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It is shown that there are plenty of hyperbolic-elliptic invariant tori, thus quasiperi-
odic solutions for a class of nonlinear wave equations.
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1. Introduction and results. In this paper, we deal with the existence of the

invariant tori of the nonlinear wave equation

utt =uxx−V(x)u−f(u) (1.1)

subject to Dirichlet boundary conditions

u(t,0)= 0=u(t,π), −∞< t <+∞, (1.2)

where the potential V is in the square-integrable function space L2[0,π] and

f is a real analytic, odd function of u of the form

f(u)= au3+
∑
k≥5

fkuk, a≠ 0. (1.3)

This class of equations comprises the sine-Gordon, the sinh-Gordon, and the

φ4-equation, given by

V(x)u+f(u)=




sinu,

sinhu,

u+u3,

(1.4)

respectively.

The existence of solutions, periodic in time, for nonlinear wave (NLW) equa-

tions has been studied by many authors. A wide variety of methods such as

bifurcation theory and variational techniques have been brought on this prob-

lem. See [2, 3, 7, 10, 11, 12], for example. There are, however, relatively less

methods to find a quasiperiodic solutions of NLW. The KAM (Kolmogorov-

Arnold-Moser) theory is a very powerful tool in order to construct families of

quasiperiodic solutions, which are on an invariant manifold, for some nearly
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integrable Hamiltonian systems of finitely or infinitely many degrees of free-

dom. Some partial differential equations such as (1.1) may be viewed as an

infinitely dimensional Hamiltonian system. On this line, Wayne [13] obtained

the time-quasiperiodic solutions of (1.1) when the potential V is lying on the

outside of the set of some “bad” potentials. In [13], the set of all potentials is

given some Gaussian measure and then the set of bad potentials is of small

measure. However, this excludes the constant-value potential V(x)≡m∈R+.

Bobenko and Kuksin [1], Kuksin [4], and Pöschel [9] (in alphabetical order) in-

vestigated this case. In order to get a family of n-dimensional invariant tori by

an infinitely dimensional version of KAM theorem developed by Kuksin [4] and

Pöschel [9], it is necessary to assume that there are n parameters in the Hamil-

tonian corresponding to (1.1). When V(x) ≡m > 0, these parameters can be

extracted from the nonlinear term f(u) by Birkhoff normal form. Therefore,

it was shown that for arbitrarily given positive integer n, there are a family of

n-dimensional elliptic invariant tori when V(x)≡m> 0. See [9] for the details.

By [9, Remark 7, page 274], the same result holds also true for the parameter

values −1<m< 0. A natural question is whether or not the same result holds

true for the potential V(x)≡m<−1. The aim of this present paper is to give

an answer to the question.

From now on, we assume that V(x) ≡ m ∈ (−∞,−1). To give the state-

ment of our results, we need to introduce some notations. We study (1.1) as an

infinitely dimensional Hamiltonian system. Following Pöschel [9], the phase

space we may take, for example, is the product of the usual Sobolev spaces

� = H1
0([0,π])×L2([0,π]) with coordinates u and v = ut . The Hamiltonian

is then

H = 1
2
〈v,v〉+ 1

2
〈Au,u〉+

∫ π
0
g(u)dx, (1.5)

where A= d2/dx2+m, g = ∫0f(s)ds, and 〈·,·〉 denotes the usual scalar prod-

uct in L2. The Hamiltonian equations of motion are

ut = ∂H∂v = v, vt =−∂H∂u =−Au−f(u). (1.6)

Our aim is to construct time-quasiperiodic solutions of small amplitude. Such

quasiperiodic solutions can be written in the form

u(t,x)=U(ω1t, . . . ,ωnt,x
)
, (1.7)

whereω1, . . . ,ωn are rationally independent real numbers which are called the

basic frequency of u, and U is an analytic function of period 2π in the first n
arguments. Thus, u admits a Fourier series expansion

u(t,x)=
∑
k∈Zn

e
√−1〈k,ω〉tUk(x), (1.8)
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where 〈k,ω〉 =∑j kjωj . Since the quasiperiodic solutions, to be constructed,

are of small amplitude, (1.1) may be considered as the linear equation utt =
uxx−mu with a small nonlinear perturbation f . For j ∈N, let

φj =
√

2
π

sinjx, λj =
√
j2+m (1.9)

be the basic modes and frequencies of the linear system subject to Dirichlet

boundary conditions, respectively. Then every solution of the linear system is

the superposition of their harmonic oscillations and of the form

u(t,x)=
∑
j≥1

qj(t)φj(x), qj(t)=yj cos
(
λjt+φ0

j
)

(1.10)

with amplitude yj ≥ 0 and initial phase φ0
j . The solution u(t,x) is periodic,

quasiperiodic, or almost periodic depending on whether one, finitely many, or

infinitely many modes are excited, respectively. In particular, for the choice

J = {j0+1, j0+2, . . . ,j0+n
}⊂N, with

(
j0+1

)2+m> 0, (1.11)

of finitely many modes, there is an invariant 2n-dimensional linear subspace

EJ that is completely foliated into rational tori with frequencies λj0+1, . . . ,λj0+n,

EJ =
{
(u,v)= (qj0+1φj0+1+···+qj0+nφj0+n,q̇j0+1φj0+1+···+ q̇j0+nφj0+n

)}
=

⋃
y∈P̄n

�j(y),

(1.12)

where Pn = {y ∈Rn :yj > 0 for 1≤ j ≤n} is the positive quadrant in Rn and

�J(y)=
{
(u,v) : q2

j0+j+λ−2
j0+jq̇

2
j0+j =yj, for 1≤ j ≤n}. (1.13)

Upon restoring the nonlinearity f , the invariant manifold EJ with their quasi-

periodic solutions will not persist in their entirety due to resonance among

the modes and the strong perturbing effect of f for large amplitudes. In a

sufficiently small neighborhood of the origin, however, there does persist a

large Cantor subfamily of rotational n-tori which are only slightly deformed.

More exactly, we have the following theorem.

Theorem 1.1. Suppose that the linear term V(x)≡m and the nonlinearity

f is of form (1.3). Then for allm∈ (−∞,−1)\{−j2 : j ∈ Z}, all n∈N with n≥ 5

and J = {j0+1, . . . ,j0+n} ⊂N with j2
0+m< 0 and (j0+1)2+m> 0, there is a

Cantor set �⊂ Pn, a family of n-tori

�J(�)=
⋃
y∈�

�J(y)⊂ EJ (1.14)
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over �, and a Lipschitz continuous embedding

Φ : �J[�]↩H1
0

(
[0,π]

)×L2([0,π])=� (1.15)

which is a higher-order perturbation of the inclusion map Φ0 : EJ ↩� restricted

to �J[�], such that the restriction of Φ to each �J(y) in the family is an em-

bedding of a rotational invariant n-torus for the nonlinear equation (1.1).

Remark 1.2. The image Φ(�J[�]) of �J[�] we call a Cantor manifold of

rotational n-tori. This manifold is hyperbolic-elliptic since there are a finite

number of nonreal basic frequencies for the linear system utt = uxx −mu
with m<−1. Note that the manifold obtained by Pöschel [9] is elliptic.

