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SOME SUBMERSIONS OF CR-HYPERSURFACES
OF KAEHLER-EINSTEIN MANIFOLD
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The Riemannian submersions of a CR-hypersurface M of a Kaehler-Einstein man-
ifold M are studied. If M is an extrinsic CR-hypersurface of M, then it is shown
that the base space of the submersion is also a Kaehler-Einstein manifold.
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1. Introduction. The study of the Riemannian submersions 7 : M — B was
initiated by O’Neill [14] and Gray [9]. This theory was very much developed
in the last thirty five years. Besse’s book [3, Chapter 9] is a reference work.
Bejancu introduced a remarkable class of submanifolds of a Kaehler manifold
that are known as CR-submanifolds (see [1, 2]). On a CR-submanifold, there
are two complementary distributions D and D+, such that D is J-invariant and
D+ is J-anti-invariant with respect to the complex structure J of the Kaehler
manifold. The integrability of the anti-invariant distribution D was proved by
Blair and Chen [4].

Recently, Kobayashi [10] considered the similarity between the total space
of a Riemannian submersion and a CR-submanifold of a Kaehler manifold in
terms of the distribution. He studied the case of a generic CR-submanifolds in
a Kaehler manifold and proved that the base space is a Kaehler manifold.

In Section 3, we extend the result of Kobayashi to the general case of a CR-
submanifold.

In Section 4, we study a Riemannian submersion from an extrinsic hypersur-
face M of a Kaehler-Einstein manifold M onto an almost-Hermitian manifold
B. In this case, we prove that the basic manifold is a Kaehler-Einstein manifold.
If M is C"*1, a standard example is the Hopf fibration $2"+! — CP" equipped
with the canonical metrics.

For the basic formulas of Riemannian geometry, we use [11, 12].

2. Preliminaries. Let M be a complex m-dimensional Kaehler manifold with
complex structure J and Hermitian metric (-,-). Bejancu [2] introduced the
concept of a CR-submanifold of M as follows: a real Riemannian manifold M,
isometrically immersed in a Kaehler manifold M, is called a CR-submanifold
of M if there exists on M a differentiable holomorphic distribution D and its
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orthogonal complement D* on M is a totally real distribution, that is, JD; <
T M, where Tt M is the normal space to M at x € M for any x € M. It is easily
seen that each real orientable hypersurface of M is a CR-submanifold. The
Riemannian metric induced on M will be denoted by the same symbol (-, -).

Let V (resp., V) be the operator of covariant differentiation with respect to
the Levi-Civita connection on M (resp., M). The second-fundamental form B is
given by

B(E,F) = VEF —VgF (2.1)

for all E,F € T(TM), where I'(TM) is the space of differentiable vector field
on M. We denote everywhere by I'(T) the space of differentiable sections of a
vector bundle T.

For a normal vector field N, thatis, N e I (T+M), we write

VeN = —LyE+ VEN, (2.2)

where —LNE (resp., Vi N) denotes the tangential (resp., normal) component of
VEN.

Let u be the orthogonal complementary vector bundle of J(D+) in T+ M, that
is, T*M = J(D*) & .

It is clear that u is a holomorphic subbundle of T+M, that is, Ju = p.

DEFINITION 2.1 (Kobayashi [10]). Let M be a CR-submanifold of a Kaehler
manifold M. A submersion from a CR-manifold M onto an almost-Hermitian
manifold is a Riemannian submersion 1T : M — M’ with the following condi-
tions:

(i) D* is the kernel of 174,

(ii) 774 : Dx — Tr(x)M' is a complex isometry for every x € M.
This definition is given by Kobayashi for the case where u is a null subbundle
of T*M (see [10]). If JDx = T+ M for any x € M, we say that M is a generic
CR-submanifold of M (Yano and Kon [15]). For example, any real orientable
hypersurface of M is a generic CR-submanifold of M.

Concerning the basic notions on the Riemannian submersions, see O’Neill
[14] and Gray [9].

The vertical distribution of a Riemannian submersion is an integrable distri-
bution. In our case, the distribution vertical is D+, which is integrable according
to a theorem by Blair and Chen [4].

The sections of D+ (resp., D) are called the vertical vector fields (resp., the
horizontal vector fields) of the Riemannian submersion 1t : M — M’. The letters
U, V, W, and W’ will always denote vertical vector fields, and the letters X, Y,
Z,and Z’ denote horizontal vector fields. For any E € (M), vE and hE denote
the vertical and horizontal components of E, respectively. A horizontal vector
field X on M is said to be basic if X is rr-related to a vector field X" on M.
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It is easy to see that every vector field X’ on M’ has a unique horizontal lift
X to M, and X is basic.

