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1. Introduction. Let Pn,r (x) be the generalized weighted power means:

Pn,r (x) = (
∑n
i=1ωixri )1/r , where ωi > 0, 1 ≤ i ≤ n with

∑n
i=1ωi = 1 and x =

(x1,x2, . . . ,xn). Here, Pn,0(x)=
∏n
i=1x

ωi
i denotes the limit of Pn,r (x) as r → 0+,

which can be proved by noting that if p(r) = ln(
∑n
i=1ωixri ), then p′(0) =

ln(
∏n
i=1x

ωi
i ) = ln(Pn,0(x)). We write Pn,r for Pn,r (x) when there is no risk of

confusion.

In this paper, we assume that 0 < x1 ≤ x2 ≤ ··· ≤ xn. With any given x, we

associate x′ = (1−x1,1−x2, . . . ,1−xn) and write An = Pn,1, Gn = Pn,0, and

Hn = Pn,−1. When 1−xi ≥ 0 for all i, we define A′n = Pn,1(x′) and similarly for

G′n and H′
n. We also let σn =

∑n
i=1ωi[xi−An]2.

The following counterpart of the arithmetic mean-geometric mean inequal-

ity, due to Ky Fan, was first published by Beckenbach and Bellman [7].

Theorem 1.1. For xi ∈ (0,1/2],

A′n
G′n

≤ An
Gn

(1.1)

with equality holding if and only if x1 = ··· = xn.

In this paper, we consider the validity of the following additive Ky Fan-type

inequalities (with x1 <xn < 1):

x1

1−x1
<
P ′n,r −P ′n,s
Pn,r −Pn,s <

xn
1−xn . (1.2)

Note that by a change of variables xi → 1−xi, the left-hand side inequality

is equivalent to the right-hand side inequality in (1.2). We can deduce (see [9])

Theorem 1.1 from the case r = 1, s = 0, and xn ≤ 1/2 in (1.2), which is a result
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of Alzer [5]. Gao [9] later proved the validity of (1.2) for r = 1, −1≤ s < 1, and

xn ≤ 1/2.

What is worth mentioning is a nice result of Mercer [12] who showed that

the validity of r = 1 and s = 0 in (1.2) is a consequence of a result of Cartwright

and Field [8] who established the validity of r = 1 and s = 0 for the following

bounds for the differences between power means (r > s):

r −s
2x1

σn ≥ Pn,r −Pn,s ≥ r −s
2xn

σn, (1.3)

where the constant (r −s)/2 is the best possible (see [10]).

We point out that inequalities (1.2) and (1.3) do not hold for all r > s. We refer

the reader to the survey article [2] and the references therein for an account of

Ky Fan’s inequality, and to [4, 5, 10, 11] for other interesting refinements and

extensions of (1.3).

Mercer’s result reveals a close relation between (1.3) and (1.2), and it is our

main goal in the paper to prove that the validities of (1.3) and (1.2) are equiva-

lent for fixed r and s. As a consequence of this result, we give a characterization

of the validity of (1.3) for r = 1 or s = 1. A solution of an open problem from

[11] is also given.

Among the numerous sharpenings of Ky Fan’s inequality in the literature,

we have the following inequalities connecting the three classical means (with

ωi = 1/n here):

(
Hn
H′
n

)n−1An
A′n

≤
(
Gn
G′n

)n
≤
(
An
A′n

)n−1Hn
H′
n
. (1.4)

The right-hand side inequality of (1.4) is due to W. L. Wang and P. F. Wang

[14] and the left-hand side inequality was recently proved by Alzer et al. [6].

It is natural to ask whether we can extend the above inequality to the

weighted case, and using the same idea as in [6], we show that this is indeed

true in Section 5.

2. The main theorem

Theorem 2.1. For fixed r > s, the following inequalities are equivalent: (i) in-

equality (1.2) for xn ≤ 1/2; (ii) inequality (1.2); (iii) inequality (1.3).

Proof. (iii)⇒(ii) follows from a similar argument as given in [12], (ii)⇒(i) is

trivial, so it suffices to show that (i)⇒(iii).

