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We use Stein’s method to find a bound for Cauchy approximation. The random
variables which are considered need to be independent.
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1. Introduction. In Stein’s work [19], the aim was to show convergence in
distribution to the normal. His technique was novel. Stein’s technique was free
from Fourier methods and relied instead on the elementary differential equa-
tion

f(w)-wf(w)=h(x)-Nh (weR), (1.1)

where h: R — R is such that

)

I [h(x)|e~ V2> dx < (1.2)

and Nh =E(h(Z)), where Z ~ N(0,1).
Stein’s method was extended from normal distribution to the Poisson dis-
tribution by Chen [9]. Stein’s equation for Poisson with parameter A is

Af(w+1)—wf(w)=h(w)-P\h (wez"), (1.3)

where Paxh = E(h(Z)), Z ~Poi(A).

Since then, Stein’s method has found considerable applications in combina-
torics, probability, and statistics. Recent literature pertaining to this method
includes Arratia et al. [1, 2], Baldi and Rinott [3], Barbour [4, 5], Barbour et al. [6],
Bolthausen and Gotze [7], Chen [10, 11], Goldstein and Reinert [12], Goldstein
and Rinott [13], Gotze [14], and Green [15]; the work of Holst and Janson [16]
gives an excellent account of this method. In this paper, we further develop
the Stein technique to bound errors for a Cauchy approximation to the distri-
bution of W, the sum of independent random variables. In fact, there are some
literatures (e.g., Boonyasombut and Shapiro [8], Neammanee [17], and Shapiro
[18]) give a bound of Cauchy approximation in some kind of random variables.
But they used Fourier methods.
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This paper is organized as follows. Main results are stated in Section 2. Proof
of main results is in Section 3, while an example is given in Section 4.

2. Main results. At the heart of Stein’s method lies a Stein equation. For
example,

fw)-wfw)=gw), weR,

2.1
AMw+l)-wf(w)=gw), weZ’ 1)
are Stein equations for normal and Poisson distribution, respectively.
Let#={h:R—->R| jf"oo(lh(x)l/(l +x2))dx < o}, and for each h € %,
1Y )
Cau(h) = = J_w 1512 dx. (2.2)
The Stein equation for Cauchy distribution F
1 (* 1
F(X) = ijmmdt (23)
is
, 2wf(w) B
f(w) Tiw? =h(w)—-Cau(h). (2.4)
It is easy to check that a solution of (2.4) is Uy, : R — R defined by
w —
Un(w) = (1+w?) [ HxX)=Cauth) (2.5)

—oo 1+x2

Fix wo € R, and choose h to be the indicator function I(- «,uw,) which is defined
by

1 if w<wyp,

I oo (W) = { (2.6)

0 ifw>wy.

Let fu, = UI(W’WO]. Then, by (2.2), (2.3), and (2.5), we see that

m(1+w?)F(w)(1-F(wy)) if w <wy,

v N 2.7
fualt) {"(1+WZ)F(w0)(1—F(w)) if w > wy. 2.7)

The broad idea of Stein’s argument is as follows. First, for any wy € R, a
function fy, : R — R is constructed to solve (2.4) when h is the indicator func-
tion /(- e w,]- Replacing w by W, for any random variable W, it therefore follows
that the difference between P(W < wg) and F(wg) can be expressed as

2W fu, (W) }

1+Ww?2 (2.8)

E{f{uo(w)—

The main results are the following.
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THEOREM 2.1. Let X1,X>,...,X, be independent random variables with EX;
=0, EX? = 07, and E|X;|* < «. Then,
|P(W <wp) —F(wo) |
-3 - Z of +X?
- 1+w?2

+4Trmin<lial-2,2ini iE|X1 ]’ wo) (1-F(wp))

(2.9)

n
+C Y E|Xi|?,
i=1

when W =X +Xo +- - -+ Xp.

COROLLARY 2.2. Let Y1,Ys,...,Y, be identically independent random vari-
ables with zero means EYl-2 =1/2 and E|Y;]°> < 0. Let X; = Y;//n and W =
X1+ Xo+---+Xy. Then,

|P(W <wo)—F(wo) | < \/_+Cmm{ f\/g} (1- F(Wo))(2 o

Throughout this paper, C stands for an absolute constant with possibly dif-
ferent values in different places.

