WAVELET ANALYSIS ON A BOEHMIAN SPACE

R. ROOPKUMAR

Received 24 May 2002

We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties.

2000 Mathematics Subject Classification: 44A15, 46F12, 42C40, 44A99.

1. Introduction. The concept of Boehmians was introduced by J. Mikusiński and P. Mikusiński [7], and the space of Boehmians with two notions of convergences was well established in [8]. Many integral transforms have been extended to the context of Boehmian spaces, for example, Fourier transform [9, 10, 11], Laplace transform [13, 17], Radon transform [14], and Hilbert transform [3, 5].

On the other hand, the theory of wavelet transform is recently developed, and it has various applications in signal processing, especially to analyze nonstationary signals by providing the time-frequency representation of the signal. For a fixed $g \in \mathscr{L}^{2}(\mathbb{R})$, called a mother wavelet, the wavelet transform $\Phi_{g}: \mathscr{L}^{2}(\mathbb{R}) \rightarrow \mathscr{L}^{2}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$is defined by

$$
\begin{equation*}
\Phi_{g}(f)(a, b)=\int_{-\infty}^{\infty} f(x) \overline{g_{a, b}(x)} d x \quad \text { for } a>0, b \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $g_{a, b}(x)=(1 / \sqrt{a}) g((x-b) / a), x \in \mathbb{R}$, are called wavelets. For more details, we refer the reader to [6]. In [4], we extended the wavelet transform to a Boehmian space which properly contains $\mathscr{L}^{2}(\mathbb{R})$ and studied its properties.

Holschneider [2] introduced the wavelet transform on the space $C^{\infty}(\mathbb{T})$ of smooth functions on the unit circle \mathbb{T} of the complex plane and gave an extension to the space of periodic distributions. In Section 2, we fix some notations and discuss the theory of wavelet transform on $C^{\infty}(\mathbb{T})$. In Section 3, we briefly recall the periodic Boehmians, construct a new Boehmian space $\mathscr{B}\left(\mathscr{Y}(\mathbb{Y}),\left(C^{\infty}(\mathbb{T}), *\right), \odot, \Delta\right)$, and verify some auxiliary results. In Section 4, we define wavelet transform on the space of periodic Boehmians and prove that it is consistent with the wavelet transform on $C^{\infty}(\mathbb{T})$. Further, we establish that the extended wavelet transform is linear and continuous with respect to δ-convergence as well as Δ-convergence.
2. Preliminaries. The space $C^{\infty}(\mathbb{T})$ consists of infinitely differentiable, periodic functions on \mathbb{R} of period 2π, with the Fréchet space topology induced by the increasing sequence of seminorms

$$
\begin{equation*}
\|\phi\|_{C^{\infty}(\mathbb{T}) ; n}=\sum_{p=0}^{n} \sup _{t \in[0,2 \pi]}\left|\partial^{p} \phi(t)\right| . \tag{2.1}
\end{equation*}
$$

We know that

$$
\begin{equation*}
C^{\infty}(\mathbb{T})=C_{+}^{\infty}(\mathbb{T}) \oplus C_{-}^{\infty}(\mathbb{T}) \oplus K(\mathbb{T}), \tag{2.2}
\end{equation*}
$$

where $C_{+}^{\infty}(\mathbb{T})$ and $C_{-}^{\infty}(\mathbb{T})$ are the subspaces consisting of functions with positive and negative Fourier coefficients, respectively, and $K(\mathbb{T})$ is the space of constant functions.

Let $\mathscr{S}(\mathbb{R})$ denote the space of rapidly decreasing functions on \mathbb{R}. (See [1].) Given $f \in \mathscr{S}(\mathbb{R}), b \in[0,2 \pi]$, and $a>0$, define $f_{a}, f_{b, a} \in C^{\infty}(\mathbb{T})$ by

$$
\begin{align*}
f_{a}(x) & =\sum_{n \in \mathbb{Z}} \frac{1}{a} f\left(\frac{x+2 n \pi}{a}\right), \quad x \in[0,2 \pi], \tag{2.3}\\
f_{b, a}(x) & =f_{a}(x-b), \quad x \in[0,2 \pi] .
\end{align*}
$$

Let $\mathscr{(}(\mathbb{Y})$ denote the Fréchet space of all smooth functions $\eta(b, a)$ of rapid descent on $\mathbb{R} \times \mathbb{R}^{+}$which are periodic functions in the variable b of period 2π, with the following directed family of seminorms:

$$
\begin{equation*}
\|\eta\|_{\varphi(\gamma) ; n, \alpha, \beta}=\sum_{\substack{0 \leq p \leq n \\ 0 \leq l \leq \alpha \\ 0 \leq k \leq \beta}} \sup _{a>0} \sup _{b \in[0,2 \pi]}\left|a^{p} \partial_{a}^{l} \partial_{b}^{k} \eta(b, a)\right| . \tag{2.4}
\end{equation*}
$$

We choose a mother wavelet $g \in \mathscr{(}(\mathbb{R})$ with all moments $\int_{-\infty}^{\infty} x^{n} g(x) d x$ are equal to zero.

