγ+1
h

pγ+1
γ

Xγ×ker
(
pγ+1
γ

) hγ×id

π1

Zγ+1 = Zγ×ker
(
pγ+1
γ

)
π1

Xγ
id Xγ

hγ
Zγ.

(4.18)

This completes the inductive construction of topological isomorphisms hα,

α< τ . Finally note that

H = lim
{
hα :α< τ

}
:X = lim←����������������������������������� � �→ lim←����������������������������������� �′

=X0×
∏{

ker
(
pα+1
α

)
:α< τ

} (4.19)

provides the required topological isomorphism.

Since, by the construction, Aα is a countable r -admissible subset of T , it

follows from Claim 2 that X0 and ker(pα+1
α ), α< τ , are Fréchet algebras. This

finishes the proof of Theorem 4.2.
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