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We extend the wavelet transform to the space of periodic Boehmians and discuss
some of its properties.
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1. Introduction. The concept of Boehmians was introduced by J. Mikusiński

and P. Mikusiński [7], and the space of Boehmians with two notions of conver-

gences was well established in [8]. Many integral transforms have been ex-

tended to the context of Boehmian spaces, for example, Fourier transform

[9, 10, 11], Laplace transform [13, 17], Radon transform [14], and Hilbert trans-

form [3, 5].

On the other hand, the theory of wavelet transform is recently developed,

and it has various applications in signal processing, especially to analyze non-

stationary signals by providing the time-frequency representation of the sig-

nal. For a fixed g ∈ �2(R), called a mother wavelet, the wavelet transform

Φg : �2(R)→�2(R×R+) is defined by

Φg(f )(a,b)=
∫∞
−∞
f(x)ga,b(x)dx for a> 0, b ∈R, (1.1)

where ga,b(x) = (1/√a)g((x−b)/a), x ∈ R, are called wavelets. For more

details, we refer the reader to [6]. In [4], we extended the wavelet transform to

a Boehmian space which properly contains �2(R) and studied its properties.

Holschneider [2] introduced the wavelet transform on the space C∞(T) of

smooth functions on the unit circle T of the complex plane and gave an ex-

tension to the space of periodic distributions. In Section 2, we fix some no-

tations and discuss the theory of wavelet transform on C∞(T). In Section 3,

we briefly recall the periodic Boehmians, construct a new Boehmian space

�(�(Y),(C∞(T),∗),�,∆), and verify some auxiliary results. In Section 4, we

define wavelet transform on the space of periodic Boehmians and prove that

it is consistent with the wavelet transform on C∞(T). Further, we establish

that the extended wavelet transform is linear and continuous with respect to

δ-convergence as well as ∆-convergence.

http://dx.doi.org/10.1155/S0161171203205184
http://dx.doi.org/10.1155/S0161171203205184
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


918 R. ROOPKUMAR

2. Preliminaries. The space C∞(T) consists of infinitely differentiable, pe-

riodic functions on R of period 2π , with the Fréchet space topology induced

by the increasing sequence of seminorms

‖φ‖C∞(T);n =
n∑
p=0

sup
t∈[0,2π]

∣∣∂pφ(t)∣∣. (2.1)

We know that

C∞(T)= C∞+ (T)⊕C∞− (T)⊕K(T), (2.2)

where C∞+ (T) and C∞− (T) are the subspaces consisting of functions with pos-

itive and negative Fourier coefficients, respectively, and K(T) is the space of

constant functions.

Let �(R) denote the space of rapidly decreasing functions on R. (See [1].)

Given f ∈�(R), b ∈ [0,2π], and a> 0, define fa,fb,a ∈ C∞(T) by

fa(x)=
∑
n∈Z

1
a
f
(
x+2nπ
a

)
, x ∈ [0,2π],

fb,a(x)= fa(x−b), x ∈ [0,2π].
(2.3)

Let �(Y) denote the Fréchet space of all smooth functions η(b,a) of rapid

descent on R×R+ which are periodic functions in the variable b of period 2π ,

with the following directed family of seminorms:

‖η‖�(Y);n,α,β =
∑

0≤p≤n
0≤l≤α
0≤k≤β

sup
a>0

sup
b∈[0,2π]

∣∣ap∂la∂kbη(b,a)
∣∣. (2.4)

We choose a mother wavelet g ∈ �(R) with all moments
∫∞
−∞xng(x)dx are

equal to zero.

Definition 2.1. The wavelet transform Tg : C∞(T)→�(Y) is defined by

Tg(φ)=
∫ 2π

0
φ(x)gb,a(x)dx, b ∈R, a > 0. (2.5)

Theorem 2.2. The wavelet transform Tg : C∞(T)→ �(Y) is continuous and

linear.

Definition 2.3. The map Rg : �(Y)→ C∞(T) is defined by

(
Rgη

)
(x)=

∫ 2π

0

∫∞
0
gb,a(x)η(b,a)

dadb
a

. (2.6)
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Theorem 2.4. The map Rg : �(Y)→ C∞(T) is continuous and linear.

A partial inversion formula is given by the following theorem.

Theorem 2.5. If ĝ is the Fourier transform of g and C+g =
∫∞
0 |ĝ(a)|2(da/a),

C−g =
∫∞
0 |ĝ(−a)|2(da/a), then

Rg ◦Tgφ= C+g φ, ∀φ∈ C∞+ (T),
Rg ◦Tgφ= C−g φ, ∀φ∈ C∞− (T).