Definition 2.1. The wavelet transform $T_{g}: C^{\infty}(\mathbb{T}) \rightarrow \mathscr{S}(\mathbb{Y})$ is defined by

$$
\begin{equation*}
T_{g}(\phi)=\int_{0}^{2 \pi} \phi(x) \overline{g_{b, a}(x)} d x, \quad b \in \mathbb{R}, a>0 \tag{2.5}
\end{equation*}
$$

THEOREM 2.2. The wavelet transform $T_{g}: C^{\infty}(\mathbb{T}) \rightarrow \mathscr{S}(\mathbb{Y})$ is continuous and linear.

DEFINITION 2.3. The map $\left.R_{g}: \mathscr{(} \mathbb{Y}\right) \rightarrow C^{\infty}(\mathbb{T})$ is defined by

$$
\begin{equation*}
\left(R_{g} \eta\right)(x)=\int_{0}^{2 \pi} \int_{0}^{\infty} g_{b, a}(x) \eta(b, a) \frac{d a d b}{a} \tag{2.6}
\end{equation*}
$$

THEOREM 2.4. The map $R_{g}: \mathscr{S}(\mathbb{Y}) \rightarrow C^{\infty}(\mathbb{T})$ is continuous and linear.
A partial inversion formula is given by the following theorem.
THEOREM 2.5. If \hat{g} is the Fourier transform of g and $C_{g}^{+}=\int_{0}^{\infty}|\hat{g}(a)|^{2}(d a / a)$, $C_{g}^{-}=\int_{0}^{\infty}|\hat{g}(-a)|^{2}(d a / a)$, then

$$
\begin{array}{ll}
R_{g} \circ T_{g} \phi=C_{g}^{+} \phi, & \forall \phi \in C_{+}^{\infty}(\mathbb{T}), \\
R_{g} \circ T_{g} \phi=C_{g}^{-} \phi, & \forall \phi \in C_{-}^{\infty}(\mathbb{T}) . \tag{2.7}
\end{array}
$$

3. Boehmian spaces. The triplet $\left(C^{\infty}(\mathbb{T}), *, \Delta\right)$, where $*: C^{\infty}(\mathbb{T}) \times C^{\infty}(\mathbb{T}) \rightarrow$ $C^{\infty}(\mathbb{T})$ is defined by

$$
\begin{equation*}
(\phi * \psi)(x)=\int_{0}^{2 \pi} \phi(x-t) \psi(t) d t, \quad x \in[0,2 \pi] \tag{3.1}
\end{equation*}
$$

and Δ is the collection of all sequences $\left(\delta_{k}\right)$ from $C^{\infty}(\mathbb{T})$ satisfying
(1) $\int_{0}^{2 \pi} \delta_{k}(t) d t=1$ for all $k \in \mathbb{N}$,
(2) $\int_{0}^{2 \pi}\left|\delta_{k}(t)\right| d t \leq M$ for all $k \in \mathbb{N}$, for some $M>0$,
(3) $s\left(\delta_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$ where $s\left(\delta_{k}\right)=\sup \left\{t \in[0,2 \pi]: \delta_{k}(t) \neq 0\right\}$,
is the collection of all equivalence classes $\left[\phi_{k} / \delta_{k}\right]$ given by the equivalence relation \sim defined by

$$
\begin{equation*}
\left(\left(\phi_{k}\right),\left(\delta_{k}\right)\right) \sim\left(\left(\psi_{k}\right),\left(\epsilon_{k}\right)\right) \quad \text { if } \phi_{k} * \epsilon_{j}=\psi_{j} * \delta_{k} \forall k, j \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

on the collection \mathscr{A} of pair of sequences $\left(\left(\phi_{k}\right),\left(\delta_{k}\right)\right), \phi_{n} \in C^{\infty}(\mathbb{T}),\left(\delta_{k}\right) \in \Delta$ satisfying

$$
\begin{equation*}
\phi_{k} * \delta_{j}=\phi_{j} * \delta_{k}, \quad \forall k, j \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