Conversely, let X be a horizontal vector field and suppose that (X,Y), =
(X,Y), for all Y basic vector fields on M, for all x,y € m-1(x’), and for all
x" € M'. Then, the vector field X is basic. We have the following O’Neill’s lemma
(see [8, 14]).

LEMMA 2.2. Let X andY be basic vector fields on M. Then, they are satisfying
the following:
(i) the horizontal component h[X,Y] of [X,Y] is a basic vector field and
mh[X,Y]=[X",Y']omm,
(i) h(VxY) is a basic vector field corresponding to V', Y’', where V' is the
Levi-Civita connection on (M’,{,)"),
(iii) [X,U] eT(D*) for any vertical field U € T(D*).

We recall that a Riemannian submersion 7t : (M,g) — (M’,g’) determines the
fundamental tensor field T and A by the formulas

TgF = I’LVUEUF-FUVUE]QF,

AgF =vVpphF + hVeVF, .3)
for all E,F e T(TM) (cf. O'Neill [14] and Besse [3]).
It is easy to prove that T and A satisfy
TyV =T,U, (2.4)
AxY = %U[X,Y], (2.5)

forany U,V €T(D*) and X,Y €T'(D).

Formula (2.4) means that the restriction of T to the integrable distribution
D+ is the second-fundamental form of the fiber submanifolds in M, and (2.5)
measures the integrability of the distribution D.

We have the following properties:

VuX=TyX+hVyX,
VxU=vVxU+AxU, (2.6)
VxY = I’LVxY-I-AxY,

for any X,Y € I'(¥) and U € T (V).
3. Kaehler structure on the basic space M’. From (2.1), we have
VxY =hVxY+vVxY +hB(X,Y)+VB(X,Y) (3.1)

for any X,Y €I'(D).
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Here, we denote by h and v (resp., h and ) the canonical projections on
D and D+ (resp., u and JD*). Define a tensor field C on M as the vertical
component v(VxY) of VxY (cf. Kobayashi [10]). The tensor field C is known
to be a skew-symmetric tensor field defined by Kobayashi such that

CX,Y) = %U[X,Y] (3.2)

forall X,Y eT'(D).

Note that the tensor field C is the restriction of A to I'(%) xT'(%).

From Definition 2.1 and Lemma 2.2, we obtain that JAVxY (resp., hVxJY)
is a basic vector field and corresponds to J' V. Y’ (resp., V. J'Y’) for any basic
vector fields X and Y on M.

On the Kaehler manifold M, we have

VeJF = JVEF. (3.3)

From (3.1) and (3.3), we obtain the following proposition.

PROPOSITION 3.1. For any basic vector fields X and Y on M,

JhVxY =hVyJY, (3.4)
JC(X,Y) =VB(X,JY), (3.5)
C(X,JY) =JvB(X,Y), (3.6)

JhB(X,Y) = hB(X,JY). (3.7)

THEOREM 3.2. Let M be a CR-submanifold of a Kaehler manifold M and
m:M — M’ be a CR-submersion of M on an almost-Hermitian manifold M’'.
Then, M’ is a Kaehler manifold.

PROOF. From Lemma 2.2 and (3.4), we obtain that V. J'Y' = J'V Y’, so
that M’ is a Kaehler manifold. O

REMARK 3.3. Proposition 3.1 is proved for generic CR-submanifolds of M
(i.e., u =0) in [10].

4. Riemannian submersions from extrinsic hyperspheres of Einstein-
Kaehler manifolds. We recall that a totally umbilical submanifold M of a
Riemannian manifold M is a submanifold whose first-fundamental form and
second-fundamental form are proportional.

The extrinsic hyperspheres are defined to be totally umbilical hypersurfaces,
having nonzero parallel mean-curvature vector field (cf. Nomizu and Yano
[13]). Many of the basic results concerning extrinsic spheres in Riemannian
and Kaehlerian geometry were obtained by Chen [5, 6, 7].
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Let M be an orientable hypersurface in a Kaehler manifold M. Then, M is an
extrinsic hypersphere of M if it satisfies

B(E,F) =(E,F)H 4.1)

for any vector fields E and F on M. Here, H denote the mean-curvature vector
field of M. If we put k =|| H || (where the norm || - || is, with respect to a scalar
product, induced on every tangent space to M), then k is a nonzero constant
function on the extrinsic hypersphere M.

We denote by N the global unit normal vector field to M. Then, & = —JN is
a global unit vector on M such that N = J&. Let D be the maximal J-invariant
subspace (with respect to J) of the tangent space T,M for every p € M. We
see that M is a CR-hypersurface of M such that TM = D @ D+, where D* is
the one-dimensional anti-invariant distribution generated by the vector field &
on M.