(2.7)

3. Boehmian spaces. The triplet (C∞(T),∗,∆), where ∗ : C∞(T)×C∞(T)→
C∞(T) is defined by

(φ∗ψ)(x)=
∫ 2π

0
φ(x−t)ψ(t)dt, x ∈ [0,2π] (3.1)

and ∆ is the collection of all sequences (δk) from C∞(T) satisfying

(1)
∫ 2π
0 δk(t)dt = 1 for all k∈N,

(2)
∫ 2π
0 |δk(t)|dt ≤M for all k∈N, for some M > 0,

(3) s(δk)→ 0 as n→∞ where s(δk)= sup{t ∈ [0,2π] : δk(t) �= 0},
is the collection of all equivalence classes [φk/δk] given by the equivalence

relation ∼ defined by

((
φk
)
,
(
δk
))∼ ((ψk),(εk)) if φk∗εj =ψj∗δk ∀k,j ∈N (3.2)

on the collection � of pair of sequences ((φk),(δk)), φn ∈ C∞(T), (δk) ∈ ∆
satisfying

φk∗δj =φj∗δk, ∀k,j ∈N. (3.3)

This triplet with addition and scalar multiplication, defined by

[
φk
δk

]
+
[
ψk
εk

]
=
[
φk∗εk+ψk∗δk

δk∗εk
]
,

α
[
φk
δk

]
=
[
αφk
δk

]
,

(3.4)

is called the periodic Boehmian space [15, 16], and we denote it by �T.

Definition 3.1 (δ-convergence). A sequence (xn) δ-converges to x in

�T, denoted by xn
δ
�����→ x as n → ∞ in �T if there exists (δk) ∈ ∆ such that
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xn∗δk, x∗δk ∈ C∞(T), and for each k∈N,

xn∗δk �→ x∗δk as n �→∞ in C∞(T). (3.5)

The following theorem is proved in [8].

Theorem 3.2. Let xn, x ∈ �T, n ∈ N. xn
δ
�����→ x as n→∞ in �T if and only

if there exist φn,k,φk ∈ C∞(T) such that xn = [φn,k/δk],[φk/δk] and, for each

k∈N,

φn,k �→φk as n �→∞ in C∞(T). (3.6)

Definition 3.3 (∆-convergence). A sequence (xn) ∆-converges to x in �T,

denoted by xn
∆
���������→ x as n→∞ in �T if there exists a delta-sequence (δn) such

that (xn−x)∗δn ∈ C∞(T) for each n∈N and

(
xn−x

)∗δn �→ 0 as n �→∞ in C∞(T). (3.7)

Now, we construct a new Boehmian space as follows.

As in the context of Boehmian space defined in [12], we take the vector space

Γ and the commutative semi-group as �(Y) and (C∞(T),∗), respectively.

Definition 3.4. Given η∈�(Y) and φ∈ C∞(T), define

(η�φ)(b,a)=
∫ 2π

0
η(b−t,a)φ(t)dt. (3.8)

Lemma 3.5. If η∈�(Y) and φ∈ C∞(T), then η�φ∈�(Y).

Proof. To prove that (η�φ)(b,a) is infinitely differentiable, we show that

∂a(η�φ)(b,a)=
(
∂aη�φ

)
(b,a),

∂b(η�φ)(b,a)=
(
∂bη�φ

)
(b,a).

(3.9)

Fix a0 > 0, b0 ∈R arbitrarily.

Consider ((η �φ)(b0,a) − (η �φ)(b0,a0))/(a − a0) =
∫ 2π
0 (η(b0 − t,a) −

η(b0− t,a0))/(a−a0)φ(t)dt. Using the mean-value theorem (in the variable

a), we get that the integrand is dominated by ‖η‖�(Y);0,1,0‖φ‖C∞(T),0. Therefore,

we can apply Lebesgue dominated convergence theorem [18], and we get

∂a(η�φ)
(
b0,a0

)= lim
a→a0

∫ 2π

0

η
(
b0−t,a

)−η(b0−t,a0
)

a−a0
φ(t)dt

=
∫ 2π

0
lim
a→a0

η
(
b0−t,a

)−η(b0−t,a0
)

a−a0
φ(t)dt

=
∫ 2π

0
∂aη

(
b0−t,a0

)
φ(t)dt

= (∂aη�φ)(b0,a0
)
.

(3.10)
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By a similar argument, we can prove that ∂b(η�φ)(b,a) = (∂bη�φ)(b,a).
Finally by a routine manipulation, we get

‖η�φ‖�(Y);n,α,β ≤ ‖φ‖�1(T)‖η‖�(Y);n,α,β, (3.11)

where ‖φ‖�1(T) =
∫ 2π
0 |φ(t)|dt. Hence, η�φ∈�(Y).