This triplet with addition and scalar multiplication, defined by

$$
\begin{align*}
{\left[\frac{\phi_{k}}{\delta_{k}}\right]+\left[\frac{\psi_{k}}{\epsilon_{k}}\right] } & =\left[\frac{\phi_{k} * \epsilon_{k}+\psi_{k} * \delta_{k}}{\delta_{k} * \epsilon_{k}}\right] \\
\alpha\left[\frac{\phi_{k}}{\delta_{k}}\right] & =\left[\frac{\alpha \phi_{k}}{\delta_{k}}\right] \tag{3.4}
\end{align*}
$$

is called the periodic Boehmian space [15, 16], and we denote it by $\mathscr{B}_{\mathbb{1}}$.
DEFINITION 3.1 (δ-convergence). A sequence $\left(x_{n}\right) \delta$-converges to x in $\mathscr{B}_{\mathbb{T}}$, denoted by $x_{n} \xrightarrow{\delta} x$ as $n \rightarrow \infty$ in $\mathscr{B}_{\mathbb{T}}$ if there exists $\left(\delta_{k}\right) \in \Delta$ such that
$x_{n} * \delta_{k}, x * \delta_{k} \in C^{\infty}(\mathbb{T})$, and for each $k \in \mathbb{N}$,

$$
\begin{equation*}
x_{n} * \delta_{k} \rightarrow x * \delta_{k} \quad \text { as } n \rightarrow \infty \text { in } C^{\infty}(\mathbb{T}) . \tag{3.5}
\end{equation*}
$$

The following theorem is proved in [8].
ThEOREM 3.2. Let $x_{n}, x \in \mathscr{B}_{\mathbb{T}}, n \in \mathbb{N} . x_{n} \xrightarrow{\delta} x$ as $n \rightarrow \infty$ in $\mathscr{B}_{\mathbb{T}}$ if and only if there exist $\phi_{n, k}, \phi_{k} \in C^{\infty}(\mathbb{T})$ such that $x_{n}=\left[\phi_{n, k} / \delta_{k}\right],\left[\phi_{k} / \delta_{k}\right]$ and, for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\phi_{n, k} \rightarrow \phi_{k} \quad \text { as } n \rightarrow \infty \text { in } C^{\infty}(\mathbb{T}) . \tag{3.6}
\end{equation*}
$$

DEFINITION 3.3 (Δ-convergence). A sequence $\left(x_{n}\right) \Delta$-converges to x in $\mathscr{B}_{\mathbb{T}}$, denoted by $x_{n} \xrightarrow{\Delta} x$ as $n \rightarrow \infty$ in $\mathscr{B}_{\mathbb{T}}$ if there exists a delta-sequence (δ_{n}) such that $\left(x_{n}-x\right) * \delta_{n} \in C^{\infty}(\mathbb{T})$ for each $n \in \mathbb{N}$ and

$$
\begin{equation*}
\left(x_{n}-x\right) * \delta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { in } C^{\infty}(\mathbb{T}) . \tag{3.7}
\end{equation*}
$$

Now, we construct a new Boehmian space as follows.
As in the context of Boehmian space defined in [12], we take the vector space Γ and the commutative semi-group as $\mathscr{(} \mathbb{Y})$ and $\left(C^{\infty}(\mathbb{T}), *\right)$, respectively.

Definition 3.4. Given $\eta \in \mathscr{S}(\mathbb{Y})$ and $\phi \in C^{\infty}(\mathbb{T})$, define

$$
\begin{equation*}
(\eta \odot \phi)(b, a)=\int_{0}^{2 \pi} \eta(b-t, a) \phi(t) d t . \tag{3.8}
\end{equation*}
$$

Lemma 3.5. If $\eta \in \mathscr{Y}(\mathbb{Y})$ and $\phi \in C^{\infty}(\mathbb{T})$, then $\eta \odot \phi \in \mathscr{S}(\mathbb{Y})$.
Proof. To prove that $(\eta \odot \phi)(b, a)$ is infinitely differentiable, we show that

$$
\begin{align*}
& \partial_{a}(\eta \odot \phi)(b, a)=\left(\partial_{a} \eta \odot \phi\right)(b, a), \\
& \partial_{b}(\eta \odot \phi)(b, a)=\left(\partial_{b} \eta \odot \phi\right)(b, a) . \tag{3.9}
\end{align*}
$$

Fix $a_{0}>0, b_{0} \in \mathbb{R}$ arbitrarily.
Consider $\left((\eta \odot \phi)\left(b_{0}, a\right)-(\eta \odot \phi)\left(b_{0}, a_{0}\right)\right) /\left(a-a_{0}\right)=\int_{0}^{2 \pi}\left(\eta\left(b_{0}-t, a\right)-\right.$ $\left.\eta\left(b_{0}-t, a_{0}\right)\right) /\left(a-a_{0}\right) \phi(t) d t$. Using the mean-value theorem (in the variable $a)$, we get that the integrand is dominated by $\|\eta\|_{\mathscr{Y}(\Upsilon) ; 0,1,0}\|\phi\|_{C^{\infty}(\mathbb{T}), 0}$. Therefore, we can apply Lebesgue dominated convergence theorem [18], and we get

