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This paper deals with a new Gronwall-like integral inequality which is a generaliza-
tion of integral inequalities proved by Engler (1989) and Pachpatte (1992). The new
Gronwall-like integral inequality can be used in various problems in the theory of
certain class of ordinary and integral equations.

2000 Mathematics Subject Classification: 26D10, 26D15.

1. Introduction. It is well known that integral inequalities play a very cru-

cial role in the study of differential equations, integral equations, functional-

differential equations, and integro-differential equations. Besides the famous

Gronwall-Bellman inequality and its first nonlinear generalization by Bihari

(see Bellman and Cooke [1]), there are several other very useful Gronwall-like

inequalities. Haraux [3, Corollary 16, page 139] derived one Gronwall-like in-

equality and used it to prove the existence of solutions of wave equations with

logarithmic nonlinearities. On the other hand, Engler [2] utilized the follow-

ing slight variant of inequality due to Haraux [3, page 139] in the study of

global regular solutions for the dynamic antiplane shear problem in nonlinear

viscoelasticity.

Lemma 1.1. Let c > 0 and a ∈ L1(I = [0,T ], R+ = [0,∞)), and assume that

the function w : I → [1,∞) satisfies

w(t)≤ c
(

1+
∫ t

0
a(s)w(s) logw(s)ds

)
, 0≤ t ≤ T , (1.1)

then

w(t)≤ c exp

(∫ t
0
a(s)ds

)
, 0≤ t ≤ T . (1.2)

Pachpatte [4] obtained one generalization of Lemma 1.1 which can be stated

as follows.
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Lemma 1.2. Let pi ∈ L1(I,R0 = (0,∞)) and p ∈ L1(I,R+). Let g be a con-

tinuously differentiable function defined on R+, and g > 0 and g′ ≥ 0 on R0. If

u : I →R1 = [1,∞) satisfies

u(t)≤u0+H
[
t,p1,p2, . . . ,pn−1,pug(logu)

]
, t ∈ [0,T ], (1.3)

where u0 ≥ 1 is a constant,

H
[
t,p1,p2, . . . ,pn−1,pug(logu)

]

=
∫ t

0
p1
(
t1
)∫ t1

0
p2
(
t2
)···

∫ tn−2

0
pn−1

(
tn−1

)∫ tn−1

0
pug(logu)dtn ···dt2dt1,

(1.4)

then, for 0≤ t ≤ t1, t,t1 ∈ [0,T ],

u(t)≤ expG−1
[
G
(
logu0

)+H[t,p1,p2, . . . ,pn−1,p
]]
, (1.5)

where

G(r)=
∫ r
r0

ds
g(s)

, r0 > 0, r ≥ r0, (1.6)

G−1 is the inverse of G and t1 is chosen so that

G
(
logu0

)+H[t,p1,p2, . . . ,pn−1,p
]∈Dom

(
G−1) (1.7)

for t ∈ [0, t1], t1 ∈ [0,T ].
The aim of the present paper is to establish a new generalization of all the

inequalities discussed in the above lemmas. One application example is also

included.

2. Main results. For convenience, we give some basic notations and defini-

tions which will be used in our subsequent discussion. Let I = [0,T ], T > 0, be

finite but can be arbitrarily large. LetR= (−∞,∞),R+ = [0,∞),R0 = (0,∞), and

R1 = [1,∞). We denote by L1(I,R) the class of all measurable functionsp(t) de-

fined on the set I and with range in the set R with satisfying
∫ T
0 |p(t)|dt <∞,

and denote by Ck(M,S) the class of all k-times continuously differentiable

functions on the set M with range in the set S. We define the differential oper-

ators Li, 0≤ i≤n, by

L0x(t)= x(t), Lix(t)= 1
pi(t)

d
dt
(
Li−1x(t)

)
, 1≤ i≤n, (2.1)
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with pn(t)= 1, where x(t) and pi(t) > 0 are some functions defined on I. For

t ∈ I and some functions qj(t) > 0, j = 1, . . . ,n−1 and q(t) ≥ 0 defined on I,
we define

H
[
t,q1,q2, . . . ,qn−1,q

]=
∫ t

0
q1
(
t1
)∫ t1

0
q2
(
t2
)···

∫ tn−1

0
q
(
tn
)
dtndtn−1 ···dt1,

(2.2)

where t0 = t.
A more generalized version of the inequality appearing in Lemma 1.2 is given

in the following theorem.

Theorem 2.1. Let pi ∈ L1(I,R0) and p ∈ L1(I,R+). Let further g(t) ∈
C1(R+,R+) with satisfying g > 0 and g′ ≥ 0 on R0 and ϕ ∈ C2(R+,R+) with

ϕ′(u) > 0 for u> 0 and nondecreasing. If u : I →R+ satisfies

ϕ
(
u(t)

)≤u0+H
[
t,p1,p2, . . . ,pn−1,pϕ′(u)g(u)

]
, t ∈ I, (2.3)

where u0 ≥ 0 is a constant, then, for t ∈ I1 = [0, t1]⊂ I,

u(t)≤G−1[G(ϕ−1(u0
))+H[t,p1,p2, . . . ,pn−1,p

]]
, t ∈ I1, (2.4)

where

G(r)=
∫ r
r0

ds
g(s)

, r0 > 0, r ≥ r0, (2.5)

and G−1 is the inverse function of G and t1 is chosen so that

G
(
ϕ−1(u0

))+H[t,p1,p2, . . . ,pn−1,p
]∈Dom

(
G−1) (2.6)

for t ∈ I1.