Fix r > s assuming that (1.2) holds for xn ≤ 1/2. Without loss of gener-

ality, we can assume that x1 < xn. For a given x = (x1,x2, . . . ,xn), let y =
(εx1,εx2, . . . ,εxn). We can choose ε small so that εxn ≤ 1/2. Now, applying

the right-hand side inequality (1.2) for y, we get

xn
(
Pn,r (x)−Pn,s(x)

)
>

1−εxn
ε2

(
Pn,r (y′)−Pn,s(y′)

)
. (2.1)
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Let f(ε) = Pn,r (y′)−Pn,s(y′), then f ′(0) = 0 and f ′′(0) = (r − s)σn. Thus,

by letting ε tend to 0, it is easy to verify that the limit of the expression on the

right-hand side of (2.1) is (r − s)σn/2. We can consider the left-hand side of

(1.2) by a similar argument and this completes the proof.

3. An application of Theorem 2.1

Lemma 3.1. If inequality (1.3) holds for r > s, then 0≤ r +s ≤ 3.

Proof. Let n= 2, and write ω1 = 1−q, ω2 = q, x1 = 1, and x2 = 1+t with

t ≥−1. Let

D(t;r ,s,q)= r −s
2

2∑
i=1

wi
[
xi−A2

]2−P2,r +P2,s . (3.1)

For t ≥ 0, D(t;r ,s,q)≥ 0 implies the validity of the left-hand side inequality

of (1.3) while for −1 ≤ t ≤ 0, D(t;r ,s,q) ≤ 0 implies the validity of the right-

hand side inequality of (1.3).

Using the Taylor series expansion of D(t;r ,s,q) around t = 0, it is readily

seen that D(0;r ,s,q) = D(1)(0;r ,s,q) = D(2)(0;r ,s,q) = 0. Thus, by the La-

grangian remainder term of the Taylor expansion,

D(t;r ,s,q)= D
(3)(θt;r ,s,q)

3!
t3 (3.2)

with 0< θ < 1.

Since

lim
t→0+

D(3)(θt;r ,s,q)=D(3)(0;r ,s,q), (3.3)

a necessary condition for (1.3) to hold is D(3)(0;r ,s,q) ≥ 0 for 0 ≤ q ≤ 1. The

calculation yields

D(3)(0;r ,s,q)= (r −s)q(q−1)
(
(3−2r −2s)q−(3−r −s)). (3.4)

It is easy to check that this is equivalent to 0≤ r +s ≤ 3.

Theorem 3.2. Let r > s. If r = 1, inequality (1.3) holds if and only if −1 ≤
s < 1. If s = 1, inequality (1.3) holds if and only if 1< r ≤ 2.

Proof. A result of Gao [9] shows the validity of (1.2) for r = 1, −1≤ s < 1,

xn ≤ 1/2, and a similar result of his [10] shows the validity of (1.2) for s = 1,

1< r ≤ 2, xn ≤ 1/2. Thus, it follows from Theorem 2.1 that (1.3) holds for r =
1, −1 ≤ s < 1, and s = 1, 1 < r ≤ 2. This proves the “if” part of the statement,

and the “only if” part follows from the previous lemma.
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We note here that a special case of Theorem 3.2 answers an open problem

of Mercer [11], namely, we have shown that

1
x1
σn ≥An−Hn ≥ 1

xn
σn. (3.5)

4. Two lemmas

Lemma 4.1. Let x, b, u, and v be real numbers with 0<x ≤ b, u≥ 1, v ≥ 0,

and u+v ≥ 2, then f(u,v,x,b)≤ 0, where

f(u,v,x,b)= u+v−1
ux+vb +

1
x2(u/x+v/b) −

1
x
− u+v−2
b2(u+v)2v(x−b) (4.1)

with equality holding if and only if x = b or v = 0 or u= v = 1.

Proof. Let x < b, u> 1, and v > 1. We have

f(u,v,x,b)= v(b−x)
(
− (u−1)b+(v−1)x
x(bv+ux)(bu+vx) +

(u−1)+(v−1)
b2(u+v)2

)

<
v(b−x)

xb2(u+v)2
[(
(u−1)+(v−1)

)
x−(u−1)b−(v−1)x

]

=−v(u−1)(b−x)2
xb2(u+v)2 < 0

(4.2)

since b2(u+v)2 > (bv+ux)(bu+vx). Thus, we conclude that f(u,v,x,b)≤
0 for 0<x ≤ b, u≥ 1, v ≥ 0, and u+v ≥ 2.