$$
\begin{align*}
\partial_{a}(\eta \odot \phi)\left(b_{0}, a_{0}\right) & =\lim _{a \rightarrow a_{0}} \int_{0}^{2 \pi} \frac{\eta\left(b_{0}-t, a\right)-\eta\left(b_{0}-t, a_{0}\right)}{a-a_{0}} \phi(t) d t \\
& =\int_{0}^{2 \pi} \lim _{a \rightarrow a_{0}} \frac{\eta\left(b_{0}-t, a\right)-\eta\left(b_{0}-t, a_{0}\right)}{a-a_{0}} \phi(t) d t \tag{3.10}\\
& =\int_{0}^{2 \pi} \partial_{a} \eta\left(b_{0}-t, a_{0}\right) \phi(t) d t \\
& =\left(\partial_{a} \eta \odot \phi\right)\left(b_{0}, a_{0}\right) .
\end{align*}
$$

By a similar argument, we can prove that $\partial_{b}(\eta \odot \phi)(b, a)=\left(\partial_{b} \eta \odot \phi\right)(b, a)$. Finally by a routine manipulation, we get

$$
\begin{equation*}
\|\eta \odot \phi\|_{\mathscr{Y}(\mathbb{Y}) ; n, \alpha, \beta} \leq\|\phi\|_{\mathscr{L}^{1}(\mathbb{T})}\|\eta\|_{\mathscr{S}(\mathbb{Y}) ; n, \alpha, \beta} \tag{3.11}
\end{equation*}
$$

where $\|\phi\|_{\mathscr{L}^{1}(\mathbb{T})}=\int_{0}^{2 \pi}|\phi(t)| d t$. Hence, $\eta \odot \phi \in \mathscr{S}(\mathbb{Y})$.
LemmA 3.6. If $\eta \in \mathscr{(}(\mathbb{Y})$ and $\left(\delta_{n}\right) \in \Delta$, then $\eta \odot \delta_{n} \rightarrow \phi$ as $n \rightarrow \infty$ in $\mathscr{(}(\mathbb{Y})$.
Proof. Let $p, k, l \in \mathbb{N}_{0}$ be arbitrary. Using the mean-value theorem and a property of δ-sequence, we get

$$
\begin{align*}
\left|a^{p} \partial_{a}^{l} \partial_{b}^{k}\left(\eta \odot \delta_{n}-\eta\right)(b, a)\right| & =\left|a^{p}\left(\left(\partial_{a}^{l} \partial_{b}^{k} \eta\right) \odot \delta_{n}\right)(b, a)-a^{p} \partial_{a}^{l} \partial_{b}^{k} \eta(b, a)\right| \\
& \leq \int_{0}^{2 \pi}\left|a^{p}\left(\partial_{a}^{l} \partial_{b}^{k} \eta(b-t, a)-\partial_{a}^{l} \partial_{b}^{k} \eta(b, a)\right) \delta_{n}(t)\right| d t \\
& \leq\|\eta\|_{\varphi(\vartheta) ; p, l, k+1} \int_{0}^{2 \pi}|t|\left|\delta_{n}(t)\right| d t \\
& \leq M s\left(\delta_{n}\right)\|\eta\|_{\mathscr{S}(\mho) ; p, l, k+1}, \tag{3.12}
\end{align*}
$$

which tends to 0 as $n \rightarrow \infty$. This completes the proof of the lemma.
Lemma 3.7. If $\eta_{n} \rightarrow \eta$ as $n \rightarrow \infty$ in $\mathscr{(}(\mathbb{Y})$ and $\psi \in C^{\infty}(\mathbb{T})$, then $\eta_{n} \odot \psi \rightarrow \eta \odot \psi$ as $n \rightarrow \infty$.

Proof. Let $p, k, l \in \mathbb{N}_{0}$ be arbitrary. Now,

$$
\begin{align*}
& \left|a^{p} \partial_{a}^{l} \partial_{b}^{k}\left(\eta_{n} \odot \psi-\eta \odot \psi\right)(b, a)\right| \\
& \quad \leq \int_{0}^{2 \pi} a^{p}\left|\partial_{a}^{l} \partial_{b}^{k}\left(\eta_{n}-\eta\right)(b, a)\right||\psi(t)| d t \tag{3.13}\\
& \quad \leq\|\psi\|_{\mathscr{L}^{1}(\mathbb{T})}\left\|\eta_{n}-\eta\right\|_{\mathscr{(\vartheta) ; p , l , k}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Hence, the lemma follows.
Lemma 3.8. If $\eta_{n} \rightarrow \eta$ as $n \rightarrow \infty$ in $\mathscr{S}(\mathbb{Y})$ and $\delta_{n} \in \Delta$, then $\eta_{n} \odot \delta_{n} \rightarrow \eta$ as $n \rightarrow \infty$.

