A CONVOLUTION PRODUCT OF ($2 j$)th DERIVATIVE OF DIRAC'S DELTA IN r AND MULTIPLICATIVE DISTRIBUTIONAL PRODUCT BETWEEN r^{-k}
 AND $\nabla\left(\triangle^{j} \delta\right)$

MANUEL A. AGUIRRE TÉLLEZ

Received 29 October 2002

The purpose of this paper is to obtain a relation between the distribution $\delta^{(2 j)}(r)$ and the operator $\triangle^{j} \delta$ and to give a sense to the convolution distributional product $\delta^{(2 j)}(r) * \delta^{(2 s)}(r)$ and the multiplicative distributional products $r^{-k} \cdot \nabla^{\left(\triangle^{j} \delta\right)}$ and $(r-c)^{-k} \cdot \nabla\left(\triangle^{j} \delta\right)$.

2000 Mathematics Subject Classification: 46F10, 46F12.

1. Introduction. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the n-dimensional Euclidean space \mathbb{R}^{n}.

We call $\varphi(x)$ the C^{∞}-functions with compact support defined from \mathbb{R}^{n} to \mathbb{R}.
Let

$$
\begin{equation*}
r^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \tag{1.1}
\end{equation*}
$$

and consider the functional r^{λ} defined by

$$
\begin{equation*}
\left(r^{\lambda}, \varphi\right)=\int_{\mathbb{R}^{n}} r^{\lambda} \varphi(x) d x \tag{1.2}
\end{equation*}
$$

(see [5, page 71]), where λ is a complex number and $d x=d x_{1} d x_{2} \cdots d x_{n}$.
For $\operatorname{Re}(\lambda)>-n$, this integral converges and is an analytic function of λ. Analytic continuation to $\operatorname{Re}(\lambda) \leq-n$ can be used to extend the definition of $\left(r^{\lambda}, \varphi\right)$.

Calling Ω_{n} to the hypersurface area of the unit sphere imbedded in the n Euclidean space, we find in [5, page 71] that

$$
\begin{equation*}
\left(r^{\lambda}, \varphi\right)=\Omega_{n} \int_{0}^{\infty} r^{\lambda+n-1} S_{\varphi}(r) d r \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\varphi}(r)=\frac{1}{\Omega_{n}} \int_{\Omega} \varphi d w \tag{1.4}
\end{equation*}
$$

and $d w$ is the hypersurface element of the unit sphere.
$S_{\varphi}(r)$ is the mean value of $\varphi(x)$ on the sphere of radius r (cf. [5, page 71]). The functional r^{λ} [5, pages 72-73] has a simple pole at

$$
\begin{equation*}
\lambda=-n-2 j, \quad j=0,1, \ldots, \tag{1.5}
\end{equation*}
$$

and from [5, page 99], the Laurent series expansion of r^{λ} in a neighbourhood of $\lambda=-n-2 j, j=0,1,2, \ldots$, is

$$
\begin{align*}
r^{\lambda}= & \frac{\Omega_{n}}{(2 j)!} \delta^{(2 j)}(r) \frac{1}{\lambda+n+2 j} \tag{1.6}\\
& +\Omega_{n} r^{-2 j-n}+\Omega_{n}(\lambda+n+2 j) r^{-2 j-n} \ln (r)+\cdots
\end{align*}
$$

In (1.6), $r^{-2 j-n}$ is not the value of the functional r^{λ} at $\lambda=-n-2 j$ (in fact, it has a pole at his point) but is the value of the regular part of the Laurent expansion of r^{λ} at this point.

From [6, page 366, formula (3.4)], we know that the neutrix product of r^{-k} and $\nabla \delta$ on \mathbb{R}^{m} exists and, furthermore,

$$
\begin{gather*}
r^{-2 k} \circ \nabla \delta=-\frac{1}{2^{k+1}(k+1)!(m+2) \cdots(m+2 k)} \sum_{i=0}^{m}\left(x_{i} \triangle^{k+1} \delta\right), \tag{1.7}\\
r^{1-2 k} \circ \nabla \delta=0, \tag{1.8}
\end{gather*}
$$

where k is a positive integer, m is the dimension of the space, \triangle^{j} is the iterated Laplacian operator defined by (1.10), and ∇ is the operator defined by

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}+\cdots+\frac{\partial}{\partial x_{n}}=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} . \tag{1.9}
\end{equation*}
$$

In (1.7) and (1.8), by the symbol \circ we mean "neutrix product" which is defined by Li in [6, page 363, Definition 1.4, formula (1.11)].

