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The Riemannian submersions of a CR-hypersurface M of a Kaehler-Einstein man-
ifold M̃ are studied. If M is an extrinsic CR-hypersurface of M̃ , then it is shown
that the base space of the submersion is also a Kaehler-Einstein manifold.
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1. Introduction. The study of the Riemannian submersions π :M → B was

initiated by O’Neill [14] and Gray [9]. This theory was very much developed

in the last thirty five years. Besse’s book [3, Chapter 9] is a reference work.

Bejancu introduced a remarkable class of submanifolds of a Kaehler manifold

that are known as CR-submanifolds (see [1, 2]). On a CR-submanifold, there

are two complementary distributions D and D⊥, such that D is J-invariant and

D⊥ is J-anti-invariant with respect to the complex structure J of the Kaehler

manifold. The integrability of the anti-invariant distribution D was proved by

Blair and Chen [4].

Recently, Kobayashi [10] considered the similarity between the total space

of a Riemannian submersion and a CR-submanifold of a Kaehler manifold in

terms of the distribution. He studied the case of a generic CR-submanifolds in

a Kaehler manifold and proved that the base space is a Kaehler manifold.

In Section 3, we extend the result of Kobayashi to the general case of a CR-

submanifold.

In Section 4, we study a Riemannian submersion from an extrinsic hypersur-

face M of a Kaehler-Einstein manifold M̃ onto an almost-Hermitian manifold

B. In this case, we prove that the basic manifold is a Kaehler-Einstein manifold.

If M̃ is Cn+1, a standard example is the Hopf fibration S2n+1 → CPn equipped

with the canonical metrics.

For the basic formulas of Riemannian geometry, we use [11, 12].

2. Preliminaries. Let M̃ be a complexm-dimensional Kaehler manifold with

complex structure J and Hermitian metric 〈·,·〉. Bejancu [2] introduced the

concept of a CR-submanifold of M̃ as follows: a real Riemannian manifold M ,

isometrically immersed in a Kaehler manifold M̃ , is called a CR-submanifold

of M̃ if there exists on M a differentiable holomorphic distribution D and its
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orthogonal complement D⊥ on M is a totally real distribution, that is, JD⊥x ⊆
T⊥x M , where T⊥x M is the normal space to M at x ∈M for any x ∈M . It is easily

seen that each real orientable hypersurface of M is a CR-submanifold. The

Riemannian metric induced on M will be denoted by the same symbol 〈·,·〉.
Let ∇̃ (resp., ∇) be the operator of covariant differentiation with respect to

the Levi-Civita connection on M̃ (resp., M). The second-fundamental form B is

given by

B(E,F)= ∇̃EF−∇EF (2.1)

for all E,F ∈ Γ(TM), where Γ(TM) is the space of differentiable vector field

on M . We denote everywhere by Γ(τ) the space of differentiable sections of a

vector bundle τ .

For a normal vector field N, that is, N ∈ Γ(T⊥M), we write

∇̃EN =−LNE+∇⊥EN, (2.2)

where −LNE (resp., ∇⊥EN) denotes the tangential (resp., normal) component of

∇̃EN.

Let µ be the orthogonal complementary vector bundle of J(D⊥) in T⊥M , that

is, T⊥M = J(D⊥)⊕µ.

It is clear that µ is a holomorphic subbundle of T⊥M , that is, Jµ = µ.

Definition 2.1 (Kobayashi [10]). Let M be a CR-submanifold of a Kaehler

manifold M̃ . A submersion from a CR-manifold M onto an almost-Hermitian

manifold is a Riemannian submersion π : M → M′ with the following condi-

tions:

(i) D⊥ is the kernel of π∗,

(ii) π∗ :Dx → Tπ(x)M′ is a complex isometry for every x ∈M .

This definition is given by Kobayashi for the case where µ is a null subbundle

of T⊥M (see [10]). If JD⊥x = T⊥x M for any x ∈ M , we say that M is a generic

CR-submanifold of M̃ (Yano and Kon [15]). For example, any real orientable

hypersurface of M̃ is a generic CR-submanifold of M̃ .

Concerning the basic notions on the Riemannian submersions, see O’Neill

[14] and Gray [9].

The vertical distribution of a Riemannian submersion is an integrable distri-

bution. In our case, the distribution vertical isD⊥, which is integrable according

to a theorem by Blair and Chen [4].

The sections of D⊥ (resp., D) are called the vertical vector fields (resp., the

horizontal vector fields) of the Riemannian submersion π :M →M′. The letters

U , V , W , and W ′ will always denote vertical vector fields, and the letters X, Y ,

Z , and Z′ denote horizontal vector fields. For any E ∈�(M), vE and hE denote

the vertical and horizontal components of E, respectively. A horizontal vector

field X on M is said to be basic if X is π -related to a vector field X′ on M′.
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It is easy to see that every vector field X′ on M′ has a unique horizontal lift

X to M , and X is basic.

Conversely, let X be a horizontal vector field and suppose that 〈X,Y 〉x =
〈X,Y 〉y for all Y basic vector fields on M , for all x,y ∈ π−1(x′), and for all

x′ ∈M′. Then, the vector fieldX is basic. We have the following O’Neill’s lemma

(see [8, 14]).

