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Let X be a Banach module over the commutative Banach algebra A with maximal
ideal space ∆. We show that there is a norm-decreasing representation of X, as a
space of bounded sections in a Banach bundle π : �→∆, whose fibers are quotient
modules of X. There is also a representation of M(X), the space of multipliers
T :A→ X, as a space of sections in the same bundle, but this representation may
not be continuous. These sectional representations subsume results of various
authors over the past three decades.
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In this paper, A will always be a commutative Banach algebra. Denote by

∆ = ∆A the space of multiplicative functionals on A, and for h ∈ ∆, let Kh =
kerh⊂A be the corresponding maximal ideal. We give ∆ its weak-∗ topology.

Let X be a Banach A-module and for h ∈ ∆, let KhX be the closure in X of

span{ax : a∈Kh, x ∈X}. As usual, C0(∆) is the space of continuous complex-

valued functions on ∆ which vanish at infinity and ̂:A→ C0(∆) is the Gelfand

representation of A. Following the notation of Takahasi [9], if h∈∆, we choose

eh ∈ A such that êh(h) = h(eh) = 1, and we let Xh be the closure in X of

KhX+(1−eh)X; it is easy to show that Xh is independent of the choice of eh.

We set Xh =X/Xh. Denote by Xe the essential part of X, that is, Xe is the closed

span of {ax : a ∈ A, x ∈ X}. If X = Xe, then Xh = KhX. We denote by M(X)
the space of continuous multipliers T :A→X, that is, the space of continuous

A-module homomorphisms fromA toX. (So, if T ∈M(X), then T(ab)= aT(b)
for all a,b ∈A.) If x ∈X, denote by Tx the multiplier defined by Tx(a)= ax.

We refer the reader to [1, 2, 3] for fundamental notions regarding bundles of

Banach spaces and Banach modules. If π : �→∆ is a Banach bundle, we denote

by �(�) (resp., �b(�)) the spaces of all (respectively, bounded) selections (=
choice functions) σ :∆→ �, by Γ(π) the space of sections (= continuous choice

functions) σ : ∆ → �, and by Γb(π) and Γ0(π) the subspaces of Γ(π) which,

respectively, are bounded and vanish at infinity. We especially draw upon the

following result, which is a special case of [2, Corollary 3.7].

Proposition 1 (see [3, Proposition 1.3]). Let U be a topological space and

let {Xp : p ∈ U} be a collection of closed subspaces of the Banach space X. Let
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� =
•⋃{X/Xp : p ∈ U} be the disjoint union of the quotient spaces X/Xp . Then,

� can be topologized uniquely in such a way that the conditions (1) π : � → U
is a bundle of Banach spaces; and (2) for each x ∈ X, the selection x̃ : U → �,

x̃(p)= x+Xp is a bounded section of the bundle π : �→ U are satisfied if and

only if the function p� ‖x̃(p)‖ is upper semicontinuous on U for each x ∈X.

Let A be a commutative Banach algebra and let X be a Banach A-module.

Let � =
•⋃{Xh : h ∈ ∆} be the disjoint union of the Xh. We give an element

x +Xh ∈ Xh ⊂ � its quotient norm ‖x +Xh‖ and we let π : � → ∆ be the

obvious projection.

In [10], it was shown that if ∆ is a compact Hausdorff space, then any (uni-

tal) module X over A = C(∆) can be represented as a space of sections in a

bundle π : �→∆ of Banach spaces, in this case, with fibers Eh =Xh =X/KhX.

This (clearly norm-decreasing) representation is given by ˜:X → Γ(π), x̃(h)=
x+Xh ∈Xh, and satisfies the equation ãx(h)= â(h)x̃(h). In [3], it was shown

that whenX is an essential module over a commutative algebraAwith bounded

approximate identity, then there is a bundle π : � → ∆, again, with fibers

Eh =Xh =X/KhX, and a (again, norm-decreasing) representation ˜:X → Γ0(π)
satisfying the same equation. Using the quotient modules suggested in [9], it

was shown in [7] that when A has a bounded approximate identity and X is

any Banach A-module, not necessarily essential, then there is in fact a bundle

π : � → ∆ with fibers Eh = Xh = X/Xh and a norm-decreasing representation˜:M(X)→ Γb(π) given by T̃ (h)= T(eh)+Xh. Again, ãT(h)= â(h)T̃ (h).
The purpose of this paper is to show that this notion of sectional repre-

sentation can be extended to modules X over arbitrary commutative Banach

algebras A, that is, the earlier conditions that X is essential or that A have a

bounded approximate identity can be removed. Thus, the representation ob-

tained will be norm decreasing. We also show that M(X) can be represented

by sections in the same bundle as X, and give an example to show that this

representation need not be continuous.