Remark 1.3. The Cantor set � has full density at the origin. That is,

lim
r→0

meas
(
�∩Br

)
meas

(
Pn∩Br

) = 1, (1.16)

where Br = {y : ‖y‖< r}, and meas denotes the n-dimensional Lebesgue mea-

sure for sets.

Remark 1.4. We can also deal with the more general choice J = {j1 < j2

< ···< jn} and n≥ 1 at the cost of excluding some set of m values.

Remark 1.5. We do not know what happens to the potential V(x) ≡m ∈
{−j2 : j ∈ Z}. In particular, very little is known about the case m= 0 in which

(1.1) is “complete resonant” (cf. [5, 9]). When m ∈ {−j2 : j ∈ Z} and m ≠ 0,

there is a zero-frequency for the linear system. According to our knowledge,

it does not seem that the existing KAM theorem can handle this case.

2. An infinitely dimensional KAM theorem

2.1. Statement of the theorem. Consider small perturbations of an infin-

itely dimensional Hamiltonian in the parameter dependent normal form

N =
∑

1≤j≤n
ωj(ξ)yj+

∑
j≥1

Ωj(ξ)zjz̄j (2.1)

on a phase space

�a,p = T̂n×Cn×�a,p×�a,p 
 (x,y,z, z̄), (2.2)

where T̂n is the complexification of the usual n-torus Tn with 1≤n<∞, and

�a,p is the Hilbert space of all complex sequence w = (w1,w2, . . .) with

‖w‖2
a,p =

∑
j≥1

∣∣wj
∣∣2j2pe2aj <∞, a,p > 0. (2.3)
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Here the phase space �a,p is endowed with the symplectic form dx∧dy −√−1dz∧dz̄. The tangent frequencies ω = (ω1, . . . ,ωn) and the normal fre-

quencies Ω = (Ω1,Ω2, . . .)∈RN depend on n-parameters ξ ∈ �⊂Rn, � a given

compact set of positive Lebesgue measure. In [8], all Ωj ’s are positive. In our

case, there are a finite number of negative Ωj ’s.

The Hamiltonian equation of motion of N are

ẋ =ω(ξ), ẏ = 0, u̇=Ω(ξ)v, v̇ =−Ω(ξ)u, (2.4)

where (Ωu)j =Ωjuj . Hence, for each ξ ∈ �, there is an invariantn-dimensional

torus �n
0 = Tn×{0}×{0} with frequencies ω(ξ). The aim is to prove the per-

sistence of the torus �n
0 , for most values of parameter ξ ∈ � (in the sense of

Lebesgue measure), under small perturbations P of the Hamiltonian H0. To

this end, the following assumptions are required.

Assumption 2.1 (nondegeneracy). The real map ξ �ω(ξ) is a lipeomor-

phism between � and its image, that is, a homomorphism which is Lipschitz

continuous in both directions. Moreover, for integral vectors (k,l) ∈ Zn× Ẑ∞
with 1≤ |l| ≤ 2,

meas
{
ξ :
〈
k,ω(ξ)

〉+〈l,Ω(ξ)〉= 0
}= 0 (2.5)

and for l∈ Ẑ∞,

〈
l,Ω(ξ)

〉
≠ 0 on �, (2.6)

where

Ẑ∞ = {l= (0, . . . ,0, lj0+1, lj0+2, . . .
)

: lj ∈ Z
}

(2.7)

and where “meas”≡ Lebesgue measure for sets, |l| =∑j |lj| for integer vectors,

and 〈·,·〉 is a usual real (or complex) scalar product.

Assumption 2.2 (spectral asymptotic). Assume that Ωj(ξ) is real for all

j ≥ j0+1 and ξ ∈ �. Moreover, assume that there exist d ≥ 1 and δ < d−1

such that

Ωj = jd+···+O
(
jδ
)
, j ≥ j0+1, (2.8)

where the dots stands for fixed lower-order term in j, allowing also negative ex-

ponents. More precisely, there exists a fixed, parameter-independent sequence

Ω̄ with Ω̄j = jd+··· such that the tails Ω̃j = Ωj − Ω̄j give rise to a Lipschitz

map

Ω̃ : � �→ �−δ∞ , (2.9)

where �p∞ is the space of all real sequences with finite norm |w|p = supj |wj|jp .
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Assumption 2.3 (finite imaginary spectra). There is a constant κ0 > 0 such

that

�Ωj = 0, �Ωj ≥ κ0, j ≤ j0. (2.10)

To give the conditions on the perturbation P , introduce complex �n
0 neigh-

borhoods

D(s,r) := {(x,y,z, z̄)∈�a,p : | Imx|< s, |y|< r 2, ‖z‖a,p+‖z̄‖a,p < r
}
,

(2.11)

where | · | denotes the sup-norm for complex vectors and ‖·‖a,p is the norm

in the space �a,p . We define the weighted phase norms

|W |r = |W |p̄,r = |x|+ 1
r 2
|y|+ 1

r
‖z‖p̄+ 1

r
‖z̄‖a,p̄ (2.12)

for W = (x,y,z, z̄) ∈ �a,p̄ with p̄ ≥ p. For a map U :D(s,r)×�→ �a,p̄ , define

its Lipschitz seminorm |U|�r ,

|U|�r = sup
ξ≠ζ

∣∣∆ξζU∣∣r
|ξ−ζ| , (2.13)

where ∆ξζW =W(·,ξ)−W(·,ζ), and where the supremum is taken over �.

Set

|U|�,�D(s,r) = sup
D(s,r)×�

{|U|r}+ sup
D(s,r)

{|U|�r }. (2.14)

For the sup-norm |·| and the operator norm ‖|·|‖, the notations |·|�,�D(s,r) and

‖|·|‖�,�
D(s,r) are defined analogously to |·|�,�D(s,r).

Assumption 2.4 (regularity). The perturbation P(x,y,z, z̄;ξ) is analytic in

(x,y,z, z̄) ∈ D(s,r) for given s,r > 0, (not necessary to be real for real ar-

guments), and Lipschitzian in the parameter ξ ∈ �, and for each ξ ∈ �, its

Hamiltonian vector field XP := (Py,−Px,Pz,−Pz̄)T defines on D(s,r) an ana-

lytic map

XP : �a,p �→�a,p̄,


p̄ ≥ p, for d> 1,

p̄ > p, for d= 1.
(2.15)

By Assumptions 2.1, 2.2, and 2.3, there are two constants M and L such that

|ω|�+|Ω|�−δ,� ≤M,
∣∣ω−1

∣∣�
ω(�) ≤ L. (2.16)
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Following Pöschel [8], introduce notations

〈�〉d =max
{
1,
∣∣∣∑jd�j

∣∣∣}, Ak = |k|τ+1,

�= {(k,j)∈ Zn×ZZ : |k|+|l|≠ 0, |l| ≤ 2
}
,

(2.17)

where τ ≥n+1 is fixed later.

Theorem 2.5. Suppose that H = N +P satisfies Assumptions 2.1, 2.2, 2.3,

and 2.4, and

ε= ∣∣XP∣∣D(s,r)+ αM
∣∣XP∣∣�

D(s,r) ≤ γα, (2.18)

where 0 < α ≤ 1 is another parameter and γ depends on n, τ , and s. Then

there is a Cantor set �α ⊂ �, a Lipschitz continuous family of torus embedding

Φ : Tn×�α → �a,p̄ , and a map ω∗ : �α → Rn, such that for each ξ ∈ �α, the

map Φ restricted to Tn×{ξ} is an analytic embedding of a rational torus with

frequencies ω∗(ξ) for the Hamiltonian H at ξ.