Lemma 2.2. LetX and Y be basic vector fields onM . Then, they are satisfying

the following:

(i) the horizontal component h[X,Y] of [X,Y] is a basic vector field and

π∗h[X,Y]= [X′,Y ′]◦π ,

(ii) h(∇XY) is a basic vector field corresponding to ∇′X′Y ′, where ∇′ is the

Levi-Civita connection on (M′,〈,〉′),
(iii) [X,U]∈ Γ(D⊥) for any vertical field U ∈ Γ(D⊥).

We recall that a Riemannian submersion π : (M,g)→ (M′,g′) determines the

fundamental tensor field T and A by the formulas

TEF = h∇vEvF+v∇vEhF,
AEF = v∇hEhF+h∇hEvF, (2.3)

for all E,F ∈ Γ(TM) (cf. O’Neill [14] and Besse [3]).

It is easy to prove that T and A satisfy

TUV = TvU, (2.4)

AXY = 1
2
v[X,Y], (2.5)

for any U,V ∈ Γ(D⊥) and X,Y ∈ Γ(D).
Formula (2.4) means that the restriction of T to the integrable distribution

D⊥ is the second-fundamental form of the fiber submanifolds in M , and (2.5)

measures the integrability of the distribution D.

We have the following properties:

∇UX = TUX+h∇UX,
∇XU = v∇XU+AXU,
∇XY = h∇XY +AXY ,

(2.6)

for any X,Y ∈ Γ(�) and U ∈ Γ(�).

3. Kaehler structure on the basic space M′. From (2.1), we have

∇̃XY = h∇XY +v∇XY +hB(X,Y)+vB(X,Y) (3.1)

for any X,Y ∈ Γ(D).
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Here, we denote by h and v (resp., h and v) the canonical projections on

D and D⊥ (resp., µ and JD⊥). Define a tensor field C on M as the vertical

component v(∇XY) of ∇XY (cf. Kobayashi [10]). The tensor field C is known

to be a skew-symmetric tensor field defined by Kobayashi such that

C(X,Y)= 1
2
v[X,Y] (3.2)

for all X,Y ∈ Γ(D).
Note that the tensor field C is the restriction of A to Γ(�)×Γ(�).
From Definition 2.1 and Lemma 2.2, we obtain that Jh∇XY (resp., h∇XJY )

is a basic vector field and corresponds to J′∇′X′Y ′ (resp.,∇′X′J′Y ′) for any basic

vector fields X and Y on M .

On the Kaehler manifold M̃ , we have

∇̃EJF = J∇̃EF. (3.3)

From (3.1) and (3.3), we obtain the following proposition.

Proposition 3.1. For any basic vector fields X and Y on M ,

Jh∇XY = h∇XJY , (3.4)

JC(X,Y)= vB(X,JY), (3.5)

C(X,JY)= JvB(X,Y), (3.6)

JhB(X,Y)= hB(X,JY). (3.7)

Theorem 3.2. Let M be a CR-submanifold of a Kaehler manifold M̃ and

π : M → M′ be a CR-submersion of M on an almost-Hermitian manifold M′.
Then, M′ is a Kaehler manifold.

Proof. From Lemma 2.2 and (3.4), we obtain that ∇′X′J′Y ′ = J′∇′X′Y ′, so

that M′ is a Kaehler manifold.

Remark 3.3. Proposition 3.1 is proved for generic CR-submanifolds of M̃
(i.e., µ = 0) in [10].

4. Riemannian submersions from extrinsic hyperspheres of Einstein-

Kaehler manifolds. We recall that a totally umbilical submanifold M of a

Riemannian manifold M̃ is a submanifold whose first-fundamental form and

second-fundamental form are proportional.

The extrinsic hyperspheres are defined to be totally umbilical hypersurfaces,

having nonzero parallel mean-curvature vector field (cf. Nomizu and Yano

[13]). Many of the basic results concerning extrinsic spheres in Riemannian

and Kaehlerian geometry were obtained by Chen [5, 6, 7].
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Let M be an orientable hypersurface in a Kaehler manifold M̃ . Then, M is an

extrinsic hypersphere of M̃ if it satisfies

B(E,F)= 〈E,F〉H (4.1)

for any vector fields E and F on M . Here, H denote the mean-curvature vector

field of M . If we put k=‖H ‖ (where the norm ‖ · ‖ is, with respect to a scalar

product, induced on every tangent space to M), then k is a nonzero constant

function on the extrinsic hypersphere M .

We denote by N the global unit normal vector field to M . Then, ξ = −JN is

a global unit vector on M such that N = Jξ. Let D be the maximal J-invariant

subspace (with respect to J) of the tangent space TpM for every p ∈ M . We

see that M is a CR-hypersurface of M such that TM = D⊕D⊥, where D⊥ is

the one-dimensional anti-invariant distribution generated by the vector field ξ
on M .

The anti-invariant distribution D⊥ is integrable, and its leaves are totally

geodesic in M (but not in M̃).

