K-BESSEL FUNCTIONS IN TWO VARIABLES

HACEN DIB

Received 1 December 2001

Abstract

The Bessel-Muirhead hypergeometric system (or ${ }_{0} F_{1}$-system) in two variables (and three variables) is solved using symmetric series, with an explicit formula for coefficients, in order to express the K-Bessel function as a linear combination of the J -solutions. Limits of this method and suggestions for generalizations to a higher rank are discussed.

2000 Mathematics Subject Classification: 33C20, 33C50, 33C70, 33C80.

1. Introduction. The Bessel functions (of the first kind) defined on the space of real symmetric matrices appeared in the work of James [5] as an ingredient in the expression of some densities in multivariate statistics. At the same time, more systematic treatment was done by Herz [4]. In [8], Muirhead proved that they are solutions of a system of differential operators which will be designated here as Bessel-Muirhead operators following [6]. We can see [1, 3] for the generalization of this set of functions to a Jordan algebra. In what follows, we explicitly write down a fundamental set of solutions when the rank equals 2 or 3 . Our approach is slightly different from [7] in the final form of the coefficients. Then (and this is our main result), we express the K-Bessel function defined in this context as a linear combination of the J-solutions in the rank-2 case, so answering a question in [4].

Definition 1.1. Bessel-Muirhead operators are defined by

$$
\begin{equation*}
B_{i}=x_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}+(v+1) \frac{\partial}{\partial x_{i}}+1+\frac{d}{2} \sum_{j \neq i} \frac{1}{x_{i}-x_{j}}\left(x_{i} \frac{\partial}{\partial x_{i}}-x_{j} \frac{\partial}{\partial x_{j}}\right), \quad 1 \leq i \leq r, \tag{1.1}
\end{equation*}
$$

where r is the rank of the system. A symmetric function f is said to be a Bessel function if it is a solution of $B_{i} f=0, i=1,2, \ldots, r$.

Denote by $t_{1}, t_{2}, \ldots, t_{r}$ the elementary symmetric functions, that is,

$$
\begin{equation*}
t_{p}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{p} \leq r} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}} \tag{1.2}
\end{equation*}
$$

with $t_{0}=1$ and $t_{p}=0$ if $p<0$ or $p>r$. The Bessel-Muirhead system is then equivalent to the system $Z_{k} g=0,1 \leq k \leq r$, (see [1,5]) where

$$
\begin{align*}
& Z_{k}=\sum_{i, j=1}^{r} A_{i j}^{k} \frac{\partial^{2}}{\partial t_{i} \partial t_{j}}+\left(v+1+\frac{r-k}{2} d\right) \frac{\partial}{\partial t_{k}}+\delta_{k}^{1} \tag{1.3}\\
& A_{i j}^{k}= \begin{cases}t_{i+j-k} & \text { if } i, j \geq k, \\
-t_{i+j-k} & \text { if } i, j<k, i+j \geq k \\
0 & \text { elsewhere. }\end{cases} \tag{1.4}
\end{align*}
$$

Here, δ_{k}^{1} is the Kronecker symbol and $g\left(t_{1}, t_{2}, \ldots, t_{r}\right)=f\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.
2. Case $r=2$. In this case, we have $A^{1}=\left(\begin{array}{cc}t_{1} & t_{2} \\ t_{2} & 0\end{array}\right)$, and $A^{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & t_{2}\end{array}\right)$, and the operators in the modified system (1.3) can be written as follows:

$$
\begin{align*}
& t_{1} Z_{1}=\theta_{1}\left(\theta_{1}+2 \theta_{2}+v+\frac{d}{2}\right)+t_{1} \\
& t_{2} Z_{2}=\theta_{2}\left(\theta_{2}+v\right)-t_{2} \frac{\partial^{2}}{\partial t_{1}^{2}} \tag{2.1}
\end{align*}
$$

where $\theta_{1}=t_{1}\left(\partial / \partial t_{1}\right)$ and $\theta_{2}=t_{2}\left(\partial / \partial t_{2}\right)$. The operators θ_{i} are used because their action on powers is easily checked by the rule $\theta_{i} t_{i}^{\alpha}=\alpha t_{i}^{\alpha}$. Now, putting in the system (2.1) a series of the form $S_{\left(\lambda_{1}, \lambda_{2}\right)}\left(t_{1}, t_{2}\right)=\sum_{m_{1}, m_{2} \geq 0} c\left(m_{1}\right.$, $\left.m_{2}\right) t_{1}^{m_{1}+\lambda_{1}} t_{2}^{m_{2}+\lambda_{2}}$, we can write the following system of recurrence formulas:

$$
\begin{gather*}
\left(m_{1}+\lambda_{1}\right)\left(m_{1}+2 m_{2}+\lambda_{1}+2 \lambda_{2}+v+\frac{d}{2}\right) c\left(m_{1}, m_{2}\right)+c\left(m_{1}-1, m_{2}\right)=0 \\
\left(m_{2}+\lambda_{2}\right)\left(m_{2}+\lambda_{2}+v\right) c\left(m_{1}, m_{2}\right) \tag{2.2}\\
-\left(m_{1}+2+\lambda_{1}\right)\left(m_{1}+1+\lambda_{1}\right) c\left(m_{1}+2, m_{2}-1\right)=0
\end{gather*}
$$

Then, we first obtain the system of critical exponents $\left(\lambda_{1}, \lambda_{2}\right)$ when $\left(m_{1}, m_{2}\right)=$ $(0,0)$;

$$
\begin{gather*}
\lambda_{1}\left(\lambda_{1}+2 \lambda_{2}+v+\frac{d}{2}\right)=0, \tag{2.3}\\
\lambda_{2}\left(\lambda_{2}+v\right)=0,
\end{gather*}
$$

which admits, as solutions, the set

$$
\begin{equation*}
\Lambda_{2, v}=\left\{(0,0) ;(0,-v) ;\left(-v-\frac{d}{2}, 0\right) ;\left(v-\frac{d}{2},-v\right)\right\} . \tag{2.4}
\end{equation*}
$$

Now, with the help of the second equation of (2.2), we can express $c\left(m_{1}, m_{2}\right)$ in terms of $c\left(m_{1}+2 m_{2}, 0\right)$ and then in terms of $c(0,0)$ thanks to the first
equation of (2.2). We obtain
$c\left(m_{1}, m_{2}\right)=\frac{(-1)^{m_{1}+2 m_{2}} c(0,0)}{\left(1+\lambda_{1}\right)_{m_{1}}\left(1+\lambda_{2}\right)_{m_{2}}\left(1+\lambda_{2}+v\right)_{m_{2}}\left(1+\lambda_{1}+2 \lambda_{2}+v+d / 2\right)_{m_{1}+2 m_{2}}}$.

Theorem 2.1. For generic v (i.e., $v \notin Z$ and $v \pm d / 2 \notin Z)$, the series $S_{\left(\lambda_{1}, \lambda_{2}\right)}\left(t_{1}\right.$, t_{2}) with $c\left(m_{1}, m_{2}\right)$ as in (2.5) and $\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda_{2, v}$ form a fundamental set of solutions of system (2.1).

Remark 2.2. The convergence of this series is obvious.
3. Case $r=3$. As in the previous case, we have

$$
A^{1}=\left(\begin{array}{ccc}
t_{1} & t_{2} & t_{3} \tag{3.1}\\
t_{2} & t_{3} & 0 \\
t_{3} & 0 & 0
\end{array}\right), \quad A^{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & t_{2} & t_{3} \\
0 & t_{3} & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & -t_{1} & 0 \\
0 & 0 & t_{3}
\end{array}\right),
$$

the modified system (1.3) takes the form

$$
\begin{align*}
& t_{1} Z_{1}=\theta_{1}\left(\theta_{1}+2 \theta_{2}+2 \theta_{3}+v+d\right)+t_{1}+t_{1} t_{3} \frac{\partial^{2}}{\partial t_{2}^{2}} \\
& t_{2} Z_{2}=\theta_{2}\left(\theta_{2}+2 \theta_{3}+v+\frac{d}{2}\right)-t_{2} \frac{\partial^{2}}{\partial t_{1}^{2}} \tag{3.2}\\
& t_{3} Z_{3}=\theta_{3}\left(\theta_{3}+v\right)-2 t_{3} \frac{\partial^{2}}{\partial t_{1} \partial t_{2}}-t_{1} t_{3} \frac{\partial^{2}}{\partial t_{2}^{2}},
\end{align*}
$$

and we obtain the following system of recurrence formulas for the coefficients of a series of the form $\sum_{m_{1}, m_{2}, m_{3} \geq 0} c\left(m_{1}, m_{2}, m_{3}\right) t_{1}^{m_{1}+\lambda_{1}} t_{2}^{m_{2}+\lambda_{2}} t_{3}^{m_{3}+\lambda_{3}}$:

$$
\begin{gather*}
I_{1}(\underline{\lambda}+\underline{m}) c(\underline{m})+c\left(\underline{m}-e_{1}\right)+\left(m_{2}+2+\lambda_{2}\right)\left(m_{2}+1+\lambda_{2}\right) c\left(\underline{m}-e_{1}+2 e_{2}-e_{3}\right)=0, \\
I_{2}(\underline{\lambda}+\underline{m}) c(\underline{m})-\left(m_{1}+2+\lambda_{1}\right)\left(m_{1}+1+\lambda_{1}\right) c\left(\underline{m}+2 e_{1}-e_{2}\right)=0, \\
I_{3}(\underline{\lambda}+\underline{m}) c(\underline{m})-2\left(m_{1}+1+\lambda_{1}\right)\left(m_{2}+1+\lambda_{2}\right) c\left(\underline{m}+e_{1}+e_{2}-e_{3}\right) \\
-\left(m_{2}+2+\lambda_{2}\right)\left(m_{2}+1+\lambda_{2}\right) c\left(\underline{m}-e_{1}+2 e_{2}-e_{3}\right)=0, \tag{3.3}
\end{gather*}
$$

where $\underline{m}=\left(m_{1}, m_{2}, m_{3}\right), \underline{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=$ ($0,0,1$), and

$$
\begin{align*}
& I_{1}(\underline{s})=s_{1}\left(s_{1}+2 s_{2}+2 s_{3}+v+d\right) \\
& I_{2}(\underline{s})=s_{2}\left(s_{2}+2 s_{3}+v+\frac{d}{2}\right) \tag{3.4}\\
& I_{3}(\underline{s})=s_{3}\left(s_{3}+v\right)
\end{align*}
$$

The critical exponents set $\Lambda_{3, v}$ is obtained after solving $I_{1}(\underline{\lambda})=I_{2}(\underline{\lambda})=I_{3}(\underline{\lambda})=$ 0 . Then we have

$$
\Lambda_{3, v}= \begin{cases}(0,0,0) ; & (0,0,-v) \tag{3.5}\\ (-v-d, 0,0) ; & (v-d, 0,-v) \\ \left(0,-v-\frac{d}{2}, 0\right) ; & \left(0, v-\frac{d}{2},-v\right) \\ \left(v,-v-\frac{d}{2}, 0\right) ; & \left(-v, v-\frac{d}{2},-v\right)\end{cases}
$$

Now, by the second equation of (3.3), we can express $c(\underline{m})$ in terms of $c\left(m_{1}+\right.$ $\left.2 m_{2}, 0, m_{3}\right)$. The third equation of (3.3) allows us to express $c\left(m_{1}+2 m_{2}, 0, m_{3}\right)$ by $c\left(m_{1}+2 m_{2}+3 m_{3}, 0,0\right)$, and finally, by the first equation, we regress to $c(0,0,0)$. After all reductions, we obtain

$$
\begin{align*}
c(\underline{m})= & \frac{(-1)^{m_{1}+2 m_{2}+3 m_{3}} c(0)}{\left(1+\lambda_{1}\right)_{m_{1}}\left(1+\lambda_{2}\right)_{m_{2}}\left(1+\lambda_{3}\right)_{m_{3}}\left(1+\lambda_{3}+v\right)_{m_{3}}\left(1+\lambda_{2}+2 \lambda_{3}+v+d / 2\right)_{m_{2}+2 m_{3}}} \\
& \times \frac{\left(1+\lambda_{1}+2 \lambda_{2}+4 \lambda_{3}+2 v+d\right)_{m_{1}+2 m_{2}+4 m_{3}}}{\left(1+\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+v+d\right)_{m_{1}+2 m_{2}+3 m_{3}}} \\
& \times \frac{1}{\left(1+\lambda_{1}+2 \lambda_{2}+4 \lambda_{3}+2 v+d\right)_{m_{1}+2 m_{2}+3 m_{3}}} \tag{3.6}
\end{align*}
$$

and all ingredients to write a theorem like Theorem 2.1.
4. K-Bessel function. As an application, we derive, in the case $r=2$, the expansion of the K-Bessel function in the previous basis (J-functions) of the Bessel system. Recall the one-variable situation (small letters refer to special functions of one variable); the k-Bessel function can be defined by

$$
\begin{equation*}
k_{v}(x)=\int_{0}^{+\infty} \exp \left(-y-\frac{x}{y}\right) y^{-v-1} d y \tag{4.1}
\end{equation*}
$$