Each embedding is analytic (not necessary being real) on |�x|< s/2, and

∣∣Φ−Φ0

∣∣
r +

α
M
∣∣Φ−Φ0

∣∣�
r ≤

cε
α
,

∣∣ω∗−ω
∣∣+ α

M
∣∣ω∗−ω

∣∣� ≤ cε
(2.19)

uniformly on that domain and �α, where Φ0 is the trivial embedding Tn×�→
Tn×{0}×{0} and c ≤ γ−1 depends on the same parameters as γ.

Moreover, there exist Lipschitz maps ων and Ων on � for ν ≥ 0, satisfying

ω0 =ω, Ω0 =Ω, and

∣∣ων−ω
∣∣+ α

M
∣∣ων−ω

∣∣� ≤ cε,
∣∣Ων−Ω∣∣−δ+ αM

∣∣Ων−Ω∣∣�
−δ ≤ cε,

(2.20)

such that �\�α ⊂
⋃
Rνk,l(α), where

Rνk,l(α)=
{
ξ ∈ � :

∣∣〈k,ων(ξ)
〉+〈l,Ων〉∣∣≤α 〈l〉dAk

}
, (2.21)

and the union is taken over all ν ≥ 0 and (k,l) ∈ � such that |k| > K02ν−1 for

ν ≥ 1 with a constant K0 ≥ 1 depending only on n and τ .

Proof. If all frequency vectors ω and Ω in the zeroth KAM step are real,

this theorem is the same as [8, Theorem A]. In our case, however, some normal

frequencies Ω’s are not real. This gives rise to that both the vectorsων and Ων
in νth KAM step are possibly not real. Fortunately, the proof of this theorem

does not involve the measure estimate; thus, the argument does not depend on

whether or not the frequency vectorsων and Ων are real. Therefore, the proof

of [8, Theorem A] due to Pöschel can still be valid. It is worthy to be noted that



1118 XIAOPING YUAN

the frequency map ω∗ in our case should be taken as ω∗ = �(limν→∞ων)
instead of ω∗ = limν→∞ων .

Theorem 2.6. Suppose that in Theorem 2.5 the unperturbed frequencies ω
and Ω are affine functions of the parameters. Then there is a constant c0 such

that

meas
(
�\�α

)≤ c0(diam�)n−1αµ, µ =



1, for d> 1,
κ

κ+1−(�/4) , for d= 1,
(2.22)

for all sufficiently small α, where � is any number in [0,min(p̄−p,1)) and

where, in the case d= 1, κ is a positive constant such that

Ωi−Ωj
i−j = 1+O(j−k), i > j > j0, (2.23)

uniformly on �.

Proof. The proof will be given in Section 2.3.

2.2. The Cantor manifold theorem. In a neighborhood of the origin in �a,p ,

we now consider a HamiltonianH =Λ+Q+R, whereR represents some higher-

order perturbation of an integrable normal form Λ+Q.

Let z = (z̃, ẑ) with z̃ = (zj0+1, . . . ,zj0+n), ẑ = (z1, . . . ,zj0 ,zj0+n+1, . . .), and

y = 1
2

(∣∣zj0+1

∣∣2, . . . ,
∣∣zj0+n∣∣2

)
,

Z = 1
2

(∣∣z1

∣∣2, . . . ,
∣∣zj0∣∣2,

∣∣zj0+n+1

∣∣2, . . .
)
.

(2.24)

Assume that

Λ= 〈α,y〉+〈β,Z〉, Q= 1
2
〈Ay,y〉+〈By,Z〉 (2.25)

with constant vectors α, β and constant matrices A, B.

The equations of motion of the Hamiltonian Λ+Q are

˙̃zj =
√
−1
(
α+Ay+BTz)jz̃j , ˙̂zj =

√
−1(β+By)jẑj. (2.26)

Thus, the complex n-dimensional manifold E = {ẑ = 0} is invariant and it is

completely filled up to the origin by the invariant tori

�(y)= {z̃ :
∣∣z̃j∣∣2 = 2yj, j0+1≤ j ≤ j0+n

}
, y ∈ Pn. (2.27)

On �(y), the flow is given by the equations

˙̃zj =
√
−1ωj(y)z̃j, ω(y)=α+Ay, (2.28)
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and on its normal space by

˙̂zj =
√
−1Ωj(y)ẑj, Ω(y)= β+By. (2.29)

They are linear and in a diagonal form. It is worthy noting that since Ωj (j =
1, . . . ,j0) are pure imaginary andΩj (j = j0+1, . . .) are real, ẑ = 0 is a fixed point

of hyperbolic-elliptic type. This is different from the elliptic fixed point of [9].

We therefore call �(y) a hyperbolic-elliptic rational torus with frequencies

ω(y).

Assumption 2.7 (nondegeneracy). (1) For the above constant matrix A,

detA≠ 0,

(2) 〈l,β〉≠ 0,

(3) 〈k,ω(y)〉+〈l,Ω(y)〉 does not vanish identically for all (k,l) ∈ Zn× Ẑ∞
with 1≤ |l| ≤ 2. (See Assumption 2.1 for Ẑ∞.)

Assumption 2.8 (spectral asymptotic). There exist d≥ 1 and δ < d−1 such

that

βj = jd+···+O
(
jδ
)
, j ≥ j0+1, (2.30)

where the dots stands for fixed lower-order term in j. Note that the normal-

ization of the coefficients of jd can always be achieved by a scaling of time.

Assumption 2.9 (finite imaginary spectra). There is a constant κ > 0 such

that �Ωj = 0 and �Ωj ≥ κ, 1 ≤ j ≤ j0+1. In addition, we assume Ωi ≠ Ωj for

all 1≤ i, j ≤ j0.

Assumption 2.10 (regularity). The vector fields XQ and XR corresponding

to the Hamiltonians Q and R, respectively, satisfy

XQ,XR ∈�
(
�a,p,�a,p̄

)
,


p̄ ≥ p, for d> 1,

p̄ > p, for d= 1,
(2.31)

where �(�a,p,�a,p̄) denotes the class of all maps from some neighborhood of

the origin in �a,p into �a,p̄ , which are analytic in the real and imaginary parts

of the complex coordinate z.

By the regularity assumption, the coefficients B of the HamiltonianQ satisfy

the estimate Bij = O(jp̄−p) uniformly in j0 ≤ i ≤ j0 +n. Consequently, for

d= 1, there is a positive constant κ such that

Ωi−Ωj
i−j = 1+O(j−κ), i > j > j0, (2.32)

uniformly for bounded y . For d> 1, set κ =∞.
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The Cantor manifold theorem. Suppose that the Hamiltonian H =Λ+
Q+R satisfy Assumptions 2.7, 2.8, 2.9, 2.10, and

|R| =O(‖ẑ‖4
a,p
)+O(‖z‖g) (2.33)

with

g > 4+ 4−�
κ

, �=min(p̄−p,1). (2.34)

Then, there is a Cantor set �⊂ Pn, a family of n-tori

�J(�)=
⋃
y∈�

�J(y)⊂ EJ (2.35)

over �, and a Lipschitz continuous embedding Φ : �J[�]↩�, which is a higher-

order perturbation of the inclusion map Φ0 : EJ ↩� restricted to �J[�],

∥∥Φ−Φ0

∥∥
a,p̄;Br∩�[�] =O

(
rσ
)

(2.36)

with some σ > 1, such that the restriction of Φ to each �J(y) in the family is an

embedding of a rotational n-torus for the nonlinear equation (1.1). The Cantor

set � has full density at the origin.