This is an easy consequence from Gauss and Weingarten’s formulas of the

leaves of D⊥ inM . This means that O’Neill’s tensor T vanishes on the fibres of

the Riemannian submersion π :M → B.

The main result of this section is the following theorem.

Theorem 4.1. Let M be an orientable extrinsic hypersphere of an Kaehler-

Einstein manifold M̃ . If π : M → B is a CR-submersion of M on an almost-

Hermitian manifold B, then B is an Kaehler-Einstein manifold.

To prove Theorem 4.1, we need several lemmas.

Lemma 4.2. Following the assumptions of Theorem 4.1, then

〈
Axξ,Ayξ

〉= k2〈X,Y 〉 (4.2)

for any horizontal vector X on M .

Proof. From Gauss’s formula (2.1) and the umbilicality ofM , we get ∇̃Xξ =
∇Xξ for any vector field X on M . Then, we have

〈∇̃XJN,Y
〉= 〈∇Xξ,Y

〉= 〈h∇Xξ,Y
〉= 〈AXξ,Y

〉
. (4.3)

On the other hand, M̃ is a Kaehler manifold, so that ∇ commute with J:

〈∇̃XJN,Y
〉= 〈J∇̃XN,Y

〉=−〈∇̃XN,JY
〉= 〈B(X,JY),N〉

= 〈G(X,JY)H,N〉= k〈X,JY 〉. (4.4)
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Consequently,

〈
AXξ,AYξ

〉= k〈X,JAYξ
〉=−k〈JX,AYξ

〉= k2〈X,Y
〉
. (4.5)

Lemma 4.3. Following the assumptions of Theorem 4.1, then

〈
AXY ,AZW

〉= k2〈X,JY 〉〈Z,JW〉 (4.6)

for any horizontal vector fields on M .

Proof. We say that AXY is a vertical vector field, hence

AXY =
〈
AXY ,ξ

〉
ξ. (4.7)

Then,

〈
AXY ,AZW

〉= 〈AXY ,ξ
〉〈
AZW,ξ

〉= k2〈X,JY 〉〈Z,JW〉. (4.8)

Lemma 4.4. Following the assumptions of Theorem 4.1, then

R̃(X,Y ,Z,W)= R(X,Y ,Z,W)+k2{〈X,Z〉〈Y ,W〉−〈X,W〉〈Y ,Z〉}, (4.9)

where R̃ and R are the curvature tensor on M̃ and M , respectively.

Proof. We have the Gauss equation

R̃(X,Y ,Z,W)= R(X,Y ,Z,W)+〈B(X,Z),B(Y ,W)〉

−〈B(Y ,Z),B(X,W)〉. (4.10)

Using the umbilicality condition, we get (4.9).

Lemma 4.5. For any horizontal vector fields X and Y on M ,

R̃(ξ,X,Y ,ξ)= 0, R̃(ξ,JX,JY ,ξ)= 0. (4.11)

Proof. For a Riemannian submersion with totally geodesic fibres, the fol-

lowing formula is known:

R̃(X,V ,Y ,U)= 〈(∇VA
)
(X,Y),U

〉+〈AXV,AYU
〉
. (4.12)

On the other hand, the first term on the right part is skew-symmetric with

respect to the vertical vector fields V and U . From (4.12) and (4.9), we obtain

(4.11).
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Proof of Theorem 4.1. For the horizontal vector fields X, Y , Z , and W on

M , we have the following equation of O’Neill:

R(X,Y ,Z,W)= R′(X′,Y ′ ·Z′,W ′)−2
〈
AXY ,AZW

〉

+〈AYZ,AXW
〉−〈AXZ,AYW

〉 (4.13)

(see [3, 14]).

By (4.9) and (4.11), we get the following formula that connects the curvature

of M′ to the curvature of the Kaehler manifold M̃ :

R̃(X,Y ,Z,W)= R′(X′,Y ′,Z′,W ′)

−k2{〈X,JZ〉〈Y ,JW〉−〈X,JW〉〈Y ,JZ〉
+2〈X,JY 〉〈Z,JW〉}

−k2{〈X,Z〉〈Y ,W〉−〈X,W〉〈Y ,Z〉}.

(4.14)

Let (e1, . . . ,ep ;Je1, . . . ,Jlp) be a local J-frame of basic vector fields for the hori-

zontal distribution D. Then, (e1, . . . ,e′p ;J′e1, . . . ,J′ep) is a local J′-frame if

πstarei = e′i on the Kaehler manifold B.

Using the above lemmas, from (4.14) by a straightforward calculation, we

conclude that B is a Kaehler-Einstein manifold if M̃ is a Kaehler-Einstein mani-

fold.

Corollary 4.6. Let M̃ be a complex-form space and M an orientable CR-

hypersurface of M̃ . Then, the base space of submersion π : M → B is also a

complex-form space.

Proof. The corollary follows by straightforward calculation making use of

(4.14).

Example 4.7. Let S2n+1 be the standard hypersphere in Cn+1. Then, S2n+1

is an extrinsic hypersphere in Cn+1, and we have the Hopf fibration π : S2n+1 →
CPn equipped with the canonical metrics.
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