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WAVELET ANALYSIS ON A BOEHMIAN SPACE
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We extend the wavelet transform to the space of periodic Boehmians and discuss
some of its properties.
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1. Introduction. The concept of Boehmians was introduced by J. Mikusinski
and P. Mikusinski [7], and the space of Boehmians with two notions of conver-
gences was well established in [8]. Many integral transforms have been ex-
tended to the context of Boehmian spaces, for example, Fourier transform
[9, 10, 11], Laplace transform [13, 17], Radon transform [14], and Hilbert trans-
form [3, 5].

On the other hand, the theory of wavelet transform is recently developed,
and it has various applications in signal processing, especially to analyze non-
stationary signals by providing the time-frequency representation of the sig-
nal. For a fixed g € $%(R), called a mother wavelet, the wavelet transform
gy F2(R) — LZ(RxRT) is defined by

o,(f)(a,b) = Jjo f(xX)gap(x)dx fora>0, beR, (1.1)

where gqp(x) = (1/\/a)g((x—b)/a), x € R, are called wavelets. For more
details, we refer the reader to [6]. In [4], we extended the wavelet transform to
a Boehmian space which properly contains $?(R) and studied its properties.

Holschneider [2] introduced the wavelet transform on the space C*(T) of
smooth functions on the unit circle T of the complex plane and gave an ex-
tension to the space of periodic distributions. In Section 2, we fix some no-
tations and discuss the theory of wavelet transform on C*(T). In Section 3,
we briefly recall the periodic Boehmians, construct a new Boehmian space
B(L(Y),(C*(T),*),0,A), and verify some auxiliary results. In Section 4, we
define wavelet transform on the space of periodic Boehmians and prove that
it is consistent with the wavelet transform on C®(T). Further, we establish
that the extended wavelet transform is linear and continuous with respect to
d-convergence as well as A-convergence.
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2. Preliminaries. The space C®(T) consists of infinitely differentiable, pe-
riodic functions on R of period 21T, with the Fréchet space topology induced
by the increasing sequence of seminorms

n

Illcsmm= > sup |3Pp(0)]. (2.1)
p=0 te[0,21]
We know that
C*(M=CX(T)aC>(T) ®K(T), (2.2)

where C?(T) and C2(T) are the subspaces consisting of functions with pos-
itive and negative Fourier coefficients, respectively, and K(T) is the space of
constant functions.

Let ¥(R) denote the space of rapidly decreasing functions on R. (See [1].)
Given f € ¥(R), b € [0,21], and a > 0, define f,, fr.a € C*(T) by

falx)=> if(%)

nez

fra(x) = fa(x=b), xe€[0,21].

, xe€l[0,2m],
(2.3)

Let $(Y) denote the Fréchet space of all smooth functions n(b,a) of rapid
descent on R X R* which are periodic functions in the variable b of period 21,
with the following directed family of seminorms:

N1l vym,ep = Z sup sup |apa(llall§n(b’a)|_ (2.4)
O<p=<n a>0 bel0,2m]

O<l=«x
0<k<p

We choose a mother wavelet g € $(R) with all moments [~ x"g(x)dx are
equal to zero.

DEFINITION 2.1. The wavelet transform T, : C*(T) — (V) is defined by

21

Ty(Pp) = . P (xX)gpa(x)dx, beR, a>D0. (2.5)

THEOREM 2.2. The wavelet transform T, : C*(T) — $(Y) is continuous and
linear.

DEFINITION 2.3. The map Ry : ¥(Y) — C*(T) is defined by

dadb

2T oo
(Rgn)(x>=J0 JO a2, (2.6)
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THEOREM 2.4. The map Ry : ¥ (Y) — C*(T) is continuous and linear.
A partial inversion formula is given by the following theorem.

THEOREM 2.5. Ifg is the Fourier transform of g and C§ = j0°° 1§(a)|?(da/a),
C, =I5 1g(-a)>(da/a), then

RgoTyp=Cyb, Vb Co(T),
RyoTyp = Cyp, Vep € CX(T).

(2.7)

3. Boehmian spaces. The triplet (C*(T), *,A), where x : C®(T) X C®(T) —
C>(T) is defined by

2t

(p*xy)(x) = . P(x-tyt)dt, xe[0,2m] (3.1)

and A is the collection of all sequences () from C*(T) satisfying

(1) [3" Sk (t)dt =1 for all k € N,

() fozn |85k (t)|dt < M for all k € N, for some M > 0,

(3) s(6k) — 0 as n — o where s(dy) = sup{t € [0,21]: 5k (t) # 0},
is the collection of all equivalence classes [¢r/0x] given by the equivalence
relation ~ defined by

((r), (0k)) ~ ((Pr), (k) if pr*xe€j=;* 0k Vk,jEN (3.2)

on the collection « of pair of sequences ((¢px), (Ok)), dn € C*(T), (6x) € A
satisfying

Pr*k0;j=¢j*0k, Vk,jeEN. 3.3)

This triplet with addition and scalar multiplication, defined by
[w]

R i e

8] []

is called the periodic Boehmian space [15, 16], and we denote it by %y.