Proof. In view of Theorems 2.5 and 2.6, following literally the proof of the

Cantor manifold theorem in [6, pages 170–175], we can finish the proof of this

theorem. The details are omitted here.

2.3. Measure estimates and proof of Theorem 2.6. Recall that the unper-

turbed tangent and normal frequencies areω and Ω = (Ω∗,Ω∗∗), respectively,

where Ω∗ = (Ω1, . . . ,Ωj0), Ω∗∗ = (Ωj0+1, . . .). By Assumptions 2.1, 2.2, and 2.3,

we have that ω(ξ) and Ω∗∗(ξ) are real for all ξ ∈ �, and Ω∗(ξ) are pure imag-

inary.

Let σ =min(d,d−1−δ) > 0, where δ < d−1 is defined in Assumption 2.8.

Set Ξ= {l : 1≤ |l| ≤ 2}. Then, 〈l〉d ≥ (2/9)|l|σ |l|δ for l∈ Ξ. By Assumption 2.2,

there is a positive constant β such that |〈l,Ω∗∗〉| ≥ 27β/2.

In estimating the measure of the resonance zones, it is not necessary to

distinguish between the various perturbations ων and Ων of the frequencies

ω and Ω since only the size of the perturbations matters. Therefore, following

Pöschel [8], we now writeω′ andΩ′ for all the perturbed frequencies for which,

by Theorem 2.5, the following condition is satisfied.
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Condition 2.11. If γ > 0 is small enough, then

|ω′ −ω|, ∣∣Ω′∗∗−Ω∗∗∣∣−δ ≤α,
|ω′ −ω|�, ∣∣Ω′∗∗−Ω∗∗∣∣�

−δ ≤Mγ ≤
1

2L
,

∣∣�Ω′∗∣∣≤α, ∣∣�Ω′∗∣∣� ≤Mγ ≤ 1
2L
.

(2.37)

Note that �Ω∗ = 0.

Note that ω′ and Ω′ are not necessary real. Set

R′kl(α)=
{
ξ ∈ � :

∣∣〈k,ω′(ξ)
〉+〈l,Ω′〉∣∣≤α 〈l〉d

Ak

}
. (2.38)

Let

Ξ1 =
{
l∈ Ξ : lj = 0 for 1≤ j ≤ j0

}
Ξ2 =

{
l∈ Ξ : lj = 0 for j ≥ j0+1

}
Ξ3 =

{
l∈ Ξ : lj1 ≠ 0, lj2 ≠ 0 for some 1≤ j1 ≤ j0, j2 ≥ j0+1

}
.

(2.39)

In the following lemmas, we assume that Condition 2.11 and (2.32) are sat-

isfied.

Lemma 2.12. Ifω′ and Ω′∗∗ are real for all ξ ∈ �, then there is a constant c1

such that

meas


 ⋃
l∈Ξ1

Rk,l


≤ c1(diam�)n−1αµ|k|2

Aλk
,

µ =



1, for d> 1,
κ

κ+1−(�/4) , for d= 1,
λ=




1, for d> 1,
κ

κ+1−� , for d= 1,

(2.40)

for all sufficiently small α, where � is any number in [0,min(p̄−p,1)) and

where, in the case d= 1, κ is a positive constant such that

Ωi−Ωj
i−j = 1+O(j−k), i > j > j0, (2.41)

uniformly on �.

Proof. The proof of this lemma can be found in [8, Theorem D].

Since the frequencies ω′ and Ω′ are not necessary real for real ξ ∈ �, we

need the following lemma.
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Lemma 2.13. When the frequenciesω′ andΩ′ are not necessary real for real

ξ ∈ �, then there is a constant c2 > 0 such that

meas


 ⋃
l∈Ξ1

Rk,l


≤ c2(diam�)n−1αµ|k|2

Aλk
(2.42)

for all sufficiently small α, where µ is defined in Lemma 2.12.

Proof. Note that the unperturbed frequencies ω(ξ) and Ω∗∗(ξ) are real

for ξ ∈ �. By Condition 2.11, we get that

|�ω′ −ω| ≤ |ω′ −ω| ≤α
∣∣�Ω′∗∗−Ω∗∗∣∣−δ ≤ ∣∣Ω′∗∗−Ω∗∗∣∣−δ ≤ 1

2L

|�ω′ −ω|� ≤ |ω′ −ω|� ≤ 1
2L∣∣�Ω′∗∗−Ω∗∗∣∣�

−δ ≤
∣∣Ω′∗∗−Ω∗∗∣∣�

−δ ≤
1

2L
.

(2.43)

Write

�(Rk,l) :=
{
ξ ∈ � :

∣∣〈k,�ω′〉+〈l,�Ω′(ξ)〉∣∣≤α 〈l〉d
Ak

}
. (2.44)

By Lemma 2.12, there is a constant c2 > 0 such that

meas


 ⋃
l∈Ξ1

�(Rk,l)

≤ c2(diam�)n−1αµ|k|2

Aλk
. (2.45)

Since |〈k,ω′〉+〈l,Ω′〉| ≥ |〈k,�ω′〉+〈l,�Ω′〉|, we get Rk,l ⊂�(Rk,l). Thus,

meas


 ⋃
l∈Ξ1

Rk,l


≤ c2(diam�)n−1αµ|k|2

Aλk
. (2.46)

This finishes the proof.

Lemma 2.14. For l∈Λ2, there is a constant c3 > 0 such that

meas


 ⋃
l∈Ξ2

Rk,l


≤ c3(diam�)n−1αµ|k|2

Aλk
. (2.47)

Proof. We introduce the unperturbed frequencies ζ =ω(ξ) as parameters

over the domain ∆ = ω(�) and consider the resonance zones R∆k,l = ω(Rk,l)
in ∆. Write ω′ =ω′ ◦ω−1 and Ω′ =Ω′ ◦ω−1. Then, by Condition 2.11,

|ω′ − id |� ≤ 1
2
,

∣∣�Ω′∗∣∣� ≤Mγ. (2.48)
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Now consider R∆k,l. Let φ(ζ) = 〈k,ω′(ζ)〉+〈l,Ω′(ζ)〉 where l ∈ Ξ2. Choose a

vector v ∈ {−1,1}n such that 〈k,v〉 = |k| and write ζ = rv +w with r ∈ R,

w ∈ v⊥. As a function of r , we have, for t > s,

〈
k,�ω′(ζ)

〉∣∣t
s = 〈k,ζ〉

∣∣t
s+
〈
k,�ω′(ζ)−ζ〉∣∣ts ≥ |k|(t−s)− 1

2
|k|(t−s)

= 1
2
|k|(t−s)

(2.49)

and for l∈ Ξ2,

∣∣∣〈l,�Ω′(ζ)〉∣∣ts
∣∣∣≤ 2j0

∣∣�Ω′∗∣∣�(t−s)≤ 2j0Mγ(t−s). (2.50)