The purpose of this paper is to obtain a relation between the distribution $\delta^{(2 j)}(r)$ and the operator $\triangle^{j} \delta$ and to give a sense to convolution distributional product $\delta^{(2 j)}(r) * \delta^{(2 s)}(r)$ and the multiplicative distributional products r^{-k}. $\nabla\left(\triangle^{j} \delta\right)$ and $(r-c)^{-k} \cdot \nabla\left(\triangle^{j} \delta\right)$ which are showed in Sections 2, 3.1, 3.2, and 3.3. Here, \triangle^{j} is defined by

$$
\begin{equation*}
\Delta^{j}=\left\{\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right\}^{j} \tag{1.10}
\end{equation*}
$$

and ∇ is the operator defined by (1.9).

We observed that relation (2.3) cannot be deduced from the formula

$$
\begin{equation*}
\delta^{(n+2 j-1)}(r)=a_{j, n} \triangle^{j} \delta \tag{1.11}
\end{equation*}
$$

which appear in [1], where

$$
\begin{equation*}
a_{j, n}=\frac{2^{n} \pi^{(n-1) / 2}(-1)^{n+2 j-1} \Gamma(n / 2+j+1 / 2)}{j!} \tag{1.12}
\end{equation*}
$$

with n dimension of the space.
Our formulae (3.7) and (3.18) result in a generalization of the neutrix product (1.7) and (1.8), respectively, due to Li (cf. [6, page 366, formula 3.4]).

To obtain our results, we need the following formulae:

$$
\begin{equation*}
\left(\delta^{(k)}(r-c), \varphi\right)=(-1)^{k} \Omega_{n}\left[\frac{\partial^{k}}{\partial r^{k}}\left(r^{n-1} S_{\varphi}(r)\right)\right]_{r=c} \tag{1.13}
\end{equation*}
$$

(see [3, page 58, formula (II, 2, 5)]), where

$$
\begin{equation*}
\left(\delta^{(k)}(r-c), \varphi\right)=\int \delta^{(k)}(r-c) \varphi d x=\frac{(-1)^{k}}{c^{n-1}} \int_{O_{c}} \frac{\partial^{k}}{\partial r^{k}}\left(\varphi r^{n-1}\right) d O_{c} \tag{1.14}
\end{equation*}
$$

(see [5, page 231, formula (10)]), O_{c} is the sphere $r-c=0$, and $d O_{c}$ is the Euclidean element of area of it;

$$
\begin{equation*}
\operatorname{Re} s_{\lambda=-n-2 j}\left(r^{\lambda}, \varphi\right)=\frac{\Omega_{n}}{2^{j} j!n(n+2) \cdots(n+2 j-2)}\left(\triangle^{j} \delta, \varphi\right) \tag{1.15}
\end{equation*}
$$

(see [5, pages 72-73]), where

$$
\begin{gather*}
\Omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}, \tag{1.16}\\
\Gamma(z+k)=z(z+1) \cdots(z+k-1) \Gamma(z) \tag{1.17}
\end{gather*}
$$

(see [4, page 3, formula (2)])

$$
\begin{equation*}
\Gamma(z)(1-z)=\frac{\pi}{\operatorname{sen}(z \pi)} \tag{1.18}
\end{equation*}
$$

(see [4, page 3, formula (6)])

$$
\begin{equation*}
\Gamma(2 z)=2^{2 z-1} \pi^{-1 / 2} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{1.19}
\end{equation*}
$$

(see [4, page 5, formula (5)]), and

$$
\begin{equation*}
\operatorname{Re} s_{\mu=-k, k=1,2, \ldots}\left(x_{+}^{\mu}, \varphi\right)=\frac{\varphi^{(k-1)}(0)}{(k-1)!} \tag{1.20}
\end{equation*}
$$