Proof. Since we have $\eta_{n} \odot \delta_{n}-\eta=\eta_{n} \odot \delta_{n}-\eta \odot \delta_{n}+\eta \odot \delta_{n}-\eta$ and Lemma 3.6, we merely prove that $\eta_{n} \odot \delta_{n}-\eta \odot \delta_{n} \rightarrow 0$ as $n \rightarrow \infty$.

If $p, k, l \in \mathbb{N}_{0}$, then, using a property of delta-sequence, we get

$$
\begin{align*}
& \left|a^{p} \partial_{a}^{l} \partial_{b}^{k}\left(\eta_{n}-\eta\right) \odot \delta_{n}(b, a)\right| \\
& \quad \leq\left\|\eta_{n}-\eta\right\|_{\mathscr{Y}(\vartheta) ; p, l, k} \int_{0}^{2 \pi}\left|\delta_{n}(t)\right| d t \leq M\left\|\eta_{n}-\eta\right\|_{\mathscr{S}(\vartheta) ; p, l, k} \tag{3.14}
\end{align*}
$$

The above inequalities prove the lemma.

Now using the above lemmas we can construct the Boehmian space $\mathscr{B}_{\Upsilon}=$ $\left(\mathscr{S}_{\curlyvee},\left(C^{\infty}, *\right), \odot, \Delta\right)$ in a canonical way.

4. Generalized wavelet transform

DEFINITION 4.1. Define $\mathscr{G}_{g}: \mathscr{B}_{\mathbb{T}} \rightarrow \mathscr{B}_{\Upsilon}$ by

$$
\begin{equation*}
\mathscr{T}_{g}\left(\left[\frac{\phi_{n}}{\delta_{n}}\right]\right)=\left[\frac{T_{g} \phi_{n}}{\delta_{n}}\right] \tag{4.1}
\end{equation*}
$$

Theorem 4.2. The generalized wavelet transform $\mathscr{T}_{g}: \mathscr{B}_{\mathbb{T}} \rightarrow \mathscr{B}_{\Upsilon}$ is well defined.

First, we state and prove a lemma that will be useful.
Lemma 4.3. If $\phi, \psi \in C^{\infty}(\mathbb{T})$, then $T_{g}(\phi * \psi)=T_{g} \phi \odot \psi$.
Proof. Let $a \in \mathbb{R}^{+}$and $b \in \mathbb{R}$ be arbitrary. Now

$$
\begin{align*}
T_{g}(\phi * \psi)(b, a) & =\int_{0}^{2 \pi}(\phi * \psi)(x) \overline{g_{a}(x-b)} d x \\
& =\int_{0}^{2 \pi} \overline{g_{a}(x-b)} d x \int_{0}^{2 \pi} \phi(x-t) \psi(t) d t \tag{4.2}
\end{align*}
$$

By an easy verification, we can apply Fubini's theorem and the last integral equals

$$
\begin{align*}
\int_{0}^{2 \pi} \psi & (t) d t \int_{0}^{2 \pi} \phi(x-t) \overline{g_{a}(x-b)} d x \\
& =\int_{0}^{2 \pi} \psi(t) d t \int_{0}^{2 \pi} \phi(x) \overline{g_{a}(x-(b-t))} d x \tag{4.3}\\
& =\left(T_{g} \phi \odot \psi\right)(b, a)
\end{align*}
$$

Proof of Theorem 4.2. First, we show that $\left(\left(T_{g} \phi_{n}\right),\left(\delta_{n}\right)\right)$ is a quotient. Since $\left[\phi_{n} / \delta_{n}\right] \in \mathscr{B}_{\mathbb{T}}$, we have

$$
\begin{equation*}
\phi_{k} * \delta_{j}=\phi_{j} * \delta_{k}, \quad \forall j, k \in \mathbb{N} \tag{4.4}
\end{equation*}
$$

Applying the classical wavelet transform T_{g} on both sides, we get

$$
\begin{equation*}
T_{g} \phi_{k} \odot \delta_{j}=T_{g} \phi_{j} \odot \phi_{k}, \quad \forall j, k \in \mathbb{N} \text { (by Lemma 4.3). } \tag{4.5}
\end{equation*}
$$

Next, we show that the definition of \mathscr{T}_{g} is independent of the choice of the representative.