We define a map ˜ : X → �b(�) by x̃(h) = x +Xh. We also define a map˜ : M(X) → �(�), the space of all choice functions from ∆ to �, by T̃ (h) =
T(eh)+Xh. From a remark in [7], we note that the equations ãx(h)= â(h)x̃(h)
and ãT(h)= â(h)T̃ (h) still hold. For x ∈X and for h∈∆, we have

T̃x(h)= Tx
(
eh
)+Xh = ehx+Xh =	ehx(h)= êh(h)x̃(h) = x̃(h), (1)

that is, x̃ = T̃x .

We now demonstrate that the selections {T̃x : x ∈ X, T̃x(h) = ehx+Xh =
x+Xh for h ∈ ∆} generate a (unique) bundle topology on � =

•⋃{Xh : h ∈ ∆}
in the most general situation (although the next proposition actually shows a

little more than we need).
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Proposition 2. Let A be a commutative Banach algebra, let X be a Banach

module over A, and let T ∈M(X). Then, the mapping h� ‖T̃ (h)‖ = ‖T(eh)+
Xh‖ is upper semicontinuous on ∆.

Proof. The proof follows that of [7, Proposition 2.5] with only one alter-

ation. Suppose that ε > 0 is given and that ‖T̃ (h)‖< ε. Choose ai ∈Kh, yi ∈X,

(i= 1, . . . ,n), and z ∈X such that

∥∥T̃ (h)∥∥≤ ∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥< ε (2)

and set

ε′ = ε−
∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥. (3)

The functions h′ � ‖ai+Kh′‖ are all upper semicontinuous on ∆, the func-

tion h′ � ‖h′‖ is lower semicontinuous on ∆, and ‖a+Kh′‖ = |â(h′)|/‖h′‖
(see [4]). (In particular, the lower semicontinuity of h′� ‖h′‖ is what allows us

to obtain the results in all what follows in this paper.) The function êh is also

continuous on ∆. We can therefore find a neighborhood V of h such that when

h′ ∈ V , all of the following hold:

∑∥∥ai+Kh′∥∥< ε′

3
(∑∥∥yi∥∥+1

) ;

∣∣∣∣ 1
êh(h)

− 1
êh(h′)

∣∣∣∣=
∣∣∣∣1− 1

êh(h′)

∣∣∣∣< ε′

3
(∥∥T(eh)∥∥+1

) ;

‖h′‖> ‖h‖
2
> 0;

∣∣1− êh(h′)∣∣< ε′‖h‖
6
(‖z‖+1

) .
(4)

Since the definition of Xh′ is independent of the choice of eh′ for h′ ∈ V , we

may as well take eh′ = (1/êh(h′))eh.

Then for h′ ∈ V , we have

∥∥T̃ (h′)∥∥= ∥∥T(eh′)+Xh′∥∥
≤ ∥∥T(eh′)−T(eh)+Xh′∥∥+∥∥∥T(eh)+∑aiyi+(1−eh)z+Xh′∥∥∥
+
∥∥∥∑aiyi+(1−eh)z+Xh′∥∥∥

≤ ∥∥T(eh′)−T(eh)∥∥+∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥
+
∥∥∥∑aiyi+Xh′∥∥∥+∥∥(eh−eh′)z+Xh∥∥
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= ∣∣1− êh(h′)∣∣∥∥T(eh)∥∥+∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥
+
∥∥∥∑aiyi+Xh′∥∥∥+∥∥(eh−eh′)z+Xh′∥∥

≤ ε
′

3
+
∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥+∥∥∥∑aiyi+Kh′X∥∥∥

+∥∥(eh−eh′)+Kh′∥∥∥∥z+Kh′X∥∥
≤ ε

′

3
+
∥∥∥T(eh)+∑aiyi+(1−eh)z∥∥∥+∑∥∥ai+Kh′∥∥∥∥yi∥∥

+
∣∣êh′(h′)− êh(h′)∣∣

‖h′‖ ‖z‖

< ε.

(5)

Note that the key to the above generalization is the observation that the

function h′ � ‖h′‖ is locally bounded away from 0. This will also play a part

in the sequel.

Corollary 3. Let A be a commutative Banach algebra and X a Banach

module over A. Then there is a unique topology on � =
•⋃{Xh : h ∈ ∆} which

makes π : � → ∆ a bundle of Banach spaces, and such that for each x ∈ X,

x̃ :∆→ � is an element of Γb(π).

Proof. Note that for x ∈X, we have T̃x = x̃ :∆→ �, and apply Propositions

1 and 2.