Lemma 3.6. If η∈�(Y) and (δn)∈∆, then η�δn→φ as n→∞ in �(Y).

Proof. Let p,k,l ∈ N0 be arbitrary. Using the mean-value theorem and a

property of δ-sequence, we get

∣∣ap∂la∂kb(η�δn−η)(b,a)
∣∣= ∣∣ap((∂la∂kbη)�δn)(b,a)−ap∂la∂kbη(b,a)

∣∣

≤
∫ 2π

0

∣∣ap(∂la∂kbη(b−t,a)−∂la∂kbη(b,a))δn(t)
∣∣dt

≤ ‖η‖�(Y);p,l,k+1

∫ 2π

0
|t|∣∣δn(t)∣∣dt

≤Ms(δn)‖η‖�(Y);p,l,k+1,
(3.12)

which tends to 0 as n→∞. This completes the proof of the lemma.

Lemma 3.7. If ηn→ η as n→∞ in �(Y) andψ∈ C∞(T), then ηn�ψ→ η�ψ
as n→∞.

Proof. Let p,k,l∈N0 be arbitrary. Now,

∣∣ap∂la∂kb(ηn�ψ−η�ψ)(b,a)
∣∣

≤
∫ 2π

0
ap
∣∣∂la∂kb(ηn−η)(b,a)

∣∣∣∣ψ(t)∣∣dt
≤ ‖ψ‖�1(T)

∥∥ηn−η∥∥�(Y);p,l,k �→ 0 as n �→∞.

(3.13)

Hence, the lemma follows.

Lemma 3.8. If ηn → η as n → ∞ in �(Y) and δn ∈ ∆, then ηn�δn → η as

n→∞.

Proof. Since we have ηn � δn − η = ηn � δn − η � δn + η � δn − η and

Lemma 3.6, we merely prove that ηn�δn−η�δn→ 0 as n→∞.

If p,k,l∈N0, then, using a property of delta-sequence, we get

∣∣ap∂la∂kb(ηn−η)�δn(b,a)
∣∣

≤ ∥∥ηn−η∥∥�(Y);p,l,k

∫ 2π

0

∣∣δn(t)∣∣dt ≤M∥∥ηn−η∥∥�(Y);p,l,k.
(3.14)

The above inequalities prove the lemma.
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Now using the above lemmas we can construct the Boehmian space �Y =
(�Y,(C∞,∗),�,∆) in a canonical way.

4. Generalized wavelet transform

Definition 4.1. Define �g : �T→�Y by

�g

([
φn
δn

])
=
[Tgφn
δn

]
. (4.1)

Theorem 4.2. The generalized wavelet transform �g : �T →�Y is well de-

fined.

First, we state and prove a lemma that will be useful.

Lemma 4.3. If φ,ψ∈ C∞(T), then Tg(φ∗ψ)= Tgφ�ψ.

Proof. Let a∈R+ and b ∈R be arbitrary. Now

Tg(φ∗ψ)(b,a)=
∫ 2π

0
(φ∗ψ)(x)ga(x−b)dx

=
∫ 2π

0
ga(x−b)dx

∫ 2π

0
φ(x−t)ψ(t)dt.

(4.2)

By an easy verification, we can apply Fubini’s theorem and the last integral

equals

∫ 2π

0
ψ(t)dt

∫ 2π

0
φ(x−t)ga(x−b)dx

=
∫ 2π

0
ψ(t)dt

∫ 2π

0
φ(x)ga

(
x−(b−t))dx

= (Tgφ�ψ)(b,a).

(4.3)

Proof of Theorem 4.2. First, we show that ((Tgφn),(δn)) is a quotient.

Since [φn/δn]∈�T, we have

φk∗δj =φj∗δk, ∀j,k∈N. (4.4)

Applying the classical wavelet transform Tg on both sides, we get

Tgφk�δj = Tgφj�φk, ∀j,k∈N (by Lemma 4.3). (4.5)

Next, we show that the definition of �g is independent of the choice of the

representative.
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Let [φk/εk]= [ψk/δk] in �T. Then, we have

φk∗εj =ψj∗δk, ∀j,k∈N. (4.6)

Again, applying the wavelet transform and using Lemma 4.3, we get

�gφk�εj =�gψj�δk, ∀j,k∈N. (4.7)

Hence, the theorem follows.

Theorem 4.4 (consistency). Let �T : C∞(T)→�T and �Y : �(Y)→�Y be the

canonical identification defined, respectively, by

φ � �→
[
φ∗δn
δn

]
, η � �→

[
η�δn
δn

]
, (4.8)

where (δn)∈∆, then �g ◦�T = �Y ◦Tg .