(see [5, page 49]), where x_{+}^{μ} is the functional defined by

$$
\begin{equation*}
\left(x_{+}^{\mu}, \varphi\right)=\int_{0}^{\infty} x^{\mu} \varphi(x) d x \tag{1.21}
\end{equation*}
$$

(see [5, page 48]), which is analytic for $\operatorname{Re}(\mu)>-1$ and can be analytically continued to the entire μ plane except for the point $\mu=-1,-2, \ldots$ where it has simple poles.
2. The relation between the distribution $\delta^{(2 j)}(r)$ and the operator $\triangle^{j} \delta$. In this section, we want to obtain a formula that relates the distribution $\delta^{(2 j)}(r)$ to the operator $\triangle^{j} \delta$.

From (1.12) and considering formula (1.13), the residue of $\left(r^{\lambda}, \varphi\right)$ at $\lambda=$ $-n-2 j$ for nonnegative integer j is given by

$$
\begin{equation*}
\operatorname{Re} s_{\lambda=-n-2 j}\left(r^{\lambda}, \varphi\right)=\frac{\Omega_{n} \Gamma(n / 2)}{2^{2 j} j!\Gamma(n / 2+j)}\left(\triangle^{j} \delta, \varphi\right) \tag{2.1}
\end{equation*}
$$

where \triangle^{j} is defined by (1.10) and Ω_{n} by (1.16), with n the dimension of the space and $j=0,1,2, \ldots$.

From [5, page 72], S_{φ} is an even function of the simple variable r in K, where K is the space of infinitely differentiable functions with bounded support. Then, the $S_{\varphi}(r)$, where integral (1.3) represents the application of $\Omega_{n} x_{+}^{\mu}$ (with $\mu=\lambda+n-1$) to x_{+}^{μ}, is defined by (1.6).

Using the Laurent series expansion of r^{λ} in a neighbourhood of $\lambda=-n-2 j$, $j=0,1,2, \ldots$, from (1.6), we have

$$
\begin{equation*}
\delta^{(2 j)}(r)=\frac{(2 j)!}{\Omega_{n}} \lim _{\lambda \rightarrow-n-2 j}(\lambda+n+2 j) r^{\lambda} . \tag{2.2}
\end{equation*}
$$

From (2.2) and using (2.1), we obtain the following formula:

$$
\begin{align*}
\delta^{(2 j)}(r) & =\frac{(2 j)!}{\Omega_{n}} \lim _{\lambda \rightarrow-n-2 j}(\lambda+n+2 j) r^{\lambda} \\
& =\frac{(2 j)!}{\Omega_{n}} \operatorname{Re} s_{\lambda \rightarrow-n-2 j} r^{\lambda}=\frac{(2 j)!\Gamma(n / 2)}{2^{2 j} j!\Gamma(n / 2+j)} \triangle^{j} \delta . \tag{2.3}
\end{align*}
$$

Using (1.17), formula (2.3) can be rewritten in the following form:

$$
\begin{equation*}
\delta^{(2 j)}(r)=\frac{(2 j)!}{j!} \frac{1}{2^{j} j!n(n+2) \cdots(n+2 j-2)} \Delta^{j} \delta \tag{2.4}
\end{equation*}
$$

3. Applications of the basic formula (2.3). In this section, we want to give a sense to the convolution distributional product of the form $\delta^{(2 j)}(r) * \delta^{(2 s)}(r)$ and the distributional products $r^{-k} \cdot \nabla\left(\Delta^{j} \delta\right)$ and $(r-c)^{-k} \cdot \nabla\left(\Delta^{j} \delta\right)$.
3.1. The convolution distributional product of the form $\delta^{(2 j)}(r) * \delta^{(2 s)}(r)$. In this section, we designate $*$ the convolution.