Let $\left[\phi_{k} / \epsilon_{k}\right]=\left[\psi_{k} / \delta_{k}\right]$ in $\mathscr{B}_{\boldsymbol{\sigma}}$. Then, we have

$$
\begin{equation*}
\phi_{k} * \epsilon_{j}=\psi_{j} * \delta_{k}, \quad \forall j, k \in \mathbb{N} . \tag{4.6}
\end{equation*}
$$

Again, applying the wavelet transform and using Lemma 4.3, we get

$$
\begin{equation*}
\mathscr{T}_{g} \phi_{k} \odot \epsilon_{j}=\mathscr{T}_{g} \psi_{j} \odot \delta_{k}, \quad \forall j, k \in \mathbb{N} . \tag{4.7}
\end{equation*}
$$

Hence, the theorem follows.
THEOREM 4.4 (consistency). Let $\Phi_{\mathbb{T}}: C^{\infty}(\mathbb{T}) \rightarrow \mathscr{B}_{\mathbb{T}}$ and $\mathscr{\Phi}_{\bigvee}: \mathscr{S}(\mathbb{Y}) \rightarrow \mathscr{B}_{\Upsilon}$ be the canonical identification defined, respectively, by

$$
\begin{equation*}
\phi \longmapsto\left[\frac{\phi * \delta_{n}}{\delta_{n}}\right], \quad \eta \longmapsto\left[\frac{\eta \odot \delta_{n}}{\delta_{n}}\right] \tag{4.8}
\end{equation*}
$$

where $\left(\delta_{n}\right) \in \Delta$, then $\mathscr{T}_{g} \circ \Phi_{\mathbb{T}}=I_{\vee} \circ T_{g}$.
Proof. Let $\phi \in C^{\infty}(\mathbb{T})$, then

$$
\begin{align*}
\mathscr{T}_{g}\left(\mathscr{I}_{\mathbb{T}}(\phi)\right) & =\mathscr{T}_{g}\left(\left[\frac{\phi * \delta_{n}}{\delta_{n}}\right]\right)=\left[\frac{T_{g}\left(\phi * \delta_{n}\right)}{\delta_{n}}\right] \\
& =\left[\frac{T_{g} \phi \odot \delta_{n}}{\delta_{n}}\right] \quad \text { (by Lemma 4.3) } \tag{4.9}\\
& =\mathscr{I}_{\bigvee}\left(T_{g}(\phi)\right) .
\end{align*}
$$

THEOREM 4.5. The wavelet transform $\mathscr{T}_{g}: \mathscr{B}_{\mathbb{T}} \rightarrow \mathscr{B}_{\bigvee}$ is a linear map.
Proof. If $\left[\phi_{n} / \delta_{n}\right],\left[\psi_{n} / \epsilon_{n}\right] \in \mathscr{B}_{\mathbb{T}}$, then

$$
\begin{align*}
\mathscr{T}_{g}\left(\left[\frac{\phi_{n}}{\delta_{n}}\right]+\left[\frac{\psi_{n}}{\epsilon_{n}}\right]\right) & =\mathscr{T}_{g}\left(\left[\frac{\phi_{n} * \epsilon_{n}+\psi_{n} * \delta_{n}}{\delta_{n} * \epsilon_{n}}\right]\right)=\left[\frac{T_{g}\left(\phi_{n} * \epsilon_{n}+\psi_{n} * \delta_{n}\right)}{\delta_{n} * \epsilon_{n}}\right] \\
& =\left[\frac{T_{g} \phi_{n} \odot \epsilon_{n}+T_{g} \psi_{n} \odot \delta_{n}}{\delta_{n} * \epsilon_{n}}\right]=\left[\frac{T_{g} \phi_{n}}{\delta_{n}}\right]+\left[\frac{T_{g} \psi_{n}}{\epsilon_{n}}\right] \\
& =\mathscr{T}_{g}\left(\left[\frac{\phi_{n}}{\delta_{n}}\right]\right)+\mathscr{T}_{g}\left(\left[\frac{\psi_{n}}{\epsilon_{n}}\right]\right) . \tag{4.10}
\end{align*}
$$

If $\alpha \in \mathbb{C}$ and $\left[\phi_{n} / \delta_{n}\right] \in \mathscr{B}_{\mathbb{T}}$, then

$$
\begin{align*}
\mathscr{T}_{g}\left(\alpha\left[\frac{\phi_{n}}{\delta_{n}}\right]\right) & =\mathscr{T}_{g}\left(\left[\frac{\alpha \phi_{n}}{\delta_{n}}\right]\right)=\left[\frac{T_{g}\left(\alpha \phi_{n}\right)}{\delta_{n}}\right]=\left[\frac{\alpha T_{g} \phi_{n}}{\delta_{n}}\right] \tag{4.11}\\
& =\alpha\left[\frac{T_{g} \phi_{n}}{\delta_{n}}\right]=\alpha \mathscr{T}_{g}\left(\left[\frac{\phi_{n}}{\delta_{n}}\right]\right) .
\end{align*}
$$

In the above proof, we have used the fact that T_{g} is linear wherever it is required.

From the following two theorems, we say that the generalized wavelet transform is continuous with respect to δ-convergence as well as Δ-convergence.