Proof. Let φ∈ C∞(T), then

�g
(
�T(φ)

)=�g

([
φ∗δn
δn

])
=
[Tg(φ∗δn)

δn

]

=
[Tgφ�δn

δn

]
(by Lemma 4.3)

= �Y
(
Tg(φ)

)
.

(4.9)

Theorem 4.5. The wavelet transform �g : �T→�Y is a linear map.

Proof. If [φn/δn],[ψn/εn]∈�T, then

�g

([
φn
δn

]
+
[
ψn
εn

])
=�g

([
φn∗εn+ψn∗δn

δn∗εn
])
=
[Tg(φn∗εn+ψn∗δn)

δn∗εn
]

=
[Tgφn�εn+Tgψn�δn

δn∗εn
]
=
[Tgφn
δn

]
+
[Tgψn
εn

]

=�g

([
φn
δn

])
+�g

([
ψn
εn

])
.

(4.10)

If α∈ C and [φn/δn]∈�T, then

�g

(
α
[
φn
δn

])
=�g

([
αφn
δn

])
=
[Tg(αφn)

δn

]
=
[αTgφn

δn

]

=α
[Tgφn
δn

]
=α�g

([
φn
δn

])
.

(4.11)

In the above proof, we have used the fact that Tg is linear wherever it is

required.
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From the following two theorems, we say that the generalized wavelet trans-

form is continuous with respect to δ-convergence as well as ∆-convergence.

Theorem 4.6. If xn
δ
�����→ x as n → ∞ in �T, then �gxn

δ
�����→ �gx as n → ∞ in

�Y.

Proof. If xn
δ
�����→ x as n → ∞, then, by Theorem 3.2, there exist φn,k,φk ∈

C∞(T) and (δk) ∈ ∆ such that xn = [φn,k/δk] and x = [φk/δk] and, for each

k∈N, φn,k→φk as n→∞ in C∞(T).
By the continuity of the classical wavelet transform, we have, for each k∈N,

Tgφn,k �→ Tgφk as n �→∞ in �Y. (4.12)

Since �g(xn)= [Tgφn,k/δk] and �g(x)= [Tgφk/δk], we get �g(xn)
δ
�����→�g(x)

as n→∞. Hence, the theorem follows.

Theorem 4.7. If xn
∆
���������→ x as n → ∞ in �T, then �gxn

∆
���������→ �gx as n → ∞ in

�Y.

Proof. Let xn
∆
���������→ x as n→∞ in �T. Then, by definition, we can find φn ∈

C∞(T) and (δn)∈∆ such that (xn−x)∗δn = [φn∗δk/δk] and

φn �→ 0 as n �→ 0 in C∞(T). (4.13)

Applying the classical wavelet transform and using Lemma 4.3, we get

Tgφn �→ 0 as n �→ 0 in �(Y). (4.14)

Hence, we get �gxn
∆
���������→�gx as n→∞ in �Y.

Lemma 4.8. If η∈�(Y) and φ∈ C∞(T), then Rg(η�φ)= Rgη∗φ.

Proof. Using Fubini’s theorem, we get

Rg(η�φ)(x)=
∫ 2π

0

∫∞
0
ga(x−b)(η�φ)(b,a)dadba

=
∫ 2π

0

∫∞
0
ga(x−b)dadba

∫ 2π

0
η(b−t,a)φ(t)dt

=
∫ 2π

0
φ(t)dt

∫ 2π

0

∫∞
0
ga(x−b)η(b−t,a)dadba

=
∫ 2π

0
φ(t)dt

∫ 2π

0

∫∞
0
ga
(
(x−t)−c)η(c,a)dadc

a
(b−t = c)

=
∫ 2π

0
Rgη(x−t)φ(t)dt

= (Rgη∗φ)(x).
(4.15)
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Therefore, we can give the following definition.

Definition 4.9. Define �g : �Y→�T by

�g

([
ηn
δn

])
=
[Rgηn
δn

]
. (4.16)

Theorem 4.10. The map �g : �Y→�T is linear.

Theorem 4.11. The map �g : �Y → �T is continuous with respect to δ-

convergence as well as ∆-convergence.

Using Lemma 4.8 and Theorem 2.4, we get a proof similar to that of Theo-

rems 4.6 and 4.7.

Theorem 4.12 (an inversion formula). If x = [φn/δn]∈�T such thatφn ∈
C∞+(−)(T) for all n∈N, then

�g ◦�g(x)= C+(−)g x. (4.17)

Proof. Now,

�g ◦�g(x)=�g

([Tgφn
δn

])
=
[(Rg ◦Tg)φn

δn

]

=
[C+(−)g φn

δn

]
= C+(−)g

[
φn
δn

]
= C+(−)g x.

(4.18)
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