Since 2j0Mγ < 1/4 by γ � 1, we get that φ(rv +w)|ts ≥ (1/4)|k|(t− s) uni-

formly in w, when k≠ 0. It follows that

meas
{
r : rv+w ∈∆, ∣∣φ(rv+w)∣∣≤α 〈l〉d

Ak

}
≤ 4α|k|−1 〈l〉d

Ak
(2.51)

and hence

meas
(
R∆k,l

)≤meas
(�R∆k,l)≤ 4(diam∆)n−1α|k|−1 〈l〉d

Ak
(2.52)

by Fubini’s theorem. Going back to the original parameter domain � by inverse

frequency map ω−1, observing that diam∆ ≤ 2M diam� and 〈l〉d ≤ 2jd0 , and

noting that Card(Ξ2)≤ 5j0 , we get that there is a constant c3 depending on j0

such that

meas


 ⋃
l∈Ξ2

Rk,l


≤ c3(diam�)n−1αµ|k|2

Aλk
, for k≠ 0. (2.53)

When k= 0, we have that there are some i and j with 1≤ i, j ≤ j0, such that

∣∣〈k,ω′〉+〈l,Ω′〉∣∣= ∣∣〈l,Ω′〉∣∣≥ ∣∣〈l,�Ω′〉∣∣
= ∣∣Ω′i−Ω′j∣∣≥ ∣∣Ωi−Ωj∣∣−2α.

(2.54)

By Assumption 2.9, there is a positive constant c∗ such that |Ωi−Ωj| ≥ c∗ for

all 1 ≤ i,j ≤ j0. Thus, |〈k,ω′〉+〈l,Ω′〉| ≥ c∗−2α ≥ c∗/2 if α is small enough

and k= 0. Moreover, the set Rk,l =∅ if α is sufficiently small. This completes

the final estimate.

Lemma 2.15. There is a constant c4 such that

meas


 ⋃
l∈Ξ3

Rk,l


≤ c4(diam�)n−1αµ|k|2

Aλk
. (2.55)
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Proof. For l∈ Ξ3, we can write

li =
(
0, . . . ,0,

ith
li ,0, . . . ,

j0th

0 ,0, . . . ,0, lj0+p,0, . . .
)
, i= 1, . . . ,j0, p = 1,2, . . . ,

(2.56)

where li =±1, lj0+p =±1. For fixed 1≤ i≤ j0, let

Ω̃k(i)= 0, k= 1, . . . ,j0,

Ω̃j0+p(i)=�Ω′j0+p+
li
lj0+p

�Ω′i, p = 1,2, . . . .
(2.57)

Then ∣∣〈k,ω′〉+〈l,Ω′〉∣∣≥ ∣∣〈k,�ω′〉+〈l,�Ω′〉∣∣
= ∣∣〈k,�ω′〉+li�Ω′i+lj0+p�Ω′j0+p

∣∣
= ∣∣〈k,�ω′〉+〈l̃,�Ω̃(i)〉∣∣,

(2.58)

where l̃ = (0, . . . ,0,
pth

lj0+p,0, . . .) and Ω̃(i) = (Ω̃1(i), . . . ,Ω̃p(i), . . .)p∈N. We get by

Condition 2.11

∣∣Ω̃(i)∗∗−Ω∗∗∣∣−δ ≤ ∣∣�Ω′∗∗−Ω∗∗∣∣−δ+
∣∣∣∣∣∣
(

li
lj0+p

�Ω′i
)
p∈N

∣∣∣∣∣∣−δ
≤ ∣∣�Ω′∗∗−Ω∗∗∣∣−δ+∣∣�Ω′i∣∣sup

p
p−δ

≤ 2α,
∣∣Ω̃(i)∗∗−Ω∗∗∣∣�

−δ ≤
∣∣�Ω′∗∗−Ω∗∗∣∣�

−δ+
∣∣�Ω∗∣∣� ≤ 2Mγ ≤ 1

L
.

(2.59)

Let

R̃k,l(i)=
{
ξ ∈ � : 〈k,�ω′〉+〈l,Ω̃(i)〉≤α 〈l〉d

|k|τ+1

}
. (2.60)

By Lemma 2.12, there is a constant c4 depending on j0 such that

meas
⋃

1≤i≤j0

⋃
l∈Ξ1

R̃k,l ≤ c4(diam�)n−1αµ|k|2
Aλk

. (2.61)

Observing that by (2.58),

⋃
l∈Ξ3

Rk,l ⊂
⋃

1≤i≤j0

⋃
l∈Ξ1

R̃k,l. (2.62)

We finishes the proof of this lemma.

Lemma 2.16. For 0≠ k∈ Zn,

meas
(
Rk,0

)≤ c5(diam�)n−1αµ|k|2
Aλk

. (2.63)
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Proof. This proof is the simplest. We omit the details.

By Lemmas 2.13, 2.14, 2.15, and 2.16, we can give the proof of Theorem 2.6.

In fact, we can choose τ sufficiently large but fixed such that

∑
|k|≥K

|k|2
Aλk

≤ c6
1

1+K . (2.64)

Thus,

meas
(
�\�α

)≤meas
⋃

|k|≥K02ν−1

ν≥0,(k,l)∈�

Rνk,l ≤ c8αµ
(
1+K02ν−1)−1 ≤ c7αµ. (2.65)

This finishes the proof of Theorem 2.6.

3. Application to NLW equation

3.1. Hamiltonian vector field. We recall that Hamiltonian of our NLW equa-

tion is of form (1.5). Write

u=
∑
j≥1

qj√
λj
φj, v =

∑
j≥1

√
λjpjφj, (3.1)

where (q,p)∈ �a,p×�a,p , and φj =
√

2/π sinjx for j = 1,2, . . . are the normal-

ized Dirichlet eigenfunctions of the linear differential operator −d2/dx2+m
with eigenvalues λj =

√
j2+m. We obtain the Hamiltonian

H =Λ+G = 1
2

∑
j≥1

λj
(
p2
j +q2

j
)+

∫ π
0
g


∑
j≥1

qj√
λj
φj


dx (3.2)

with equations of motion

dqj
dt

= ∂H
∂pj

= λjpj, dpj
dt

=− ∂H
∂qj

=−λjqj− ∂G∂qj . (3.3)

These are the Hamiltonian equations of motion with respect to the standard

symplectic structure
∑
dqj∧dpj on �a,p×�a,p .

Lemma 3.1. Let I be an interval inR. If a curve I → �a,p×�a,p , t� (q(t),p(t))
is an analytic solution of (3.3), then

u(t,x)=
∑
j≥1

qj(t)√
λj
φj(x) (3.4)

is a classical solution of (1.1) that is analytic on I×[0,π].
Proof. The proof of [9, Lemma 1] is applicable to our case m<−1.
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Lemma 3.2. The gradient Gq is analytic as a map from some neighborhood

of the origin in �a,p into �a,p+1 with

∥∥Gq∥∥a,p+1 =O
(‖q‖3

a,p
)
. (3.5)

Proof. The proof is the same as that of [9, Lemma 3].