We know from (2.3) that the following formula is true:

$$
\begin{equation*}
\delta^{(2 j)}(r)=\frac{(2 j)!\Gamma(n / 2)}{2^{2 j} j!\Gamma(n / 2+j)} \Delta^{j} \delta \tag{3.1}
\end{equation*}
$$

From (3.1), $\delta^{(2 j)}(r)$ is a finite linear combination of δ and its derivatives, in consequence, we conclude that $\delta^{(2 j)}(r)$ is a distribution of the class O_{c}^{\prime}, where O_{c}^{\prime} [7, page 244] is the space of rapidly decreasing distributions. Therefore, using the formula

$$
\begin{equation*}
\triangle^{t} \delta * \triangle^{s} \delta=\triangle^{t+s} \delta \tag{3.2}
\end{equation*}
$$

[2, page 75 , formula (26)], where \triangle^{t} is the iterated Laplacian operator defined by (1.10), we obtain the following formula:

$$
\begin{equation*}
\delta^{(2 j)}(r) * \delta^{(2 s)}(r)=b_{j, s, n} \delta^{(2(j+s))}(r) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j, s, n}=\frac{(j+s)!(2 s)!(2 j)!\Gamma(n / 2) \Gamma(n / 2+j+s)}{j!(2(j+s))!s!\Gamma(n / 2+s) \Gamma(n / 2+j)} . \tag{3.4}
\end{equation*}
$$

In particular, letting $j=s=0$ in (3.3), we have

$$
\begin{equation*}
\delta(r) * \delta(r)=\delta(r) \tag{3.5}
\end{equation*}
$$

where $r=\sqrt[2]{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.
3.2. The multiplicative distributional product of $r^{-k} \cdot \nabla\left(\triangle^{j} \delta\right)$. To give a sense to the multiplicative distributional product of

$$
\begin{equation*}
r^{-k} \cdot \nabla\left(\triangle^{j} \delta\right), \tag{3.6}
\end{equation*}
$$

we must study the cases $r^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)$ and $r^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)$ where ∇ is the operator defined by (1.9) and \triangle^{j} is the iterated Laplacian operator defined by (1.10).

Our formulae (3.7) and (3.18) result in a generalization of the neutrix product (1.7) and (1.8), respectively, due to Li (cf. [6, page 366, formula (3.4)]).

Theorem 3.1. Let k be a positive integer and let j be a nonnegative integer, then the formula

$$
\begin{equation*}
r^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)=\frac{-(n+2 j)(2 j)!}{(k+j+1)!2^{k+j+1} n(n+2) \cdots(n+2(k+j))}\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+1} \delta \tag{3.7}
\end{equation*}
$$

is valid if $k \neq n / 2, n / 2+1, \ldots, n / 2+s, s=0,1, \ldots$ where ∇ is the operator defined by (1.9) and \triangle^{j} is defined by (1.10).

Proof. Using formula (2.4), we have

$$
\begin{align*}
r^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) & =r^{-2 k} \cdot \nabla\left(\frac{2^{j} n(n+2) \cdots(n+2 j-2) j!}{(2 j)!} \delta^{(2 j)}(r)\right) \tag{3.8}\\
& =\frac{2^{j} n(n+2) \cdots(n+2 j-2) j!}{(2 j)!} r^{-2 k} \cdot \nabla \delta^{(2 j)}(r)
\end{align*}
$$

if $k \neq n / 2, n / 2+1, \ldots, n / 2+s, s=0,1, \ldots$.
Now, using the properties

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} \delta^{(k)}(P)=\frac{\partial P}{\partial x_{j}} \delta^{(k+1)}(P) \tag{3.9}
\end{equation*}
$$

(see [5, page 232]) for

$$
\begin{equation*}
P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=r=\sqrt[2]{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \tag{3.10}
\end{equation*}
$$

and using formula (1.9), we have

$$
\begin{equation*}
\nabla \delta^{(2 j)}(r)=\sum_{i=1}^{n} \delta^{(2 j+1)}(r) \frac{x_{i}}{r} \tag{3.11}
\end{equation*}
$$

From (3.8) and (3.11), we have

$$
\begin{equation*}
r^{-2 k} \cdot \nabla \delta^{(2 j)}(r)=\sum_{i=1}^{n} x_{i}\left(r^{-2 k-1} \delta^{(2 j+1)}(r)\right) \tag{3.12}
\end{equation*}
$$