The anti-invariant distribution D+ is integrable, and its leaves are totally
geodesic in M (but not in M).

This is an easy consequence from Gauss and Weingarten’s formulas of the
leaves of D+ in M. This means that O’'Neill’s tensor T vanishes on the fibres of
the Riemannian submersion 7 : M — B.

The main result of this section is the following theorem.

THEOREM 4.1. Let M be an orientable extrinsic hypersphere of an Kaehler-
Einstein manifold M. If = : M — B is a CR-submersion of M on an almost-
Hermitian manifold B, then B is an Kaehler-Einstein manifold.

To prove Theorem 4.1, we need several lemmas.

LEMMA 4.2. Following the assumptions of Theorem 4.1, then
(AxE,ALE) =k*(X,Y) (4.2)

for any horizontal vector X on M.

PROOF. From Gauss’s formula (2.1) and the umbilicality of M, we get V& =
V x& for any vector field X on M. Then, we have

(VxJN,Y) ={(VxEY) = (hVyEY) = (AxE,Y). (4.3)
On the other hand, M is a Kaehler manifold, so that V commute with J:

(VxJN,Y) = (JVxN,Y) = =(VxN,JY) = (B(X,JY),N)
= (G(X,JY)H,N) = k(X,JY).
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Consequently,
(AxE,AvE) = k(X,JAYE) = —k(JX,AyE) = kK*(X,Y). (4.5)
O
LEMMA 4.3. Following the assumptions of Theorem 4.1, then
(AxY,AzW) = k*(X,JY)(Z,JW) (4.6)
for any horizontal vector fields on M.
PROOF. We say that AxY is a vertical vector field, hence
AxY = (AyY,E)E. 4.7)
Then,
(AxY,AzW) = (AxY,E)(AzW,E) = K (X,JY)(Z,JW). (4.8)
O

LEMMA 4.4. Following the assumptions of Theorem 4.1, then
R(X,Y,Z,W)=R(X,Y,Z,W)+k*{{X,Z)(Y,W) — (X, W)(Y,Z)}, (4.9

where R and R are the curvature tensor on M and M, respectively.

PROOF. We have the Gauss equation

R(X,Y,Z,W)=R(X,Y,Z,W)+(B(X,Z),B(Y,W))

4.10

~(B(Y,Z),B(X,W)). 10

Using the umbilicality condition, we get (4.9). |
LEMMA 4.5. For any horizontal vector fields X andY on M,

R(EX,Y,8) =0, R(JX,JY,E) =0. (4.11)

PROOF. For a Riemannian submersion with totally geodesic fibres, the fol-
lowing formula is known:

R(X,V,Y,U) = {(VvA)(X,Y),U) + (AxV,AyU). (4.12)
On the other hand, the first term on the right part is skew-symmetric with

respect to the vertical vector fields V and U. From (4.12) and (4.9), we obtain
(4.11). O
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PROOF OF THEOREM 4.1. For the horizontal vector fields X, Y, Z, and W on
M, we have the following equation of O’Neill:
R(X,Y,Z,W)=R (X',Y' - Z',W')=2(AxY,Az;W)

+{AyZ,AxW) — (AxZ, Ay W) (4.13)

(see [3, 14]).
By (4.9) and (4.11), we get the following formula that connects the curvature
of M’ to the curvature of the Kaehler manifold M:
R(X,Y,Z,W)=R(X',Y',Z',W')
— K {(X, JZ)(Y, W) = (X,JW)Y,] Z)
+2(X,JY){Z,JW)}
—K* (X, Z)(Y, W) = (X,W)(Y,2)}.

(4.14)

Let (ey,...,ep;Jei,...,J1p) be alocal J-frame of basic vector fields for the hori-
zontal distribution D. Then, (el,...,e;,;J’el,...,J’ep) is a local J'-frame if
Tisarei = €; on the Kaehler manifold B.

Using the above lemmas, from (4.14) by a straightforward calculation, we
conclude that B is a Kaehler-Einstein manifold if M is a Kaehler-Einstein mani-
fold.

O

COROLLARY 4.6. Let M be a complex-form space and M an orientable CR-
hypersurface of M. Then, the base space of submersion ™ : M — B is also a
complex-form space.

PRrROOF. The corollary follows by straightforward calculation making use of
(4.14). O

EXAMPLE 4.7. Let S2"*1 be the standard hypersphere in C"*!. Then, §2"+!
is an extrinsic hypersphere in C"**!, and we have the Hopf fibration 7t : $2"+! —
CP™ equipped with the canonical metrics.
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