Proof. Let ε > 0 be an arbitrary small constant and define on I a nonde-

creasing function

vε(t)=u0+ε+H
[
t,p1,p2, . . . ,pn−1,pϕ′(u)g(u)

]
. (2.7)

From (2.3) and (2.7), we have

u(t)≤ϕ−1(vε(t)), t ∈ I,
vε(0)=u0+ε > 0,

(2.8)

Lnvε(t)= p(t)ϕ′(u(t))g(u(t)). (2.9)

Since ϕ′ and g are nondecreasing, by (2.8) and (2.9), we observe that

Lnvε(t)≤ p(t)ϕ′[ϕ−1(vε(t))]g[ϕ−1(vε(t))]. (2.10)
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Using the fact that vε(t) is positive,

d
dt
(
ϕ′[ϕ−1(vε(t))])=ϕ′′[ϕ−1(vε(t))]× 1

ϕ′(vε(t)) ×
dvε(t)
dt

≥ 0, (2.11)

and Lnvε(t)≥ 0 for t ∈ I, it follows from (2.10) that

Lnvε(t)
ϕ′[ϕ−1

(
vε(t)

)] ≤ p(t)g[ϕ−1(vε(t))]

+ Ln−1vε(t)×(d/dt)
(
ϕ′[ϕ−1

(
vε(t)

)])
ϕ′2[ϕ−1

(
vε(t)

)] ,
(2.12)

that is,

d
dt

(
Ln−1vε(t)

ϕ′[ϕ−1
(
vε(t)

)]
)
≤ p(t)g[ϕ−1(vε(t))]. (2.13)

Integrating (2.13) from 0 to t and using the fact that Ln−1vε(0)= 0 give

Ln−1vε(t)
ϕ′[ϕ−1

(
vε(t)

)] ≤
∫ t

0
p
(
tn
)
g
[
ϕ−1(vε(tn))]dtn. (2.14)

It also follows from (2.14) that

d
dt

(
Ln−2vε(t)

ϕ′[ϕ−1
(
vε(t)

)]
)
≤ pn−1(t)

∫ t
0
p
(
tn
)
g
[
ϕ−1(vε(tn))]dtn, (2.15)

which, upon integrating from 0 to t and using the fact that Ln−2vε(0) = 0,

leads to

Ln−2vε(t)
ϕ′[ϕ−1

(
vε(t)

)] ≤
∫ t

0
pn−1

(
tn−1

)∫ tn−1

0
p
(
tn
)
g
[
ϕ−1(vε(tn))]dtndtn−1.

(2.16)

Repeating the above argument successively, we obtain

(d/dt)vε(t)
ϕ′[ϕ−1

(
vε(t)

)] ≤ p1(t)
∫ t

0
p2
(
t2
)∫ t2

0
p3
(
t3
)···

∫ tn−2

0
pn−1

(
tn−1

)

·
∫ tn−1

0
p
(
tn
)
g
[
ϕ−1(vε(tn))]dtndtn−1 ···dt3dt2.

(2.17)
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For any invertible and continuously differentiable function a(t), by changing

the variable η= a−1(ξ), we have

∫
dξ

a′
[
a−1(ξ)

] =
∫
a′(η)
a′(η)

dη= η+c = a−1(ξ)+c. (2.18)

Using the above fact and integrating (2.17) from 0 to t, we obtain

ϕ−1(vε(t))≤ϕ−1(u0+ε
)+H[t,p1,p2, . . . ,pn−1,pg

[
ϕ−1(vε(t))]]. (2.19)

Define a function w(t) by

w(t)=ϕ−1(u0+ε
)+H[t,p1,p2, . . . ,pn−1,pg

[
ϕ−1(vε(t))]], (2.20)

then

ϕ−1(vε(t))≤w(t), t ∈ I, (2.21)

and w(0)=ϕ−1(u0+ε) > 0.

It follows from (2.19) and (2.21) that

Lnw(t)= p(t)g
[
ϕ−1(vε(t))]≤ p(t)g(w(t)). (2.22)

From (2.22) and using the fact thatg(w(t)) is positive,g′(w(t))≥0, Ln−1w(t)≥
0 for t ∈ I, we observe that

Lnw(t)
g
(
w(t)

) ≤ p(t)+
[
(d/dt)g

(
w(t)

)]·Ln−1w(t)
g2
(
w(t)

) , (2.23)

that is,

d
dt

[
Ln−1w(t)
g
(
w(t)

) ]≤ p(t). (2.24)

Starting with (2.24) and using the same steps as used from (2.13) to (2.17), we

derive that

(d/dt)w(t)
g
(
w(t)

) ≤ p1(t)
∫ t

0
p2
(
t2
)∫ t2

0
p3
(
t3
)···

∫ tn−2

0
pn−1

(
tn−1

)

·
∫ tn−1

0
p
(
tn
)
dtndtn−1 ···dt3dt2.