For the nonlinearity u3, we find

G = 1
4

∫ π
0

∣∣u(x)∣∣4dx = 1
4

∑
ijkl
Gi,j,k,lqiqjqkql (3.6)

with

Gijkl = 1
λi ···λl

∫ π
0
φiφjφkφldx. (3.7)

It is not difficult to verify thatGijkl = 0 unless i±j±k±l= 0 for some combina-

tion of plus and minus signs. Thus, the sum extends only over i±j±k±l= 0.

In particular, we have

Giijj = 1
2π

2+δij
λiλj

. (3.8)

From now on, we focus our attention on the nonlinearity u3 since terms of

order five or more will not make any difference. Hence, we are concerned with

the Hamiltonian of the form

H =Λ+G = 1
2

∑
j≥1

λj
(
p2
j +q2

j
)+G, (3.9)

where G is defined by (3.6) and (3.7).

3.2. Partial normal form. In order to give the partial normal form for Hamil-

tonian (3.9), we need the following lemmas.

Lemma 3.3. Assume that m ∈ (−∞,−1) and m+ j2 ≠ 0 for all j ∈ Z. If

i, j, k, l are nonzero integers such that (i,j,k,l) ≠ (p,−p,q,−q) and ñ :=
min{|i|,|j|,|k|,|l|}> √|m|, then

∣∣λi±λj±λk±λl∣∣≥ c(m)(∣∣ñ2+m∣∣)−3/2
(3.10)

with some positive constant c = c(m) depending on m only.

Proof. We may restrict ourselves to positive integers such that i ≤ j ≤
k ≤ l. The condition i± j±k± l = 0 then reduces to two possibilities, either

i− j − k+ l = 0 or i+ j + k− l = 0. We have to study divisors of the form

δ = ±λi±λj ±λk±λl for all possible combinations of plus and minus signs.

To this end, we distinguish them according to their number of minus signs. To
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shorten notation, we let, for example, δ++−+ = λi+λj −λk+λl. Similarly, for

all other combinations of plus and minus signs.

Case 1 (no minus sign). This is trivial since δ++++ ≥ 4
√
i2+m ≥ 4c̃ > 0,

where c̃ = inf{|j2+m|1/2 : j ∈ Z}.
Case 2 (one minus sign). The cases δ−+++, δ+−++, and δ++−+ are trivial since

all of them are larger than
√
i2+m> c̃ ≥ c|m|(|ñ2+m|)−3/2. Now we consider

δ+++− which is the subtlest.

Case 2.1 (one minus sign and i+j+k−l= 0). Regard δ as a function of m.

Hence

δ(−1)=
√
i2−1+

√
j2−1+

√
k2−1−

√
l2−1. (3.11)

We need to know whether δ(−1) ≥ 0 or not. Noting that
√
i2−1 ≤ i, and so

forth, we get that

(√
i2−1+

√
j2−1+

√
k2−1

)2 = i2+j2+k2+2
√
i2−1

√
j2−1+···−3

≤ i2+j2+k2+2ij+2jk+2ik−3

= l2−3.

(3.12)

This implies that δ(−1) < 0. Differentiating δ(m)with respect tom and noting

that we have assumed i≤ j ≤ k≤ l,
d
dm

δ(m)= 1
2

(
1
λi
+ 1
λj
+ 1
λk
− 1
λl

)
≥ 1

2
1
λi
. (3.13)

Thus,

∫ −1

m
dδ(m)≥

∫ −1

m

1
2

1√
i2+mdm=

√
i2−1−

√
i2+m. (3.14)

Moreover,

δ(m)≤ δ(−1)−
(√
i2−1−

√
i2+m

)
≤−

(√
i2−1−

√
i2+m

)
. (3.15)

Therefore,

∣∣δ(m)∣∣≥ √i2−1−
√
i2+m= −1−m√

i2−1+√i2+m. (3.16)

Observe that there are positive constants c1 and c2 depending on m such that

c1 <
√
i2−1√
i2+m < c2. (3.17)

Then

∣∣δ(m)∣∣≥ c3(m)
(∣∣ñ2+m∣∣)−1/2 ≥ c(m)(∣∣ñ2+m∣∣)−3/2. (3.18)
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Case 2.2 (one minus sign and i−j−k+l= 0). Let j−i= l−k := s ≥ 0. Set

ϑ(s) := δ(m)=
√
i2+m+

√
(i+s)2+m+

√
k2+m−

√
(k+s)2+m. (3.19)

Then ϑ(0)= 2
√
i2+m and

d
ds
ϑ(s)= i+s√

(i+s)2+m − k+s√
(k+s)2+m. (3.20)

Let f(τ) = τ/√τ2+m. Then, df/dτ = m/(τ2 +m)3/2 < 0 in view of m <
−1 < 0. This implies that the function f(τ) is decreasing in τ > 0. Thus,

(d/ds)ϑ(s)≥ 0 by noting that i+s ≤ k+s. Therefore,ϑ(s)≥ ϑ(0)= 2
√
i2+m≥

2c̃.

Case 3 (two minus signs). Considering δ−+−+, δ−−++, and δ+−−+, all other

cases deduces to these cases by inverting the signs.

First, we consider the case δ−+−+. By i ≤ j ≤ k ≤ k ≤ l and (i,−j,k,−l) ≠
(p,−p,q,−q), we get that either k+1≤ l or i+1≤ j. Thus

δ−+−+ ≥

−

√
k2+m+

√
l2+m, if k+1≤ l,

−
√
i2+m+

√
j2+m, if i+1≤ j,

≥




k+l√
k2+m+√l2+m, if k+1≤ l,

i+j√
i2+m+

√
j2+m

, if i+1≤ j,

≥ c(m)(∣∣ñ2+m∣∣)−3/2.

(3.21)

Secondly, we consider the case δ−−++. By i ≤ j ≤ k ≤ l and (i,−j,k,−l) ≠
(p,−p,q,−q), we get i+1≤ l. Thus

δ−−++ ≥
√
l2+m−

√
i2+m

≥ i+l√
i2+m+√l2+m

≥ c|m|(∣∣ñ2+m∣∣)−3/2.

(3.22)

Thirdly, we consider the case δ+−−+. This is divided into two subcases.

Case 3.1 (δ+−−+ and i+j+k−l= 0). It is very easy to check that

√
l2+m−

√
j2+m−

√
k2+m≥ 0. (3.23)

Thus, δ+−−+ ≥
√
i2+m≥ c̃.
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Case 3.2 (δ+−−+ and i− j−k+ l = 0). Let j− i = l−k = s. By (i,j,k,l) ≠
(p,−p,q,−q), we get that s ≥ 1 and i+1≤ k. Rewrite δ+−−+ as

δ+−−+ =
√
i2+m−

√
(i+s)2+m−

√
k2+m+

√
(k+s)2+m := ϑ(s). (3.24)

Then ϑ(0)= 0 and

d
ds
ϑ(s)=− i+s√

(i+s)2+m + k+s√
(k+s)2+m. (3.25)

Noting that τ/
√
τ2+m is decreasing in τ > 0 for m< −1 < 0 and that i+s ≤

k+s, we get that (d/ds)ϑ(s) ≤ 0. Thus, ϑ(s) ≤ ϑ(1) for s ≥ 1. Now we are in

position to estimate ϑ(1). Let g(s) = √(s+1)2+m−√s2+m for s2+m > 0.