Lemma 4.2. Let x, a, b, u, v , and s be real numbers with 0 < x ≤ a ≤ b,

u≥ 1, v ≥ 1, u+v ≥ 3, and 0≤ s ≤ v , then

u+v−1
ux+sa+(v−s)b +

1
x2
(
u/x+s/a+(v−s)/b) −

1
x

− u+v−2
b2(u+v)2

(
s(x−a)+(v−s)(x−b))≤ 0

(4.3)

with equality holding if and only if one of the following cases is true: (1) x = a=
b; (2) s = 0 and x = b; (3) s = v and x = a.

Proof. Let M = {(s,a)∈ R2|0≤ s ≤ v, x ≤ a≤ b}. Furthermore, we define

H(s,a) as the expression on the left-hand side of (4.3), where (s,a) ∈ M . It

suffices to show that H(s,a) < 0. We denote the absolute minimum of H by

m= (s0,a0). If m is an interior point of M , then we obtain

0= 1
s
∂H
∂a

− 1
a−b

∂H
∂s

∣∣∣∣
(s,a)=(s0,a0)

= b−a
x4a2b

(
u/x+s/a+(v−s)/b)2 > 0.

(4.4)
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Hence, m is a boundary point of M , so we get

m∈ {(s0,x
)
,
(
s0,b

)
,
(
0,a0

)
,
(
v,a0

)}
. (4.5)

Using Lemma 4.1, we obtain

H
(
s0,x

)= f (u+s0,v−s0,x,b
)≤ 0,

H
(
s0,b

)=H(0,a0
)= f(u,v,x,b)≤ 0,

H
(
v,a0

)= f (u,v,x,a0
)− v(u+v−2)

(
a0−x

)(
b2−a2

0

)
a2

0b2(u+v)2 ≤ 0.

(4.6)

Thus, we get that if (s,a) ∈ M , then H(s,a) ≤ 0. The conditions for equality

can be easily checked using Lemma 4.1.

5. A sharpening of Ky Fan’s inequality. In this section, we prove the fol-

lowing theorem.

Theorem 5.1. For 0<x1 ≤ ··· ≤ xn, q =min{ωi},

1−2q
2x2

1

σn ≥ (1−q) lnAn+q lnHn− lnGn ≥ 1−2q
2x2

n
σn, (5.1)

1−2q
2x2

1

σn ≥ lnGn−q lnAn−(1−q) lnHn ≥ 1−2q
2x2

n
σn (5.2)

with equality holding if and only if q = 1/2 or x1 = ··· = xn.

Proof. The proof uses the ideas in [6]. We prove the right-hand side in-

equality of (5.1); the proofs for other inequalities are similar. Fix 0 < x = x1,

xn = b with x1 <xn, n≥ 2; we define

fn
(
xn,q

)= (1−q) lnAn+q lnHn− lnGn− 1−2q
2x2

n
σn, (5.3)

where we regard An, Gn, and Hn as functions of xn = (x1, . . . ,xn).
We then have

gn
(
x2, . . . ,xn−1

)
:= 1
ω1

∂fn
∂x1

= 1−q
An

+ qHn
x2

1

− 1
x1
− 1−2q

x2
n

(
x1−An

)
. (5.4)

We want to show that gn ≤ 0. Let D = {(x2, . . . ,xn−1) ∈ Rn−2 | 0 < x ≤ x2 ≤
··· ≤ xn−1 ≤ b}. Let a = (a2, . . . ,an−1) ∈ D be the point in which the absolute

minimum of gn is reached. Next, we show that

a = (x, . . . ,x,a, . . . ,a,b, . . . ,b) with x < a< b, (5.5)

where the numbers x, a, and b appear r , s, and t times, respectively, with

r ,s,t ≥ 0 and r +s+t =n−2.
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Suppose not, this implies that two components of a have different values

and are interior points of D. We denote these values by ak and al. Partial

differentiation leads to

B
a2
i
+C = 0 (5.6)

for i= k,l, where

B = qH
2
n

x2
1

, C =−1−q
A2
n
+ 1−2q

x2
n
. (5.7)

Since z � B/z2+C is strictly monotonic for z > 0, then (5.6) yields ak = al.
This contradicts our assumption that ak ≠ al. Thus, (5.5) is valid and it suffices

to show that gn ≤ 0 for the case n= 2,3.