If we put

$$
j_{v}(x)={ }_{0} f_{1}\left(\begin{array}{c}
- \tag{4.2}\\
v+1
\end{array} ; x\right)=\sum_{n \geq 0} \frac{(-1)^{n}}{n!(v+1)_{n}} x^{n}
$$

we have the formula

$$
\begin{equation*}
k_{v}(x)=\Gamma(-v) j_{v}(-x)+\Gamma(v) x^{-v} j_{-v}(-x) \tag{4.3}
\end{equation*}
$$

Recall also the Mellin transform of $k_{v}(x)$,

$$
\begin{equation*}
M\left(k_{v}\right)(s)=\int_{0}^{+\infty} k_{v}(x) x^{s-1} d x=\Gamma(s) \Gamma(s-v) \tag{4.4}
\end{equation*}
$$

Now, we write the two-variable situation in a Jordan algebra context. Take an n-dimensional Jordan algebra A of a rank 2, the generic case is $A=\mathbb{R} \times \mathbb{R}^{n-1}$, endowed with the product

$$
\begin{equation*}
x \cdot y=(\xi \eta+\langle u, v\rangle, \xi v+\eta u) \tag{4.5}
\end{equation*}
$$

if $x=(\xi, u), y=(\eta, v)$, and $\langle u, v\rangle=\sum_{1 \leq i \leq n-1} u_{i} v_{i}$. The unit is obviously $e=$ $(1,0)$. Then we have a Cayley-Hamilton-like theorem $x^{2}-2 \xi x+\left(\xi^{2}-\|u\|^{2}\right) e=$ 0 , and we can put $\operatorname{tr}(x)=2 \xi$ and $\operatorname{det}(x)=\xi^{2}-\|u\|^{2}$. We consider the following scalar product on A :

$$
\begin{equation*}
(x, y)=\operatorname{tr}(x \cdot y)=2 \xi \eta+2\langle u, v\rangle . \tag{4.6}
\end{equation*}
$$

We can show that each x has a spectral decomposition $x=x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}$, with $x_{1}, x_{2} \in \mathbb{R}$ and $\left\{\hat{e}_{1}, \hat{e}_{2}\right\}$ is a pair of primitive strongly orthogonal idempotents. More precisely, $\hat{e}_{1}=(1 / 2, u / 2\|u\|)$ and $\hat{e}_{2}=(1 / 2,-u / 2\|u\|)$. Observe that $\sigma_{x}=u /\|u\| \in \mathbf{S}^{n-2}$. Any element y can be decomposed as follows: $y=$ $k \cdot\left(y_{1} \hat{e}_{1}+y_{2} \hat{e}_{2}\right)$ with $k \in \operatorname{SO}(n-1)$ acting on \hat{e}_{1}, for example, by $k \cdot \hat{e}_{1}=$ $\left(1 / 2,(1 / 2) k \cdot \sigma_{x}\right)$, where $k \cdot \sigma_{x}$ is the standard action of $\operatorname{SO}(n-1)$ on \mathbb{R}^{n-1}. The scalar product takes the form

$$
\begin{equation*}
(x, y)=\frac{1}{2}\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)+\frac{1}{2}\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)\left\langle\sigma_{x}, k \cdot \sigma_{x}\right\rangle \tag{4.7}
\end{equation*}
$$

Now, the K-Bessel function can be defined by

$$
\begin{equation*}
K_{v}(x)=\int_{\Omega} e^{-\operatorname{tr}\left(y^{-1}\right)-(x, y)}(\operatorname{det} y)^{v-n / 2} d y \tag{4.8}
\end{equation*}
$$

where $\Omega=\{x \in A / \operatorname{tr}(x)>0$ and $\operatorname{det} x>0\}$ is the cone of positivity of A. After a change of variables, we can show that

$$
\begin{equation*}
K_{v}(x)=(\operatorname{det} x)^{-v} K_{-v}(x) \tag{4.9}
\end{equation*}
$$

So, following [1], where it is proved that K_{ν} is a solution of a differential system similar to (1.1), we can write

$$
\begin{align*}
K_{v}(x)= & a_{v} S_{(0,0)}\left(-t_{1}, t_{2}\right)+b_{v} S_{(0,-v)}\left(-t_{1}, t_{2}\right) \\
& +c_{v} S_{(-v-d / 2,0)}\left(-t_{1}, t_{2}\right)+d_{v} S_{(v-d / 2,-v)}\left(-t_{1}, t_{2}\right) \tag{4.10}
\end{align*}
$$