3. Proof of main results. Before we prove the main results, we need the
following lemmas.

LEMMA 3.1. For any real numbers wy and w,
(D) | fwy(w)/(1+w?)| < wF(wo) (1 —F(wp))
() |fipy(w)l =3

(3) [fi, (W)l <3+2m

4) I(f,ﬂ,o(w)/(1+w2))’|36+2rr

(5) (W fw,(w)/(1+w?)?)"| <3+5m.

PROOF. (1) follows directly from (2.7).
(2) Before we start the proof, we need the following inequalities:

—%st(w)sO for w <0, 3.1)

O<w(l1-F(w)) < for w > 0. (3.2)

T
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To show (3.1), we define g on (—o,0] by g(w) = wF(w). Since g"”"(w) =
2/m(1+w?)% >0, g’ is increasing. From this fact and the fact that

m o w) = Tim L (Y ™
wllr[loog (w) = wliryoo Tr<1+w2 +arctanw + > ) =0, (3.3)

we have g’ > 0. Hence, g is increasing and
1 .
g = Amgt) <gw)<g(0)=0 (3.4)

for any w < 0. So (3.1) holds. To show (3.2), we can apply the same argument
to the function g on [0, ) which is defined by g(w) = w(1 — C(w)). Since
Juwo(w) = fow, (—w), it suffices to prove the lemma in the case where w = 0.
By (2.7), we have

, | (1-F(wo))(1+2mwF(w)) | if w <0,
\fwo(w)~: .
|F(wo)(—1+2mw(1-F(w)))| ifw>wy
1421 |wF(w)| if w <0,
< ] (3.5)
1+2m|w(1-F(w))| ifw=>wy
3 ifw<0,
<
{3 if w > wy,

where we have used the fact that 0 < F(w) < 1 in the first inequality and
(3.1) and (3.2) in the second inequality. In the case where 0 < w < wy, by
monotonicity of F and (3.2), we see that

0 < fr, (w)
= (1-F(wo))+2m(1-F(wo))wF(w) (3.6)
<1+2m(1-F(w))w < 3.

Hence, (2) follows from (3.5) and (3.6).
(3) follows immediately from (2) and the fact that

2w, 2(1-w?)
1+w2fw0(w) " (1+w?)?

Sy (W) = S (w). 3.7)

(4) and (5) follow from (2) and (3) and the facts that
Fuy W\ fi,(w) 2w, (w)
L+w? ) 1+w? (14+w?)®’

(wfwo(w)>' _ W, (W) + fuwe (W) 4w? i (w)
(1+w?)? (1+w?)* (1+w?)®
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LEMMA 3.2. Let (W, W) be an exchangeable pair of random variables, that
is,

P(WeB,WeB)=P(WeB,WeB) (3.9)
for any Borel sets B and B on R, and there exists A > 0 such that
EYW=01-0)W, EIW-W]?<cw, (3.10)

where EWW is the conditional expectation of W with respect to W. Then,

(3.11)

A2 L (2T 10

for any function f : R — R, for which there exists C > 0 such that for allw € R,
|fw)] <C(1+w?). (3.12)

Moreover,

o (W) _wa(W>>] (3.13)

1 ~
P(W < wo) = C(wo) +E| £, W)~ 3 (7 - ) ( T e

for any wg € R.

PROOF. Define F:R? — R by

F(w,ﬁ)=(t7—w)[f(w) L Sw) ] (3.14)

1+w?2  14+w?

Then, F is antisymmetric, that is, F(w,w) = —F(w,w). By Stein [20, pages
9-10], we have EF(W,W) = 0, which implies that

B SOV)  fw)

O_E(W_W)[1+W2+1+W2]

ey 2f W) [ SOV) _ f(W)
_E(W_W){lJrWZ+[1+W2_1+W2]}

=2E(EYW-W) {ivv‘;)z +E(W7W)[%f ﬁvv‘;)z] (3.15)

2Wf (W) fW)  fw) ]
1+ W2 1+W2 1+W?2

e 5]

:—)\E< )+E(W—W)[

Then, (3.11) holds and (3.13) follows from (3.11) and (2.4) when h = I(_c,wy]-
O
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LEMMA 3.3. Let (W, W) be an exchangeable pair of random variables such
that

E"W=1-0)W, EW-WPl<o (3.16)
with A > 0. Then, for any wy € R,
P(WS‘WQ)

(W-w)27 2EW—=W)2W fu, (W)
C(wo)+Ewa(W)[1—XEW T ] 3 (1+W2)20

1(°  ~ W+ W
+2\JOOE(W—W)(w— 5 )

x[I(w < W) -I(w gW)](

f;uo(m)’dw (3.17)

1+w?