When n = 2, by setting x1 = x, x2 = b, ω1/q = u, and ω2/q = v , we can

identify g2 as (4.1), and the result follows from Lemma 4.1.

When n = 3, by setting x1 = x, x2 = a, x3 = b, ω1/q = u, ω2/q = s,
and ω3/q = v − s, we can identify g3 as (4.3), and the result follows from

Lemma 4.2.

Thus, we have shown that gn = (1/ω1)∂fn/∂x1 ≤ 0 with equality holding if

and only if n= 1 or n= 2, q = 1/2. By letting x1 tend to x2, we have

fn
(
xn,q

)≥ fn−1
(
xn−1,q

)≥ fn−1
(
xn−1,q′

)
, (5.8)

where xn−1 = (x2, . . . ,xn) with weightsω1+ω2, . . . ,ωn−1,ωn and q′ =min{ω1

+ω2, . . . ,ωn}. Here, we have used the following inequality, which is a conse-

quence of (3.5) (see [9]):

lnAn− lnHn ≥ 1

x2
n
σn. (5.9)

It then follows by induction that fn ≥ fn−1 ≥ ··· ≥ f2 = 0 when q = 1/2 in

f2 or else fn ≥ fn−1 ≥ ··· ≥ f1 = 0, and this completes the proof.

We note that the above theorem gives a sharpening of Sierpiński’s inequality

[13], originally stated for the unweighted case (ωi = 1/n) as

Hn−1
n An ≤Gn ≤An−1

n Hn. (5.10)

The following corollary gives refinements of (1.4).
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Corollary 5.2. For 0<x1 ≤ ··· ≤ xn < 1, q =min{ωi},

(
A′(1−q)n H′q

n

G′n

)(1−x1)2/x2
1

≥ A
1−q
n Hq

n

Gn
≥
(
A′(1−q)n H′q

n

G′n

)(1−xn)2/x2
n

,

(
G′n

A′qn H
′(1−q)
n

)(1−x1)2/x2
1

≥ Gn
AqnH

1−q
n

≥
(

G′n
A′qn H

′(1−q)
n

)(1−xn)2/x2
n

,

(5.11)

with equality holding if and only if x1 = x2 = ··· = xn or q = 1/2.

Proof. This is a direct consequence of Theorem 5.1, following from a sim-

ilar argument as in [12].

6. Concluding remarks. We note that if for xn ≤ 1/2, we have

(
x1

1−x1

)β
<
P ′n,r −P ′n,s
Pn,r −Pn,s <

(
xn

1−xn
)α
, (6.1)

then β ≥ 1 and α ≤ 1; otherwise, by letting ε tend to 0 in (2.1), we get contra-

dictions.

It was conjectured that an additive companion of (1.4) is true (see [1])

n
(
Gn−G′n

)≤ (n−1)
(
An−A′n

)+Hn−H′
n. (6.2)

In [3], Alzer asked if the above conjecture is true and whether there exists a

weighted version. Based on what we have got in this paper, it is natural to give

the following conjecture of the weighed version of (6.2).

Conjecture 6.1. For 0<x1 ≤ ··· ≤ xn ≤ 1/2 and q =min{ωi},

Gn−G′n ≤ (1−q)
(
An−A′n

)+q(Hn−H′
n
)
. (6.3)

Recently, Alzer et al. [6] asked the following question: what is the largest

number α=α(n) and what is the smallest number β= β(n) such that

α
(
An−A′n

)+(1−α)(Hn−H′
n
)≤Gn−G′n ≤ β(An−A′n)+(1−β)(Hn−H′

n
)

(6.4)

for all xi ∈ (0,1/2] (i= 1, . . . ,n)?
We note here that α ≤ 0 since the left-hand side inequality above can be

written as

αAn+(1−α)Hn−Gn ≤αA′n+(1−α)H′
n−G′n. (6.5)
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By a similar argument as in the proof of Theorem 2.1, replacing (x1, . . . ,xn)
by (εx1, . . . ,εxn) and letting ε tend to 0 in (6.5), we find that (6.5) implies that

αAn+(1−α)Hn−Gn ≤ 0 (6.6)

for any x. If we further let x1 tend to 0 in (6.6), we get

αAn ≤ 0 (6.7)

which implies that α≤ 0.
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