On the other hand, using formula (2.2), we have

$$
\begin{align*}
r^{-2 k-1} \cdot \delta^{(2 j+1)}(r) & =r^{-2 k-1} \cdot \frac{\partial}{\partial r} \delta^{(2 j)}(r) \\
& =\frac{(2 j)!(-n-2 j)}{(2(k+j+1))!} \delta^{(2(k+j+1))}(r) \tag{3.13}
\end{align*}
$$

From (3.13) and using formula (2.4), we have

$$
\begin{align*}
& r^{-2 k-1} \cdot \delta^{(2 j+1)}(r) \\
& \quad=\frac{(2 j)!(-1)(n+2 j)}{(k+j+1)!2^{k+j+1} n(n+2) \cdots(n+2(k+j+1)-2)} \Delta^{k+j+1} \delta . \tag{3.14}
\end{align*}
$$

Therefore, from (3.13) and using (3.14), we obtain

$$
\begin{align*}
r^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)= & \left(\sum_{i=1}^{n} x_{i}\right) r^{-2 k-1} \cdot \delta^{(2 j+1)}(r) \\
= & \frac{-(n+2 j)(2 j)!}{(k+j+1)!2^{k+j+1} n(n+2) \cdots(n+2(k+j))} \tag{3.15}\\
& \times\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+1} \delta .
\end{align*}
$$

if $k \neq n / 2, n / 2+1, \ldots, n / 2+s, s=0,1, \ldots$.
Formula (3.15) coincides with formula (3.7). Theorem 3.1 and formula (3.7) generalize the neutrix product $r^{-2 k} \circ \nabla \delta$ given by Li [6, page 366, Theorem 3.4, formula (3.4)].

In fact, letting $j=0$ in (3.7) and using that

$$
\begin{equation*}
\triangle^{0} \delta=\delta \tag{3.16}
\end{equation*}
$$

we have

$$
\begin{equation*}
r^{-2 k} \cdot \nabla \delta=-\frac{1}{(k+1)!2^{k+1}(n+2) \cdots(n+2 k)}\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+1} \delta . \tag{3.17}
\end{equation*}
$$

Formula (3.17) coincides with formula (1.7).
THEOREM 3.2. Let k be a positive integer and let j be a nonnegative integer, then the formula

$$
\begin{equation*}
r^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)=0 \tag{3.18}
\end{equation*}
$$

is valid if $k \neq n / 2, n / 2+1 / 2, \ldots, n / 2+s+1 / 2, s=0,1, \ldots$ where ∇ is the operator defined by (1.9) and \triangle^{j} is defined by (1.10).

Proof. Using formulae (2.4), (3.9), and (3.11), we have

$$
\begin{align*}
r^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) & =r^{1-2 k} \cdot \nabla\left(\frac{2^{j} j!n(n+2) \cdots(n+2 j-1)}{(2 j)!} \delta^{(2 j)}(r)\right) \\
& =\frac{2^{j} j!n(n+2) \cdots(n+2 j-1)}{(2 j)!}\left(\sum_{i=1}^{n} x_{i}\right) r^{-2 k} \cdot \delta^{(2 j+1)}(r) \tag{3.19}
\end{align*}
$$

if $k \neq n / 2, n / 2+1 / 2, \ldots, n / 2+s+1 / 2, s=0,1, \ldots$.
On the other hand, using formula (2.2) and the properties

$$
\begin{equation*}
\Gamma(\beta+1)=\beta \Gamma(\beta) \quad(\text { see }(1.17)), \tag{3.20}
\end{equation*}
$$

we have

$$
\begin{align*}
r^{-2 k} \cdot \delta^{(2 j+1)}(r) & =r^{-2 k} \cdot \frac{\partial}{\partial r} \delta^{(2 j)}(r) \\
& =-\frac{(n+2 j)(2 j)!}{\Omega_{n}} \lim _{\beta \rightarrow 0} \beta r^{\beta-n-2 j-2 k-1} \tag{3.21}\\
& =-\frac{(n+2 j)(2 j)!}{\Omega_{n}} \lim _{\beta \rightarrow 0} \frac{\Gamma(\beta+1)}{\Gamma(\beta)} r^{\beta-n-2 j-2 k-1} .
\end{align*}
$$