(2.25)
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Now, by the definition of G, keeping t = t1 and integrating both sides of (2.25)

from 0 to t, give

G
(
w(t)

)≤G(w(0))+H[t,p1,p2, . . . ,pn−1,p
]
, (2.26)

that is,

w(t)≤G−1[G(ϕ−1(u0+ε
))+H[t,p1,p2, . . . ,pn−1,p

]]
, t ∈ I1. (2.27)

The desired bound in (2.4) now follows from (2.8), (2.21), and the last inequality

(2.27), together with the limit ε→ 0.

Corollary 2.2. Suppose that the functions p,p1, . . . ,pn−1 and g are defined

as in Theorem 2.1, and u0 ≥ 1 and k > 0 are constants. If u : I →R1 satisfies

uk(t)≤u0+H
[
t,p1,p2, . . . ,pn−1,pukg(logu)

]
, t ∈ I, (2.28)

then, for t ∈ I2,

u(t)≤ expG−1
[
G
(

1
k

logu0

)
+H

[
t,p1,p2, . . . ,pn−1,

1
k
p
]]
, (2.29)

where G and G−1 are defined as in Theorem 2.1 and I2 = [0, t2]⊂ I, t2 is chosen

so that

G
(

1
k

logu0

)
+H

[
t,p1,p2, . . . ,pn−1,

1
k
p
]
∈Dom

(
G−1). (2.30)

Proof. Changing the variable u= exp(v) in (2.28) leads to

exp(kv)≤u0+H
[
t,p1,p2, . . . ,pn−1,pexp(kv)g(v)

]
=u0+H

[
t,p1,p2, . . . ,pn−1,

p
k
(
exp(kv)

)′g(v)]. (2.31)

This inequality is a special case of Theorem 2.1 whenϕ = exp(kv). By Theorem

2.1, we derive from inequality (2.31) that

v ≤G−1
[
G
(

1
k

logu0

)
+H

[
t,p1,p2, . . . ,pn−1,

1
k
p
]]
, t ∈ I2. (2.32)

This follows inequality (2.29).

Remark 2.3. When k= 1 in Corollary 2.2, we derive the assertion of Lemma

1.2.
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Letting ϕ = uk (k > 1 is a constant) in Theorem 2.1 leads to the following

corollary.

Corollary 2.4. Suppose that the functions u,p,p1, . . . ,pn−1 and g are de-

fined as in Theorem 2.1 and k > 1 is a constant, then the inequality

uk(t)≤u0+H
[
t,p1,p2, . . . ,pn−1,kpuk−1g(u)

]
, t ∈ I, (2.33)

implies

u(t)≤G−1[G(u1/k
0

)+H[t,p1,p2, . . . ,pn−1,kp
]]
, t ∈ I3, (2.34)

where G and G−1 are defined as in Theorem 2.1 and I3 = [0, t3]⊂ I, t3 is chosen

so that

G
(
u1/k

0

)+H[t,p1,p2, . . . ,pn−1,kp
]∈Dom

(
G−1). (2.35)

Remark 2.5. Setting by n = 1, k = 2, g ≡ 1 in Corollary 2.4, we arrive at

Ou-Iang’s integral inequality given in [5].

Remark 2.6. By choosing other suitable special functions toϕ, we get other

interesting inequalities which could not be derived from Lemma 1.2.

3. Application. Consider the differential equation

Lnxk(t)= p(t)xk−1(t)f
(
x(t)

)
, t ∈ I,

Lixk(0)= Ci−1, i= 1,2, . . . ,n,
(3.1)

where k > 1 and Ci−1, 1 ≤ i ≤ n are constants, p and f ∈ C(I,R), and Ln
is defined as in Section 2. It is easy to observe that (3.1) is equivalent to the

integral equation

xk(t)= b(t)+H[t,p1,p2, . . . ,pn−1,pxk−1f(x)
]
, t ∈ I, (3.2)

where

b(t)= C0+
n−1∑
i=1

CiH
[
t,p1, . . . ,pi

]
. (3.3)

If |b(t)| ≤u0 and |f(u)| ≤ g(|u|), whereu0 and g are defined as in Theorem

2.1, then we derive from (3.2) that

∣∣x(t)∣∣k ≤u0+H
[
t,p1,p2, . . . ,pn−1,|p||x|k−1g

(|x|)], t ∈ I. (3.4)
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An application of Corollary 2.4 to inequality (3.4) yields

∣∣x(t)∣∣≤G−1
[
G
(
u1/k

0

)+H[t,p1,p2, . . . ,pn−1,
1
k
|p|

]]
, t ∈ I3∩J(x), (3.5)

where J(x) denotes the maximal existent interval of x(t).
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