We call this mapping ˜ : X → Γ(π) the Gelfand representation of X and

π : � → ∆ the canonical bundle for X. (In [7], π : � → ∆ is also called the

multiplier bundle for X. The reason for this nomenclature shift has to do with

the universal property that is to be discussed later.)

Recall now that in the bundle topology on �, neighborhoods of a pointx+Xh
are described by tubes. Let σ ∈ Γb(π) be such that σ(h) = x+Xh, let V be a

neighborhood of h in ∆, and let ε > 0. Then, � = �(V ,σ ,ε) = {z+Xh′ : h′ ∈
V , ‖σ(h′)− (z+Xh′)‖ < ε} is a neighborhood of x+Xh, and in fact sets of

this form, as V ranges over all neighborhoods of h and ε > 0 varies, form

a fundamental system of neighborhoods of σ(h) = x+Xh. We rely on this

description to prove the following corollary.

Corollary 4. Assume that A and X are as generally given and let T ∈
M(X). Then T̃ ∈ Γ(π).

Proof. Let h ∈ ∆ be fixed, and set T̃ (h) = x+Xh for some fixed x ∈ X.

(x = T(eh)∈X will do.) Letσ ∈ Γb(π) be such thatσ(h)= x+Xh (σ = T̃ (eh)∈
Γb(π) will do.) Let V be a neighborhood in ∆ of h, and let ε > 0. We need to
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find a neighborhood V ′ of h such that T̃ (V ′) ⊂ �(V ,σ ,ε). Since x̃ ∈ Γb(π)
is continuous, there exists a neighborhood V ′ ⊂ V of h such that if h′ ∈ V ′,
then ‖x̃(h′)−σ(h′)‖ < ε/2. Since T −Tx is a multiplier of X, the map h′ �
‖(T̃ −Tx)(h′)‖ is upper semicontinuous on ∆, by Proposition 2. Hence, there

is a neighborhood V ′′ ⊂ V ′ of h such that if h′ ∈ V ′′, then by our choice of x, we

have ‖(T̃ −Tx)(h′)‖< ε/2 since (T̃ −Tx)(h)= 0. Then, it follows immediately

that for h′ ∈ V ′′, we have

∥∥T̃ (h′)−σ(h′)∥∥≤ ∥∥(T̃ −Tx)(h′)∥∥+∥∥x̃(h′)−σ(h′)∥∥< ε (6)

so that T̃ (h′)∈�(V ,σ ,ε).

In particular, if T ∈M(X), then T̃ is “locally close” in Γ(π) to sections of the

form T̃x = x̃.

It was shown in [7] that if A has a bounded approximate identity and if

T ∈M(X), then in fact T̃ is bounded. In the absence of a bounded approximate

identity, the boundedness of T̃ cannot be guaranteed, as in the next example.

Example 5. For each n ∈ N, let En = C, with norm ‖α‖n = n|α|, and let

A = {x : N → C : limn‖x(n)‖n = 0}. Then A is a Banach algebra under the

pointwise operations and norm ‖x‖ = supn{‖x(n)‖n}, and by [5], we have ∆=
∆A = {φn :n∈N}whereφn(x)= x(n). We have ‖φn‖ = sup‖x‖=1{|φn(x)|} =
sup‖x‖=1{|x(n)|}. If ‖x‖ = 1, then for each n, we have |x(n)| ≤ 1/n; on the

other hand, if en is the standard basis vector (en(j)= δnj), then φn((1/n)en)
= 1/n and ‖(1/n)en‖ = 1. Hence, ‖φn‖ = 1/n, and so by [7, Lemma 2.3], A
has no bounded approximate identity (although {∑nk=1 ek : n ∈ N} does form

an approximate identity). Consider A as a module over itself. The sequence y
given by y(n) = 1/

√
n defines a multiplier Ty on A, Ty(x)(n) = x(n)y(n) =

(1/
√
n)x(n), and it is easy to see that Ty is norm decreasing. Note that y 	∈A

since ‖y‖ =∞. For each n, ‖T̃y(n)‖ = ‖Ty(en)+Aφn‖ = inf{‖(1/√n)en+a‖ :

a∈Aφn}. Now, Aφn = kerφn = {a∈A : a(n)= 0} and so

inf
{∥∥∥∥ 1√

n
en+a

∥∥∥∥ : a∈Aφn
}
= inf

{∥∥∥∥ 1√
n
en
∥∥∥∥+‖a‖ : a∈Aφn

}
=√n. (7)

Thus, T̃y is unbounded.