Now, using that r^{λ} is regular at the points $\lambda=-n-2(j-k)-1, j=0,1, \ldots$, $k=1,2, \ldots$, and the properties

$$
\begin{equation*}
\lim _{\beta \rightarrow 0} \frac{1}{\Gamma(\beta)}=0 \tag{3.22}
\end{equation*}
$$

(see (1.17)), we have

$$
\begin{equation*}
r^{-2 k} \cdot \delta^{(2 j+1)}(r)=0 \tag{3.23}
\end{equation*}
$$

From (3.19) and using (3.23), we obtain

$$
\begin{equation*}
r^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)=0 \tag{3.24}
\end{equation*}
$$

if $k \neq n / 2, n / 2+1 / 2, \ldots, n / 2+s+1 / 2, s=0,1, \ldots$.
Formula (3.24) coincides with formula (3.18).
Theorem 3.2 and formula (3.15) generalized the Neutrix Product $r^{1-2 k} . \nabla \delta$ given by Li [6, page 366, formula (3.4), Theorem 3.1]. In fact, letting $j=0$ in (3.18) and using (3.16), we obtain

$$
\begin{equation*}
r^{1-2 k} \cdot \nabla \delta=0 \tag{3.25}
\end{equation*}
$$

Formula (3.25) coincides with formula (1.8).
3.3. The multiplicative distributional product of $(r-c)^{-k} \cdot \nabla\left(\triangle^{j} \delta\right)$. To give a sense to the multiplicative distributional product of $\left.(r-c)^{-k} \cdot \nabla^{j} \triangle^{j} \delta\right)$, we must study the cases $(r-c)^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)$ and $(r-c)^{1-2 k} \cdot \nabla^{j}\left(\triangle^{j} \delta\right)$ where ∇ is the operator defined by (1.9) and \triangle^{j} is the iterated Laplacian operator defined by (1.10).

Theorem 3.3. Let k be a positive integer and let j be a nonnegative integer, then the formula

$$
\begin{align*}
& (r-c)^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) \\
& =\sum_{l \geq 0}\binom{2 k+2 l-1}{2 l} c^{2 l} \cdot\left[\frac{-(n+2 j)(2 j)!}{(k+j+l+1)!2^{k+j+l+1} n(n+2) \cdots(n+2(k+j+l))}\right] \\
& \quad \times\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+l+1} \delta \tag{3.26}
\end{align*}
$$

is valid if $k \neq n / 2, n / 2+1, \ldots, n / 2+s, s=0,1, \ldots$, and

$$
\begin{align*}
&(r-c)^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) \\
&=\sum_{t \geq 1}\binom{2 k+2 t-1}{2 t-1} c^{2 t-1} \cdot\left[\frac{-(n+2 j)(2 j)!}{(k+j+t)!2^{k+j+t} n(n+2) \cdots(n+2(k+j+t))}\right] \\
& \times\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+t} \delta \tag{3.27}
\end{align*}
$$

if $k \neq n / 2, n / 2+1 / 2, \ldots, n / 2+s+1 / 2, s=0,1, \ldots$ where $(r-c)^{-k}$ is defined by formula (3.29).

Proof. Using the formula

$$
\begin{equation*}
(1+z)^{\lambda}=\sum_{l \geq 0} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+1-l)} \frac{z^{l}}{l!} \tag{3.28}
\end{equation*}
$$

if $|z|<1$ [4, Volume I, page 101, formulae (1), (2), and (4)], we have

$$
\begin{equation*}
(r-c)^{\lambda}=\sum_{l \geq 0} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+1-l)} \frac{(-c)^{l}}{l!} r^{\lambda-l} \tag{3.29}
\end{equation*}
$$

if $c<r$.
Letting $\lambda=-h, h=1,2, \ldots$, and $h \neq-n,-n-2, \ldots,-n-2 s, s=0,1,2, \ldots$ in (3.29) and using the formula

$$
\begin{equation*}
\frac{\Gamma(\lambda+1)}{l!\Gamma(\lambda+1-l)}=\frac{(-1)^{l} \Gamma(-\lambda+l)}{l!\Gamma(-\lambda)}=(-1)^{l}\binom{-\lambda+l-1}{l} \tag{3.30}
\end{equation*}
$$

we have

$$
\begin{equation*}
(r-c)^{-h}=\sum_{l \geq 0}\binom{h+l-1}{l} \frac{c^{l}}{l!} r^{-h-l} \tag{3.31}
\end{equation*}
$$

if $c<r$ and $h \neq-n,-n-2, \ldots,-n-2 s, s=0,1,2, \ldots$.