THEOREM 4.6. If $x_{n} \xrightarrow{\delta} x$ as $n \rightarrow \infty$ in \mathscr{B}_{T}, then $\mathscr{T}_{g} x_{n} \xrightarrow{\delta} \mathscr{T}_{g} x$ as $n \rightarrow \infty$ in \mathscr{B}_{8}.

Proof. If $x_{n} \xrightarrow{\delta} x$ as $n \rightarrow \infty$, then, by Theorem 3.2, there exist $\phi_{n, k}, \phi_{k} \in$ $C^{\infty}(\mathbb{T})$ and $\left(\delta_{k}\right) \in \Delta$ such that $x_{n}=\left[\phi_{n, k} / \delta_{k}\right]$ and $x=\left[\phi_{k} / \delta_{k}\right]$ and, for each $k \in \mathbb{N}, \phi_{n, k} \rightarrow \phi_{k}$ as $n \rightarrow \infty$ in $C^{\infty}(\mathbb{T})$.

By the continuity of the classical wavelet transform, we have, for each $k \in \mathbb{N}$,

$$
\begin{equation*}
T_{g} \phi_{n, k} \rightarrow T_{g} \phi_{k} \quad \text { as } n \rightarrow \infty \text { in } \mathscr{S}_{\Downarrow} . \tag{4.12}
\end{equation*}
$$

Since $\mathscr{T}_{g}\left(x_{n}\right)=\left[T_{g} \phi_{n, k} / \delta_{k}\right]$ and $\mathscr{T}_{g}(x)=\left[T_{g} \phi_{k} / \delta_{k}\right]$, we get $\mathscr{T}_{g}\left(x_{n}\right) \xrightarrow{\delta} \mathscr{T}_{g}(x)$ as $n \rightarrow \infty$. Hence, the theorem follows.

THEOREM 4.7. If $x_{n} \xrightarrow{\Delta} x$ as $n \rightarrow \infty$ in $\mathscr{B}_{\mathbb{T}}$, then $\mathscr{T}_{g} x_{n} \xrightarrow{\Delta} \mathscr{T}_{g} x$ as $n \rightarrow \infty$ in \mathscr{B}_{γ}.

Proof. Let $x_{n} \xrightarrow{\Delta} x$ as $n \rightarrow \infty$ in $\mathscr{B}_{\mathbb{T}}$. Then, by definition, we can find $\phi_{n} \in$ $C^{\infty}(\mathbb{T})$ and $\left(\delta_{n}\right) \in \Delta$ such that $\left(x_{n}-x\right) * \delta_{n}=\left[\phi_{n} * \delta_{k} / \delta_{k}\right]$ and

$$
\begin{equation*}
\phi_{n} \rightarrow 0 \quad \text { as } n \longrightarrow 0 \text { in } C^{\infty}(\mathbb{T}) . \tag{4.13}
\end{equation*}
$$

Applying the classical wavelet transform and using Lemma 4.3, we get

$$
\begin{equation*}
T_{g} \phi_{n} \longrightarrow 0 \text { as } n \longrightarrow 0 \text { in } \mathscr{S}(\mathbb{Y}) . \tag{4.14}
\end{equation*}
$$

Hence, we get $\mathscr{T}_{g} x_{n} \xrightarrow{\Delta} \mathscr{T}_{g} x$ as $n \rightarrow \infty$ in \mathscr{B}_{\vee}.
LemmA 4.8. If $\eta \in \mathscr{Y}(\mathbb{Y})$ and $\phi \in C^{\infty}(\mathbb{T})$, then $R_{g}(\eta \odot \phi)=R_{g} \eta * \phi$.
Proof. Using Fubini's theorem, we get

$$
\begin{align*}
R_{g}(\eta \odot \phi)(x) & =\int_{0}^{2 \pi} \int_{0}^{\infty} g_{a}(x-b)(\eta \odot \phi)(b, a) \frac{d a d b}{a} \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} g_{a}(x-b) \frac{d a d b}{a} \int_{0}^{2 \pi} \eta(b-t, a) \phi(t) d t \\
& =\int_{0}^{2 \pi} \phi(t) d t \int_{0}^{2 \pi} \int_{0}^{\infty} g_{a}(x-b) \eta(b-t, a) \frac{d a d b}{a} \\
& =\int_{0}^{2 \pi} \phi(t) d t \int_{0}^{2 \pi} \int_{0}^{\infty} g_{a}((x-t)-c) \eta(c, a) \frac{d a d c}{a} \quad(b-t=c) \\
& =\int_{0}^{2 \pi} R_{g} \eta(x-t) \phi(t) d t \\
& =\left(R_{g} \eta * \phi\right)(x) . \tag{4.15}
\end{align*}
$$