Observing that the function τ/
√
τ2+m is decreasing in the variable τ > 0 for

m< 0, we get

d
ds
g(s)= s+1√

(s+1)2+m − s√
s2+m < 0. (3.26)

Thus, the function g(s) is decreasing in s. Moreover, by i+1≤ k,

√
(k+1)2+m−

√
k2+m≤

√
(i+2)2+m−

√
(i+1)2+m. (3.27)

Thus

ϑ(1)≤
√
i2+m−2

√
(i+1)2+m+

√
(i+2)2+m. (3.28)

Observing that (d2/dτ2)
√
τ2+m< 0 for m< 0, we get

√
i2+m−2

√
(i+1)2+m+

√
(i+2)2+m

≤ d2

dτ2

√
τ2+m∣∣τ=i =m(i2+m)−3/2 < 0.

(3.29)

Thus

∣∣δ+−−+∣∣≥ ∣∣ϑ(1)∣∣≥ c(m)(∣∣ñ2+m∣∣)−3/2. (3.30)

Lemma 3.4. Assume thatm∈ (−∞,−1) andm+j2 ≠ 0 for all j ∈ Z. If i, j, k,

l are nonzero integers such that (i,j,k,l)≠ (p,−p,q,−q), min{|i|,|j|,|k|,|l|}<√|m|, and max{|i|,|j|,|k|,|l|}> √|m|, then

∣∣λi±λj±λk±λl∣∣≥ c(m)(∣∣ñ2+m∣∣)−3/2, ñ=min
{|i|,|j|,|k|,|l|}, (3.31)

with some constant c = c(m) depending on m.
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Proof

Case 1 (i2+m ≤ j2+m ≤ k2+m < 0 and l2+m > 0). This case is trivial

because |δ±±±±| ≥
√
l2+m≥ c̃.

Case 2 (i2 +m ≤ j2 +m < 0 and 0 < k2 +m ≤ l2 +m). Without loss of

generality, assume that, 0< i≤ j ≤ j ≤ k≤ l,

∣∣δ±±±±∣∣≥
((√

|m|−i2±
√
|m|−j2

)2+
(√
k2+m±

√
l2+m

)2
)1/2

. (3.32)

By the assumption (i,−j,k,−l) ≠ (p,−p,q,−q), we get that either i+1 ≤ j or

k+1≤ l. If i+1≤ j, then

∣∣δ±±±±∣∣2 ≥
∣∣∣√|m|−i2−√|m|−j2

∣∣∣≥ i+j√|m|−i2+√|m|−j2
≥ ĉ, (3.33)

where

ĉ =min

{
i+j√|m|−i2+√|m|−j2

:∀i,j ∈ Z, i2+m< 0, j2+m< 0

}
. (3.34)

If k+1≤ l, then

∣∣δ±±±±∣∣2 ≥
∣∣∣√k2+m−

√
l2+m

∣∣∣≥ k+l√
k2+m+√l2+m

≥ c(m)
(∣∣ñ∣∣2+m

)−3/2
.

(3.35)

Case 3 (i2+m< 0 and 0< j2+m≤ k2+m≤ l2+m). This case is also trivial

because |δ±±±±| ≥
√|m|−i2 ≥ c̃.

This finishes the proof.

We are now in position to transform the Hamiltonian (3.9) into some Birkhoff

normal form of order four. For the rest of this paper, we introduce complex

coordinates

zj = 1√
2

(
pj+qj

)
, z̄j = 1√

2

(
pj−qj

)
. (3.36)

Then the Hamiltonian (3.9) is of the form

H =Λ+G =
∑
j≥1

λjzjz̄j+ 1
4

∑
ijkl
Gijkl

(
zi+ z̄i

)(
zj+ z̄j

)(
zk+ z̄k

)(
zl+ z̄l

)
, (3.37)

where H is analytic on the now complex Hilbert space �a,p with symplectic

structure
√−1

∑
j dzj ∧dz̄j . Let j0 ∈ Z+ such that j2

0 +m < 0 and (j0+1)2+
m> 0.
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Proposition 3.5. For any given finite n ≥ 1 and each m < −1 with j2+
m ≠ 0 for all j ∈ Z, there is a real symplectic change of coordinate Γ in some

neighborhood of the origin in �a,p that takes the Hamiltonian (3.37) into

H ◦Γ =Λ+Ḡ+Ĝ+K, (3.38)

where XḠ, XĜ, XK ∈�(�a,p,�a,p+1),

Ḡ =




∑
j0+1≤j≤j0+n

i≤j0

+1
2

∑
j0+1≤j≤j0+n
j0+1≤i≤j0+n

+
∑

j≥j0+n+1
j0+1≤i≤j0+n


Ḡij

∣∣zi∣∣2∣∣zj∣∣2
(3.39)

with uniquely determined coefficient

Ḡij =Giijj = 6
π
· 4−δij
λiλj

, (3.40)

|Ĝ| =O(‖ẑ‖4
a,p
)
, |K| =O(‖z‖6

a,p
)
, (3.41)

where ẑ = (z1, . . . ,zj0 ,zj0+n+1, . . .).

Proof. Let �a,pb be the Hilbert space consisting of all bi-infinite sequences

with finite norm

‖q‖2
a,p =

∑
j∈Z

∣∣qj∣∣2|j|2pe2|j|a. (3.42)

Introduce another set of coordinates (. . . ,w−2,w−1,w1,w2, . . .) in �a,pb by set-

ting zj =wj , z̄j =w−j . The Hamiltonian (3.37) then reads

H =Λ+G =
∑
j≥1

λjwjw−j+ 1
4

∑
ijkl

′
Gijklwiwjwkwl, (3.43)

where the prime indicates that the subscript indices run through all nonzero

integers and the coefficients are defined for arbitrary integers by settingGijkl =
G|i||j||k||l|. We recall that the sum is restricted to indices i, j, k, l such that

i±j±j±k±l= 0. This is crucial for the following to hold. In order to find the

transformation Γ , we need some extra notations. Let λ′j = sgnj ·λ|j|,

Υn =
{
(i,j,k,l)∈ Z4 : j0 <min

{|i|, . . . ,|l|}≤ j0+n
}

⋃{
(i,j,k,l)∈ Z4 : min

{|i|,|j|,|k|,|l|}< j0 <max
{|i|, . . . ,|l|}} (3.44)

and 	n ⊂ Υn is the subset of all (i,j,k,l)≡ (p,−p,q,−q). Clearly, for (i,j,k,l)∈
	n, the quantity λ′i+λ′j +λ′k+λ′k vanishes identically in m. We now can find

the needed transformation Γ . Formally, it is obtained as the time-1-map of the

flow of a Hamiltonian vector field XF given by a Hamiltonian

F =
∑
ijkl

′
Fijklwiwjwkwl (3.45)
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with coefficients

√
−1Fijkl =




Gijkl
λ′i+λ′j+λ′k+λ′k

, for (i,j,k,l)∈ Υn \	n,

0, otherwise.
(3.46)

The Hamiltonian F is thus well defined by Lemmas 3.3 and 3.4. Now the follow-

ing proof is all the same as that of the main proposition in Pöschel [9, pages

272–273]. We omit the details.