SIRLRT R

x[I(w<W)-I(w < W)](M) dw

(1+w?)?

PROOF. Let wy € R. For W < W, we see that
Fue V) fuy W) (W =W)fio, (W) 20 = W)W fu, (W)
1+W2  1+Ww2 1+Ww2 (1+w?2)?

_ W fwg(w) ’ f‘l.,uo(W) 2wa0(w)

_J [( 1+w2) T1awz (1+W?2)? dw

_JW W) 2w fuyw)  Fi W) 2Wfag ()]
a Lrw?  (1+w2)? 1T+W2 0 (14w2)?

T fig () fuy ) e
- o (Y - Y fwo (¥
_Iw.[w(l+y2>d dw ZJ J <1+y )d dw
(T fly () Y fuwo (V)
_J J <1+y2>d wdy _ZJ J <1+y dwdy
Sy () yfwo(y)>
j - (5227 ) v 2] (i - y)(( )
and by the same argument we can show that
Fuo W) fug W) W=W)far (W) 20 = W)W fuy (W)
1+ 1w 1+ W2 (1+W2)* (3.19)
(Y fa W)Y W (W (w) '
—JW(w—W)<1+w2)dw—ZJW(w—W)<(l+w2)2>dw

for W < W.
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So,

Fuo W) g W) W =W)fary (W) 20 = W)W fuuy (W)

1+W2  1+W2 1+W2 (1+W2)?

:ro (W—w)[I(w <W)-T(w sW)]({wit; ) dw (3.20)

wwa(w)>,dw

_zj_w(W—w)[I(w <) —I(w < W)] ( e

By Lemma 3.2, we have

P(WSW())
_ , 1 fug W)W =W)2 1 fl, (W) (W =W)?
_C(WO)+E[fw°(W)_X 1+ W2 AT 1rwe
2 (W=W)2W fuy (W) 2 (W=W)2W fu, (W)
A (1+w2)? A (1+w2)?
1 Fuo W) fuy (W)
_P\(W_W)[ 1+W2  1+w? H
, 1y o W) (W =W)?
:C(w0)+Ewa(W)_XEEW01+—I/VZ
QEW-W)2W fu, (W) 1 —
= —SEW-w
A (1+W2)? AE )
Ll oy W) =W fg (W) 2T = W)W fuy (W)
1+W2  1+w? 1+Ww?2 (1+W2)?
_ : 1y (W=w)?
= Clwo) +E| o, 00 {1 38" S
2EW -W)2Wfuy,(W) 1 ~
T —-EW-w
3 11 12)? 3 ( )
L) fuy ) T =W Ly 0) 2 = W)W furg (W)
1+W2  1+w? 1+W?2 (1+W?2)?

, 1y (W—w)? 2 E(W—W)2W £y (W)
:C(WO)+E[fw0(W){1—XEW T2 }] 3 (1+W2)20

Sy )Y
1+w? ) dw
wfwo(w)>’dw’

(1+w?)*

- %E(WfW)ro W—w)[I(w <W)-I(w < W)](

+ %E(W—W)Jw W-w)[I(w <W)-I(w < W)](
(3.21)

where we have used (3.20) in the last equality.
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For fixed w, we define F : RZ — R by

~

F(x,%) = (x—?c)(xz;x)[l(ws?c)—l(w <x)]. (3.22)

Then, F is antisymmetric. Since W and W are exchangeable, EF W, W) = 0.
Thus,

EW-W)(w-W)[I(w <W)-I(w <W)]

:E(W—W)(w—W;W+@)[I(wsW)—I(wsW)]

_ —_— _ (3.23)
=E(W—W)<w— 5 )[I(wsW)—I(wsW)]—EF(W,W)
=E(W—W)(w—W;W)[I(wsW)—I(wsW)].