Therefore, we can give the following definition.
DEFINITION 4.9. Define $\mathscr{R}_{\mathscr{G}}: \mathscr{B}_{Y} \rightarrow \mathscr{B}_{\mathbb{T}}$ by

$$
\begin{equation*}
\mathscr{R}_{g}\left(\left[\frac{\eta_{n}}{\delta_{n}}\right]\right)=\left[\frac{R_{g} \eta_{n}}{\delta_{n}}\right] . \tag{4.16}
\end{equation*}
$$

Theorem 4.10. The map $\mathscr{R}_{g}: \mathscr{B}_{Y} \rightarrow \mathscr{B}_{\mathbb{T}}$ is linear.
Theorem 4.11. The map $\mathscr{R}_{g}: \mathscr{B}_{\bigvee} \rightarrow \mathscr{B}_{\mathbb{T}}$ is continuous with respect to δ convergence as well as Δ-convergence.

Using Lemma 4.8 and Theorem 2.4, we get a proof similar to that of Theorems 4.6 and 4.7.

THEOREM 4.12 (an inversion formula). If $x=\left[\phi_{n} / \delta_{n}\right] \in \mathscr{B}_{\mathbb{T}}$ such that $\phi_{n} \in$ $C_{+(-)}^{\infty}(\mathbb{T})$ for all $n \in \mathbb{N}$, then

$$
\begin{equation*}
\mathscr{R}_{g} \circ \mathscr{T}_{g}(x)=C_{g}^{+(-)} x \tag{4.17}
\end{equation*}
$$

Proof. Now,

$$
\begin{align*}
\mathscr{R}_{g} \circ \mathscr{T}_{g}(x) & =\mathscr{R}_{g}\left(\left[\frac{T_{g} \phi_{n}}{\delta_{n}}\right]\right)=\left[\frac{\left(R_{g} \circ T_{g}\right) \phi_{n}}{\delta_{n}}\right] \\
& =\left[\frac{C_{g}^{+(-)} \phi_{n}}{\delta_{n}}\right]=C_{g}^{+(-)}\left[\frac{\phi_{n}}{\delta_{n}}\right]=C_{g}^{+(-)} x . \tag{4.18}
\end{align*}
$$

Acknowledgment. This work was supported by a Senior Research Fellowship from CSIR, India.

References

[1] I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 2, Academic Press, New York, 1968.
[2] M. Holschneider, Wavelet analysis on the circle, J. Math. Phys. 31 (1990), no. 1, 39-44.
[3] V. Karunakaran and N. V. Kalpakam, Hilbert transform for Boehmians, Integral Transform. Spec. Funct. 9 (2000), no. 1, 19-36.
[4] V. Karunakaran and R. Roopkumar, Wavelet transform for Boehmians, Proceedings of the International Conference on Transform Techniques and Their Applications, St. Joseph’s College, Irinjalakuda, India, 2001, to appear.
[5] , Boehmians and their Hilbert transforms, Integral Transform. Spec. Funct. 13 (2002), no. 2, 131-141.
[6] T. H. Koornwinder (ed.), Wavelets: An Elementary Treatment of Theory and Applications, Series in Approximations and Decompositions, vol. 1, World Scientific Publishing, New Jersey, 1993 (French).
[7] J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'analyse fonctionnelle [Quotients of sequences and their applications in functional analysis], C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 463-464 (French).
[8] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), no. 1, 159-179.
[9] , Fourier transform for integrable Boehmians, Rocky Mountain J. Math. 17 (1987), no. 3, 577-582.
[10] , The Fourier transform of tempered Boehmians, Fourier Analysis (Orono, Me, 1992), Lecture Notes in Pure and Applied Mathematics, vol. 157, Marcel Dekker, New York, 1994, pp. 303-309.
[11] , Tempered Boehmians and ultradistributions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 813-817.
[12] , On flexibility of Boehmians, Integral Transform. Spec. Funct. 4 (1996), no. 1-2, 141-146.
[13] P. Mikusiński, A. Morse, and D. Nemzer, The two-sided Laplace transform for Boehmians, Integral Transform. Spec. Funct. 2 (1994), no. 3, 219-230.
[14] P. Mikusiński and A. Zayed, The Radon transform of Boehmians, Proc. Amer. Math. Soc. 118 (1993), no. 2, 561-570.
[15] D. Nemzer, Periodic Boehmians, Int. J. Math. Math. Sci. 12 (1989), no. 4, 685-692.
[16]
__ , Periodic Boehmians. II, Bull. Austral. Math. Soc. 44 (1991), no. 2, 271-278.
[17] , The Laplace transform on a class of Boehmians, Bull. Austral. Math. Soc. 46 (1992), no. 2, 347-352.
[18] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
R. Roopkumar: School of Mathematics, Madurai Kamaraj University, Madurai 625021, India