(3.4)

DEFINITION 3.1 (5-convergence). A sequence (x,) 6-converges to x in
%, denoted by x, % xasn— o in Rt if there exists (6x) € A such that
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Xn*k Ok, X kO € C*(T), and for each k € N,
Xp*k O — X %0 asmn — oo in C°(T). (3.5)

The following theorem is proved in [8].

THEOREM 3.2. Let x,, x € B, n € N. x, LA x asn — oo in By if and only
if there exist ¢y, pr € C*(T) such that x, = [Pni/Ok],[Pr/6k] and, for each
keN,

Pnk — Px asn — oo in C*(T). (3.6)

DEFINITION 3.3 (A-convergence). A sequence (x;,) A-converges to x in R,
denoted by x,, 2 xasn—oin % if there exists a delta-sequence (5,) such
that (x,, —x) %6, € C*(T) for each n € N and

(xpn—x)%6, —0 asn— oo in C*(T). (3.7)

Now, we construct a new Boehmian space as follows.
As in the context of Boehmian space defined in [12], we take the vector space
I' and the commutative semi-group as ¥(Y) and (C*(T), *), respectively.

DEFINITION 3.4. Given n € ¥(Y) and ¢ € C*(T), define

21
(nod)(b,a) = jo n(b—t,a)b(t)dt. (3.8)

LEMMA 3.5. Ifne ¥ (Y) and p € C*(T), thenno ¢ € F(Y).

PROOF. To prove that (n®¢)(b,a) is infinitely differentiable, we show that

0a(no)(b,a) = (danod)(b,a),

3.9
op(nod)(b,a) = (dpno¢P)(b,a). 39

Fix ag > 0, by € R arbitrarily.

Consider ((n @ ¢)(bo,a) — (n © $)(bo,a0))/(a — ao) = o™ (n(bo —t,a) —
n(bo—t,ap))/(a—ap)p(t)dt. Using the mean-value theorem (in the variable
a), we get that the integrand is dominated by [nllyv).0.1,0ll®llc=(1),0- Therefore,
we can apply Lebesgue dominated convergence theorem [18], and we get

T n(bo—t,a) —n(bo—t,ao)

da(no @) (bo,ao) = lim ¢ (t)dt
a—aop Jo a—aop
21
0 a-ap a—aop (3.10)
21

=], 0an(bo—t,ao)p(t)dt
= (0ano ) (bo,ao).
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By a similar argument, we can prove that d,(no ¢)(b,a) = (0pno ¢p)(b,a).
Finally by a routine manipulation, we get

Ine @lywim,es < Pllerm Inllywmess (3.11)

where ([}l 1) = 02" |¢p(t)|dt. Hence, no ¢ € F(Y). O
LEMMA 3.6. Ifne %(Y) and (6,,) € A, thennod, — ¢ asn — « in F(Y).

PROOF. Let p,k,l € Ny be arbitrary. Using the mean-value theorem and a
property of d-sequence, we get

|aPdlok(nody—n)(b,a)| = |a? ((8405n) ©8,) (b,a) —a’dLokn(b,a)|
2m
sj la? (2Lokn(b—t,a) - aLakn(b,a))6n () | dt
0

21T
< ||n|\y(v>;p,z,k+ljo 1t116,(0) | dt

<Ms(6n)Inllyvyp ik
(3.12)

which tends to 0 as n — . This completes the proof of the lemma. |

LEMMA 3.7. Ifn, - nasn— o in¥(Y) andy € C°(T), thenn, oy — noy
asmn — oo,

PROOF. Let p,k,l € Ny be arbitrary. Now,

laPdlok(nnow-noy)(b,a)]

21
sfo a’ [oLof (nn—n)(b,a)| |w(t)|dt (3.13)

< l@llgrm e =nllywypix — 0 asn — oo

Hence, the lemma follows. O

LEMMA 3.8. Ifn, — nasn — « in $(Y) and 6, € A, then N, © 6, — n as

n — oo,

PROOF. Since we have n,, 06, - N =N, 06, -N©d, +Nn® 6, — n and
Lemma 3.6, we merely prove that n,,©6, —n®d, — 0 as n — oo.
If p,k,l € Ny, then, using a property of delta-sequence, we get

|aPdlok(nn—n)odn(b,a)]

o (3.14)
<|Inu=nllyvyp.ix [0n () [dt < M|Inw—=nllyv)p1k-
0

The above inequalities prove the lemma. ]
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Now using the above lemmas we can construct the Boehmian space %By =
(Pv,(C™,%*),0,A) in a canonical way.

4. Generalized wavelet transform

DEFINITION 4.1. Define 7, : By — By by

o[22 -]

THEOREM 4.2. The generalized wavelet transform J 45 : Bt — By is well de-
fined.

First, we state and prove a lemma that will be useful.
LEMMA 4.3. If ¢, € C*(T), then Ty(Pp*xy) = Tgpo y.

PROOF. Leta € R" and b € R be arbitrary. Now

21
T, (% ) (b,a) = JO (% 1) (X)ga (X —b)dx

21 21

=1, Ja(x—b)dx . d(x—t)y(t)dt.