(here, $d=n-2$). According to (4.9), we have $a_{v}=b_{-v}$ and $c_{v}=d_{-v}$. For suitable ν, the following limit holds (see [2] for more information on Γ_{Ω}, the gamma function of the cone Ω):

$$
\begin{equation*}
\lim _{\substack{x \rightarrow 0 \\ x \in \Omega}} K_{v}(x)=\Gamma_{\Omega}(-v)=(2 \pi)^{(n-2) / 2} \Gamma(-v) \Gamma\left(-v-\frac{n-2}{2}\right) \tag{4.11}
\end{equation*}
$$

so

$$
\begin{equation*}
a_{v}=b_{-v}=(2 \pi)^{(n-2) / 2} \Gamma(-v) \Gamma\left(-v-\frac{n-2}{2}\right) \tag{4.12}
\end{equation*}
$$

according to the behaviour of the solutions $S_{\left(\lambda_{1}, \lambda_{2}\right)}$. To determine c_{ν} (and then d_{v}), we take $x \neq 0$ on the boundary of Ω. So if $x=2 \xi \hat{e}_{1}$, then the integral representation of K_{v} takes the explicit form

$$
\begin{align*}
K_{v}\left(2 \xi \hat{e}_{1}\right)=C \int_{\mathrm{SO}(n-1)} \int_{y_{1}>y_{2}>0} & e^{-\left(1 / y_{1}+1 / y_{2}+\xi\left(y_{1}+y_{1}\right)\right)-\xi\left(y_{1}-y_{2}\right)\left\langle\sigma_{x}, k \cdot \sigma_{x}\right\rangle} \tag{4.13}\\
& \times\left(y_{1} y_{2}\right)^{v-n / 2}\left(y_{1}-y_{2}\right)^{n-2} d k d y_{1} d y_{2}
\end{align*}
$$

where C is a constant (see [2, Theorem VI.2.3, page 104] for the integration formula in polar coordinates in Ω). In the particular case of rank-2 Jordan algebras, we have $C=2^{2-n / 2} \pi^{(n-1) / 2} / \Gamma((n-1) / 2)$. Now, after integration over $\mathrm{SO}(n-1)$, we obtain

$$
\begin{align*}
K_{v}\left(2 \xi \hat{e}_{1}\right)=C \int_{y_{1}>y_{2}>0} & e^{-\left(1 / y_{1}+1 / y_{2}+\xi\left(y_{1}+y_{1}\right)\right)}\left(y_{1} y_{2}\right)^{v-n / 2} \\
& \times\left(y_{1}-y_{2}\right)^{n-2}{ }_{0} f_{1}\left(\frac{-}{2} \frac{-1}{2} ; \frac{\xi^{2}\left(y_{1}-y_{2}\right)^{2}}{4}\right) d y_{1} d y_{2} \tag{4.14}
\end{align*}
$$

Then, the evaluation of the (one variable) Mellin transform of $K_{\nu}\left(2 \xi \hat{e}_{1}\right)$ gives

$$
\begin{align*}
M\left(K_{v}\left(2(\cdot) \hat{e}_{1}\right)\right)(s)= & \int_{0}^{\infty} K_{v}\left(2 \xi e_{1}\right) \xi^{s-1} d \xi \\
= & C \Gamma(s) \int_{y_{1}>y_{2}>0} e^{-\left(1 / y_{1}+1 / y_{2}\right)}\left(y_{1} y_{2}\right)^{v-n / 2}\left(y_{1}-y_{2}\right)^{n-2} \\
& \times\left(y_{1}+y_{2}\right)^{-s}{ }_{2} f_{1}\left(\begin{array}{c}
\frac{s}{2}, \frac{s+1}{2} \\
\frac{n-1}{2}
\end{array}\left(\frac{y_{1}-y_{2}}{y_{1}+y_{2}}\right)^{2}\right) d y_{1} d y_{2} . \tag{4.15}
\end{align*}
$$