Moreover, if T ∈M(A) and if T̃ is bounded, then T = Ty for some y ∈A. To

see this, let n,k ∈ N and let T ∈ M(A). Then (enT(en))(k) = en(k)Ten(k) =
δnkTen(k) = 0 if n 	= k. Define y by y(n) = (Ten)(n); clearly, for a ∈ A, we

have

T(a)(n)= en(n)(Ta)(n)= a(n)
(
Ten

)
(n)= a(n)y(n)= (Tya)(n), (8)

so that T = Ty .
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Now, suppose that T̃ = T̃y is bounded; we will show that y ∈A. In fact, for

all n, we have

∥∥y(n)∥∥n = ∥∥y(n)en(n)∥∥n = ∥∥Ty(en)∥∥
= inf

{∥∥Ty(en)+a∥∥ : a∈Aφn}= ∥∥T̃y(φn)∥∥
≤ ∥∥Ty∥∥∥∥φn∥∥=

∥∥Ty∥∥
n

�→ 0

(9)

as n→∞. Hence, y ∈A.

On the basis of this example, we ask the following: let T ∈ M(X). If T̃ ∈
Γb(π), what conditions on A and X will guarantee that there is some x ∈ X
such that T̃x = x̃? If T̃ ∈ Γ0(π), what conditions on A and X will guarantee that

T̃x = x̃ for some x ∈Xe?
Now, let A and X be as generally given. Following [3, Section 2] , if Ψ : X →

Γ(ρ) is a bounded map, where ρ : �→ ∆ = ∆A is a Banach bundle, we will call

Ψ a sectional representation of Gelfand type provided that Ψ(ax) = âΨ(x). In

[3, Theorem 2.7], it is shown that if A has a bounded approximate identity and

if X is an essential A-module, then the representation ˜ : X → Γ0(π), where

π : � → ∆ is the canonical bundle for X described above, is universal with

respect to all sectional representations of X of Gelfand type. In that context,

this means that if ρ : �→∆ is a bundle of Banach spaces and if Ψ :X → Γ0(ρ) is

a sectional representation of Gelfand type, then there is a unique continuous

map Ψ̃ : � → � which is fiber-preserving (meaning Ψ̃(Eh) ⊂ Fh) and linear on

each fiber. Moreover, ‖Ψ̃‖ = suph{‖Ψ̃ � Eh‖} ≤ ‖Ψ‖ and Ψ(x) = Ψ̃ ◦ x̃. When A
has a bounded approximate identity and X is essential, this universal property

characterizes the canonical bundle π : � → ∆ up to isomorphism. The same

universal property can now be shown to obtain in the general case.

Proposition 6. Let A and X be as generally given and let π : � → ∆ be

the canonical bundle for X constructed in Corollary 3. Let ρ : � → ∆ be a Ba-

nach bundle with fibers {Fh : h∈∆} and suppose that Ψ :X → Γ(ρ) is a sectional

representation of Gelfand type. Then, there exists a unique fiber-preserving con-

tinuous map Ψ̃ : �→� such that ‖Ψ̃‖ ≤ ‖Ψ‖ and such that Ψ(x)= Ψ̃ ◦ x̃.

Proof. Forh∈∆, define Ψh :X → Fh by Ψh(x)= [Ψ(x)](h). Then the kernel

of Ψh contains Xh (Justification: Ψh(ax+(1−eh)z)= [Ψ(ax+(1−eh)z)](h)=
0 for a∈Kh and x,z ∈X, because Ψ is of Gelfand type and because êh(h)= 1).

This induces a map Ψ̃h : Xh = X/Xh → Fh such that Ψ̃h(x +Xh) = Ψh(x) =
[Ψ(x)](h), and we define Ψ̃ on all of � by Ψ̃(x+Xh) = Ψ̃h(x+Xh). Clearly,

‖Ψ̃‖ = sup{‖Ψ̃h‖ : h∈∆} ≤ ‖Ψ‖. We can now essentially repeat the proof of [3,

Theorem 2.7] to get the desired result.
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Corollary 7. Let A and X be as generally given. Suppose that ρk : �k →∆
are Banach bundles and that φk :X → Γ(ρk) (k= 1,2) are Gelfand representa-

tions of X. Suppose also that if φ : X → Γ(ξ) (ξ : � → ∆) is any sectional repre-

sentation of Gelfand type, then there exist unique continuous, fiber-preserving,

and linear-on-fibers maps φ̃k : �k → � such that ‖φ̃k‖ ≤ ‖φ‖ and such that

φ(x) = φ̃k ◦φk(x) (k = 1,2). Then, there exists a continuous map Φ : �1 → �2

such that φ2(x) = Φ◦φ1(x) for all x ∈ X, and such that Φ is fiber-preserving

and a linear isomorphism on each fiber.