By an easy verification, we can apply Fubini’s theorem and the last integral
equals

21 21

Y(t)dt . d(x—t)ga(x—b)dx

21 21 -
= |, wwar] " b0galx—b-D)dx (4.3)
= (Typoy)(b,a).
O

PROOF OF THEOREM 4.2. First, we show that ((T;¢x),(8,)) is a quotient.
Since [¢,,/0,] € B, we have

d)k*éj:d)j*ék, Vj,kEN. (4.4)
Applying the classical wavelet transform T, on both sides, we get
Typr00j=T4pj0pr, Vj,keN (byLemma 4.3). (4.5)

Next, we show that the definition of 7, is independent of the choice of the
representative.
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Let [pr/€x] = [Wi/Ok] in By. Then, we have
pr*ke;j=wji*kor, VjkeN. (4.6)
Again, applying the wavelet transform and using Lemma 4.3, we get
Tgbr0€j=T4Pj00k, VjkeN. 4.7)

Hence, the theorem follows. O

THEOREM 4.4 (consistency). Let $1:C®(T) — Bt and $v : F(Y) — By be the
canonical identification defined, respectively, by

o[58 0[]

where (6,) € A, then T go$1 = JyoTy.

PROOF. Let ¢ € C*(T), then

To(91(d) =T <[¢*5"]>:[T9(¢*5n)]

On On
- [ ¢®5"] (by Lemma 4.3) (4.9)
Iy (Ty()). o
THEOREM 4.5. The wavelet transform J 4 : By — By is a linear map.

PROOF. If [Py /0n],[WYn/€n] € By, then

[ (2] o[- [ean)

|:Tg¢n®€n+Tg(//n®5n] _ [Tg¢n]+ |:Tg(//n]
611*611 6;1 €n

~aa([52]) e[ 22])
If x e Cand [¢p,/6n] € By, then
o(al 52 ]) o[ ]) - 5] - [
- 5] o [ ),

In the above proof, we have used the fact that T, is linear wherever it is
required. ]

(4.10)

Lﬁ

(4.11)
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From the following two theorems, we say that the generalized wavelet trans-
form is continuous with respect to 6-convergence as well as A-convergence.

5 . 5 ,
THEOREM 4.6. If x, — x as n — o in By, then Ty3xn, — Tgx asn — o in
By .

PrROOF. If x, A x as n — oo, then, by Theorem 3.2, there exist ¢uk, Pk €
C>(T) and (6x) € A such that x,, = [Pnx/0k] and x = [P /k] and, for each
keN, pyr— Prasn — coin C*(T).

By the continuity of the classical wavelet transform, we have, for each k € N,

Typnk — Tygpx asn — oo in Sy. (4.12)

Since Ty (xn) = [Tybn /0] and T (x) = [Tyi/Sx], we get Ty (xn) > Ty (x)
as n — o. Hence, the theorem follows. O

A , A .
THEOREM 4.7. If x,, — x asn — oo in By, then Tyxn, — Tgx asn — o in
By.

PROOF. Let x,, 2 xasn— win %B1. Then, by definition, we can find ¢, €
C>(T) and (64) € A such that (x,, —Xx) * 0y = [Py * Ok /0x] and

¢n— 0 asn — 0in C*(T). (4.13)
Applying the classical wavelet transform and using Lemma 4.3, we get

Typn — 0 asn— 0in F(Y). (4.14)
Hence, we get J gxy, 2 Tgx asn — oo in PBy. O

LEMMA 4.8. Ifn € ¥(Y) and ¢p € C*(T), then Ry(n® ) = Ryn * ¢.

PrOOF. Using Fubini’s theorem, we get

dadb
a

21T (o)
Ry (N0 ) (x) =L L dalx—b)(nod)(b,a)

21 oo dadb 21
:JO L g“(x_b)TJo n(b—t,a)p(t)dt

2m om o dadb

=] ewar [ gatx-pinb-ta
Zn 2 oo dadc

=1, d)(t)dtJ'0 Jo ga((x—t)—c)r/(c,a)T (b-t=c)
21

=y Ryn(x—-t)p(t)dt

= (Rgn* ¢)(x).

(4.15)
O
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Therefore, we can give the following definition.

DEFINITION 4.9. Define R : By — By by

‘%g([%]) - [RZZ”]- (4.16)

THEOREM 4.10. The map R, : By — By is linear.

THEOREM 4.11. The map Ry : By — By is continuous with respect to 6-
convergence as well as A-convergence.

Using Lemma 4.8 and Theorem 2.4, we get a proof similar to that of Theo-
rems 4.6 and 4.7.

THEOREM 4.12 (an inversion formula). If x = [¢,/0,] € By such that ¢, €
CT,(T) for alln € N, then

RgoTy(x)=Ch 7 x. (4.17)

PROOF. Now,

%c%(x):@zgq%]) _ [M]

on on
O (4.18)
_ Cg_d’n], +(—)[¢n], +(-)
—[ 5 =Cy o =C, ' x. .
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