By (3.21) and (3.23), the lemma is proved. O

PROOF OF THEOREM 2.1. Let Xi,X,...,X, be independent random vari-
ables and W = X; + X, + - - - + X;,. In order to prove the theorem, we introduce
additional random variables I, X 1,)?2,...,)?7“ and W defined in the following
way. The random variables I, X1,X>,..., Xy, )?1,)?2,...,)?” are independent, I
is uniformly distributed over the index set {1,2,...,n}, each )?i has the same
distribution as the corresponding X; and W=w+ ()?1 —X;). Then, (W,W) is
an exchangeable pair. We note that

(3.24)

EWW=W+EW)N(1—EWX1=W—%2X1-: (1—%)W,
~ ) ~ 9 2
EWW-WP?=E|X; - X;|" = =

Then, the assumptions of Lemma 3.3 are satisfied with A = 1/n. Moreover, we
know that

EIW-W]3=E|X; - X; 772E|X1 Xi| S—ZE|X1 : (3.25)
11

EIW-w[*=E|X -Xx|* =%ZE|X1 Xi|* =< zE|Xl 1. (3.26)
i=1
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To prove the theorem, let wy € R. By Lemma 3.3, we obtain
|P(W <wp) - C(wo)|

w (W =w)?
nk 1+W2

<sup|f1'u0(w)|E‘1—
weR

S W)Y’
1+w?
x| [I(w < W) -I(w < W)]|dw

() e[ | (w24

(1+w?)?

‘E(W—W)ZwaO(W) '
(1+w2)?

EJ W —wi (w—W+W)‘

+nsup
weR

2

+2nsup
wekR

X | [Iw < W) -I(w < W)]|dw

w (W =w)?
1+W?

’HWWFWﬁMWw
(1+w2)?

(5550 s

< sup | fi,, (w) |E‘1—nE
weR
+2nsup

o (w))
1+w? weR

wviv o7
~ wW+Ww
XJ ~\W—Wl‘w— ‘dw
WAW 2

, (W-w)27? E(W =W)2W fu, (W)
Slsu%ﬁlfw"(w)wbﬂ[l_nlgw 1+W? ] ‘ (1+W2)?
n fl:fo(w) , wfwo(w) ' ~ 3
+<2sup‘<1+w2) +nsup‘<7(l+w2)2 E\W-W|

2 2 w_ 2
(W—W)Z] on E(W =W)*W fiy (W)

<34E|1—-nEY
= J [ " 1+Ww?2 (1+W2)2

+6n(r+)E|W-w|3

(W —w)2
1+W2

E(W —=W)2W fipy (W)
(1+w2)?

2
sB\JE[l—nEW ] +2n

n
+C Y E|X|°,
i=1
(3.27)

where the fourth inequality comes from (4) and (5) of Lemma 3.1 and the last
inequality comes from (3.25). Since X; and X ; are independent and have the
same distribution,

EV(W-w)2=E"(X;-X;)* =

S|
M=
=

|
s
|
|
/N

M=
S,
+
M=
2

N————
w
o
*x

,..
Ul
—
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Hence,

1o G| = e |
) (3.29)

Next, we will give a bound of 2nE (W — W)2 (W fuwy (W) /(1 +W?)2).
From Lemma 3.1(1),

o7 wa (W) » S 2
2NE(W -W)?—"— | <21F(wp) (1 -F(wo)) > E|X;—X;|
‘ (1+w2)* zl
= 41F (wo) (1-F(wo)) . 0,
i=1
‘2nE<W—W)2% < 2nmF(wo) (1 —F(wo))EIW -WI[2|W|
< 2n7rF (wo) (1 — F(wo) WE | X = X; | *VEW?
= 8mF(wo) (1 -F(wp)) J z z | x| *
o (3.30)
Hence,
’2nE(W—W>2Wf”°(W,)
(1+w?)?
. . (3.31)
s4nmin{zoi2,2JnZUi2 E|Xi|4]»F(w0)(l—F(wo)).
i=1 i=1 i=1
This completes the proof. O

4. Proof of Corollary 2.2. Using Taylor’s formula, we see that

1
T2 = 1-W2+CwW3  for some |C| <1,

1 s (4.1)
mzleW +CW?° for some |C| < 1.
+
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Hence,

_1,C
4w

SiX; _C (Z?=1XE)2<§

(1+w2)? '’ 1+w2 ) ~n’

which implies that
2
1 I <.
E[l 1+W2<§+in>}
1 SELXAY 1 1
=1-F —2E #) ZE| ———
<1+W2> <1+W2 T e we)? w3

E S X; +E(Z?:1Xi2>2
(1+w2)° 1+ W2

:_‘“

IA

Clearly, that

}( 0) (1—F(wy)) (4.4)
)(

sCmin{ \f\/ﬁ} wo) (1 -F(wyp)).

Hence, by (4.3) and (4.4), the example is proved.
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