Proof. Here, we may repeat the proof of [3, Proposition 2.8].

In [7, Proposition 2.8], it is shown that in the presence of a bounded approx-

imate identity in A, the canonical bundles π : � → ∆ for X and π ′ : �′ → ∆
for Xe are homeomorphic. The proof uses the facts that (1) with or without a

bounded approximate identity in A, for h∈∆, Xh and X
′
h =Xe/(Xe)h are topo-

logically isomorphic via the mapsψh :Xh→X′
h,ψh(x+Xh)= ehx+KhXe, and

φh : X
′
h → Xh, φh(ax+KhXe) = ax+Xh, with ‖ψh ‖ ≤ ‖eh‖ and ‖φh‖ ≤ 1 [7,

Proposition 2.7]; and (2) when A has a bounded approximate identity, the set

S = {eh : h∈∆} can be chosen to be bounded. The bound on S is then used to

obtain the homeomorphism. Even without the bounded approximate identity,

we can easily modify the proof of [7, Proposition 2.8] to obtain the following

proposition.

Proposition 8. Let A and X be as generally given and let π : � → ∆ and

π ′ : �′ →∆ be the canonical bundles for X and Xe, respectively. Then, � and �′

are homeomorphic in their bundle topologies.

Proof. We will show that the map Ψ : � → �′ given by Ψ(x+Xh)=ψh(x+
Xh)= ehx+KhXe is continuous; the proof of the continuity of the inverse map

Φ : �′ → �, Φ(ax+KhXe)=φh(ax+KhXe) will be similar.

Fix h∈ ∆ and let x+Xh ∈ �. Let �1 =�1(V ,	ehx,ε) be a tube around ehx+
KhXe = Ψ(x+Xh) =ψh(x+Xh) ∈ �′, and let V ′ ⊂ V be a neighborhood of h
such that for h′ ∈ V ′, we have |êh(h′)|> 1/2. In V ′, set eh′ = (1/êh(h′))eh; then

‖eh′‖< 2‖eh‖. Then, �2 =�2(V ′, x̃,ε/(2‖eh‖)) is a neighborhood of x+Xh =
x̃(h) in �. Taking y+Xh′ ∈�2, we have h′ ∈ V ′ and

∥∥(y+Xh′)− x̃(h′)∥∥= ∥∥(y+Xh′)−(x+Xh′)∥∥< ε
2
∥∥eh∥∥ . (10)

Then

∥∥Ψ(y+Xh′)−Ψ(x+Xh′)∥∥= ∥∥ψh′(y+Xh′)−ψh′(x+Xh′)∥∥
≤ ∥∥eh′∥∥∥∥(y+Xh′)−(x+Xh′)∥∥< ε (11)

so that Ψ(y+Xh′)∈�1.
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We noted above that in the most general case, elements of the form T̃ (T ∈
M(X)) are locally close to elements of the form x̃ (x ∈X). With an additional

assumption on A, local closeness can be replaced by local equality.

Proposition 9. Let A be a completely regular algebra and let X be an A-

module. Let h∈∆ and let T ∈M(X). Then for each compact set V ⊂∆ contain-

ing h, there exists x ∈Xe such that T̃ (h′)= x̃(h′) for h′ ∈ V .

Proof. Let V be such a compact set containing h. It then follows from [6,

Theorem 2.7.12] that there exists e ∈ A such that ê ≡ 1 on V . Set x = eT(e)∈
Xe, and for h′ ∈ V , let eh′ = e. Then for h′ ∈ V , we have

T̃ (h′)= T(eh′)+Xh′ = T(e)+Xh′ = eT(e)+Xh′ = ẽT (e)(h′)= x̃(h′). (12)

Compare this to [8, Theorem 4.1 and Corollary 4.2]. In our case, for T ∈
M(X), it cannot be guaranteed that there might exist x ∈X such that T̃ = x̃ on

a neighborhood of infinity, because T̃ can be unbounded, while x̃ is bounded.

However, in the event that there actually does exist x ∈ X such that T̃ = x̃
on some neighborhood of infinity, we obtain the following corollary, which is

similar to [8, Corollary 4.2].

Corollary 10. Suppose that A is completely regular and that T ∈ M(X).
If there exists a neighborhood V of infinity such that for some x ∈ X, we have

T̃ (h′)= x̃(h′) for h′ ∈ V , then there exists y ∈X such that T̃ = ỹ on all of ∆.

Proof. We can repeat the partition of unity proof of [8, Theorem 4.1].

Acknowledgment. The authors thank the referee for his careful reading

of the manuscript.
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