3.3. Proof of Theorem 1.1. Consider the Hamiltonian (3.38). All what we

need to do is to check that the Hamiltonian (3.38) satisfies Assumptions 2.7,

2.8, 2.9, and 2.10. Let α = (λj0+1, . . . ,λj0+n), β = (β∗,β∗∗) = (λ1, . . . ,λj0 ,
λj0+n+1, . . .) A= (Ḡij)j0+1≤i,j≤j0+n, B = (B1,B2)T , B1 = (Ḡij)i≤j0,j0+1≤j≤j0+n, and

B2 = (Ḡij)i≥j0+n+1,j0+1≤j≤j0+n. Let

y = 1
2

(∣∣zj0+1

∣∣2, . . . ,
∣∣zj0+n∣∣2

)
,

Z = (Z∗;Z∗∗
)= 1

2

(∣∣z1

∣∣2, . . . ,
∣∣zj0∣∣2

;
∣∣zj0+n+1

∣∣2, . . .
)
.

(3.47)

Then the Hamiltonian (3.38) is of the form H =Λ+Ḡ+Ĝ+K, where

Λ= 〈α,y〉+〈β,Z〉,

Ḡ = 1
2
〈Ay,y〉+〈By,Z〉 = 1

2
〈Ay,y〉+〈B1y,Z∗

〉+〈B2y,Z∗∗
〉
,

(3.48)

|Ĝ| = O(‖ẑ‖4
a,p), and |K| = O(‖z‖6

a,p). According to the notations in Section

2.2,

ω(y)=α+Ay, Ω(y)= β+By,
Ω∗(y)= β∗+B1y, Ω∗∗(y)= β∗∗+B2y.

(3.49)

Observing that λj is pure imaginary for 1≤ j ≤ j0 and λj is real for j ≥ j0+1

and

(
B1
)
ij = (Ḡ)ij =

6
π
· 4−δij
λiλj

with i≤ j0, j0+1≤ j ≤ j0+n, (3.50)

we get that �B1 = 0; hence, �Ω∗ = 0. Namely, Assumption 2.9 is satisfied. Let

Q = Ḡ and R = Ĝ+K. Then H = Λ+Q+R which is of the form required by

the Cantor manifold theorem. By Proposition 3.5, XQ,XR ∈A(�a,p,�a,p+1) with

|R| =O(‖ẑ‖4
a,p)+O(‖z‖6

a,p). On the other hand, we have

λj =
√
j2+m= j+m

2j
+O(j−3), j ≥ j0+1. (3.51)

So Assumptions 2.8 and 2.10 are satisfied with d= 1, δ=−1 and p̄ = p+1>p.
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Moreover, by (3.40) and the definition of B2,

(
Ω∗∗

)
l =

(
β∗∗+B2y

)
l = λl+

〈v,y〉
λl

(3.52)

with v = (24/π)·(λ−1
j0+1, . . . ,λ

−1
j0+n). This gives the asymptotic expansion

Ωl = l+m
2l
+ 〈v,y〉

l
+O(l−3)= j+my

l
+O(l−3), (3.53)

where my = (1/2)m+〈v,y〉. Thus, for i > j > j0+n,

Ωi−Ωj
i−j = 1−my

ij
+O(j−3)= 1+O(j2

)
(3.54)

uniformly for bounded y . This gives κ = 2 in (2.32). Consequently, also the

smallness condition in the Cantor manifold theorem is satisfied since

g > 4+ 4−�
κ

(3.55)

for g = 6, κ = 2, and �= 1.

Finally, we verify that Assumption 2.7 is satisfied. Item (1) is satisfied in view

of the following lemma.

Lemma 3.6. For all n ≥ 1 and all m< −1 with j2+m ≠ 0 for all j ∈ Z, the

matrix A= (Ḡij)j0+1≤i,j≤j0+n is nonsingular.

Proof. Following the argument of [9, Lemma 5], we get that

detA= (−1)n
(
π
6

)n
(1−4n)

∏
j0+1≤j≤j0+n

1

λ2
j
≠ 0. (3.56)

Lemma 3.7. For the index set J = {j0+1, . . . ,j0+n} with n≥ 5, 〈k,ω(y)〉+
〈l,Ω(y)〉 does not vanish identically for all (k,l)∈ Zn×Ẑ∞ and allm<−1 with

j2+m≠ 0 for all j ∈ Z.

Proof. The argument of [9, Lemma 6] is applicable provided that we take

slight modification. It suffices to show that either 〈α,k〉 ≠ 〈β,l〉 or Ak ≠ BT2 l
for (k,l)∈ Zn×Z∞.

Suppose to the contrary that 〈α,k〉 = 〈β,l〉 and Ak= BT2 l. Multiplying A and

B2 by π/6 and letting D be the n-dimensional diagonal matrix with diagonal

elements Dj = λ−2
j0+j , and C is the rank one n×n matrix with elements Cij =

4λ−1
j0+iλ

−1
j0+j where i,j = 1,2, . . . ,n, we then have Dk= Ck−BT2 l or

ki
λi
= 4〈v,k〉−4〈w,l〉, (3.57)
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where v = (λ−1
j0+1, . . . ,λ

−1
j0+n) and w = (λ−1

j0+n+1,λ
−1
j0+n+2, . . .). Thus, kiλ−1

j0+i is in-

dependent of i, whence 〈v,k〉 =nkiλ−1
j0+i and thus

ki = 4
4n−1

λj0+i〈w,l〉, 1≤ i≤n. (3.58)

The assumption 〈α,k〉 = 〈β,l〉, then further implies that

4
4n−1

∑
1≤i≤n

λ2
j0+i =

〈β,l〉
〈w,l〉 . (3.59)

We first show that for |l| = 1, this is not possible. In fact, we then have that

〈β,l〉 = ±λj0+n+ν = 〈w,l〉−1 for some ν ∈N, so (3.58) and (3.59) combined give

k2
i =

4
4n−1

· λ2
j0+i∑
i λ2
j0+i

, 1≤ i≤n. (3.60)

But this equation cannot have an integer solution for any n ≥ 5 and any 1 ≤
i≤n.

So now consider the case |l| = 2. To show this case is also ridiculous, we

need an inequality. Let

g(x)=
√
(x+1)2+m−

√
x2+m, x ≥

√
|m|. (3.61)

It is very easy to verify that the function g is positive and decreasing for x ≥
j0+1. Hence, we get that for x ≥ j0+1,

g(x)≤ f (j0+1
)= √(j0+2

)2+m−
√(
j0+1

)2+m≤
√

2j0+3. (3.62)

If we had

∣∣〈w,l〉∣∣< 1√
2j0+3

· 4n−1
4n−4

, (3.63)

then (3.58) and (3.62) imply

0≠ min
1≤i≤n

∣∣ki+1−ki
∣∣< min

1≤i≤n

∣∣λj0+i+1−λj0+i
∣∣

(n−1)
√

2j0+3
≤ 1
n−1

(3.64)

which is not possible. On the other hand, the case

∣∣〈w,l〉∣∣≥ 1√
2j0+3

· 4n−1
4n−4

(3.65)
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is ridiculous since

∣∣〈w,l〉∣∣≤ 2λ−1
j0+n+1 =

2√(
j0+n+1

)2+m
≤ 2√

2
(
j0+1

)
n+n2

<
1√

2j0+3
· 4n−1

4n−4

(3.66)

if n≥ 5.

This completes the proof.

This lemma shows that Assumption 2.7(3) is satisfied. Assumption 2.7(2) is

very easy to check. Finally, we finish the proof of Theorem 1.1.
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