This last integral can be computed after making the change $y_{1}=r e^{\theta}$ and $y_{2}=r e^{-\theta}$ with $r, \theta>0$; so

$$
\begin{align*}
M\left(K_{v}\right)(s)= & 2^{n-1-s} C \Gamma(s) \int_{0}^{\infty} \int_{0}^{\infty} e^{2 \cosh \theta / r} r^{2 v-s-1}(\sinh \theta)^{n-2}(\cosh \theta)^{-s} \\
& \quad{ }_{2} f_{1}\left(\begin{array}{c}
\frac{s}{2}, \frac{s+1}{2} \\
\frac{n-1}{2}
\end{array}(\tanh \theta)^{2}\right) d r d \theta \\
= & 2^{n-1+2(v-s)} C \Gamma(s) \Gamma(s-2 v) \int_{0}^{\infty}(\sinh \theta)^{n-2}(\cosh \theta)^{2(v-s)}{ }_{2} f_{1} \\
& \times\left(\begin{array}{c}
\frac{s}{2}, \frac{s+1}{2} \\
\frac{n-1}{2}
\end{array}(\tanh \theta)^{2}\right) d \theta \\
= & 2^{n-1+2(v-s)} C \frac{\Gamma(s) \Gamma(s-2 v) \Gamma(s-v+1-n / 2) \Gamma((n-1) / 2)}{\Gamma(s-v+1 / 2)}{ }_{2} f_{1} \\
& \times\binom{\frac{s}{2}, \frac{s+1}{2} ; 1}{s-v+\frac{1}{2}} \tag{4.16}
\end{align*}
$$

and finally

$$
\begin{equation*}
M\left(K_{v}\left(2(\cdot) \hat{e}_{1}\right)\right)(s)=(2 \pi)^{(n-2) / 2} \Gamma(-v) \frac{\Gamma(s) \Gamma(s-v-(n-2) / 2)}{2^{s}} \tag{4.17}
\end{equation*}
$$

So, we can write

$$
\begin{equation*}
K_{v}\left(\xi \hat{e}_{1}\right)=(2 \pi)^{(n-2) / 2} \Gamma(-v) k_{v+(n-2) / 2}(\xi) \tag{4.18}
\end{equation*}
$$

according to (4.4). Finally, using (4.3) and the expression of $S_{\left(\lambda_{1}, \lambda_{2}\right)}$ in terms of j_{v} when $x=2 \xi \hat{e}_{1}$, we obtain

$$
\begin{equation*}
c_{v}=d_{-v}=(2 \pi)^{(n-2) / 2} \Gamma(-v) \Gamma\left(v+\frac{n-2}{2}\right) \tag{4.19}
\end{equation*}
$$

5. Conclusion. The resolution of the recurrence systems was possible because each one contains at least one equation with two coefficients of the series. Unfortunately, in the higher rank, such a situation does not occur. But we conjecture that a recurrence on the rank exists. We expect also that a similar situation is possible for the systems satisfied by the multivariate hypergeometric functions ${ }_{1} F_{1}$ and ${ }_{2} F_{1}$.

For the K-Bessel function in the case $r=3$, there is four nonequivalent classes of the Euclidean Jordan algebra. So, we think that we have to perform case-by-case calculations, and the essential difficulty arises in the evaluation of
the integral over the automorphism group of the Jordan algebra-like formulas (4.13) and (4.14). This will be the subject of another paper.

References

[1] H. Dib, Fonctions de Bessel sur une algèbre de Jordan [Bessel functions on a Jordan algebra], J. Math. Pures Appl. (9) 69 (1990), no. 4, 403-448 (French).
[2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994.
[3] J. Faraut and G. Travaglini, Bessel functions associated with representations of formally real Jordan algebras, J. Funct. Anal. 71 (1987), no. 1, 123-141.
[4] C. S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) $\mathbf{6 1}$ (1955), no. 3, 474-523.
[5] A. T. James, A generating function for averages over the orthogonal group, Proc. Roy. Soc. London Ser. A 229 (1955), 367-375.
[6] A. Korányi, Transformation properties of the generalized Muirhead operators, Colloq. Math. 60/61 (1990), no. 2, 665-669.
[7] N. H. Mahmoud, Bessel systems for Jordan algebras of rank 2 and 3, J. Math. Anal. Appl. 234 (1999), no. 2, 372-390.
[8] R. J. Muirhead, Systems of partial differential equations for hypergeometric functions of matrix argument, Ann. Math. Statist. 41 (1970), no. 3, 991-1001.

Hacen Dib: Department of Mathematics, University of Tlemcen, BP 119, Tlemcen 13000, Algeria

E-mail address: h_dib@mai1.univ-tlemcen.dz