Now, letting $h=2 k$ in (3.31), we have

$$
\begin{align*}
(r-c)^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right)= & \sum_{l \geq 0}\binom{2 k+l-1}{l} c^{l}\left(r^{-2 k-l} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \\
= & \sum_{l \geq 0}\binom{2 k+2 l-1}{2 l} c^{2 l}\left(r^{-2(k+l)} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \tag{3.32}\\
& +\sum_{t \geq 1}\binom{2 k+2 t-2}{2 t-1} c^{2 t-1}\left(r^{1-2(t+k)} \cdot \nabla^{j}\left(\triangle^{j} \delta\right)\right) .
\end{align*}
$$

From (3.32), using (3.7), (3.19), and (3.25), we obtain the formula

$$
\begin{align*}
& (r-c)^{-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) \\
& =\sum_{l \geq 0}\binom{2 k+2 l-1}{2 l} c^{2 l}\left(r^{-2(k+l)} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \\
& =\sum_{l \geq 0}\binom{2 k+2 l-1}{2 l} c^{2 l} \cdot\left[\frac{-(n+2 j)(2 j)!}{(k+j+l+1)!2^{k+j+l+1} n(n+2) \cdots(n+2(k+j+l))}\right] \\
& \quad \times\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+l+1} \delta \tag{3.33}
\end{align*}
$$

if $k \neq n / 2, n / 2+1, \ldots, n / 2+s, s=0,1, \ldots$ Formula (3.33) coincides with (3.26). Similarly, letting $h=2 k-1$ in (3.31) and using (3.8) and (3.18), we have

$$
\begin{align*}
& (r-c)^{1-2 k} \cdot \nabla\left(\triangle^{j} \delta\right) \\
& \quad=\sum_{l \geq 0}\binom{2 k+l-2}{l} c^{l}\left(r^{1-2 k-l} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \\
& = \\
& \quad \sum_{l \geq 0}\binom{2 k+2 l}{2 l} c^{2 l}\left(r^{1-2(k+l)} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \\
& \quad+\sum_{t \geq 1}\binom{2 k+2 t-3}{2 t-1} c^{2 t-1}\left(r^{-2(k+t-1)} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \\
& =\sum_{t \geq 1}\binom{2 k+2 t-3}{2 t-1} c^{2 t-1}\left(r^{-2(k+t-1)} \cdot \nabla\left(\triangle^{j} \delta\right)\right) \tag{3.34}\\
& \quad \cdot\left[\frac{-(n+2 j)(2 j)!}{(k+j+t)!2^{k+j+t} n(n+2) \cdots(n+2(k+j+t))}\right]\left(\sum_{i=1}^{n} x_{i}\right) \triangle^{k+j+t} \delta
\end{align*}
$$

if $k \neq n / 2, n / 2+1 / 2, \ldots, n / 2+s+1 / 2, s=0,1, \ldots$. Formula (3.31) coincides with (3.27).

It is clear that letting $c=0$ in (3.26) and (3.27), we obtain formulae (3.7) and (3.18), respectively.

Acknowledgment. This work was partially supported by the Comisión de Investigaciones Científicas (CIC), Argentina.

References

[1] M. A. Aguirre Téllez, Some multiplicative and convolution products between $\delta^{(n+2 j-1)}(r)$ and $\Delta^{j} \delta(x)$, Math. Balkanica (N.S.) 12 (1998), no. 1-2, 137149.
[2] , Distributional convolution product between the k-th derivative of Dirac's delta in $|x|^{2}-m^{2}$, Integral Transform. Spec. Funct. 10 (2000), no. 1, 7180.
[3] M. A. Aguirre Téllez and C. Marinelli, The series expansion of $\delta^{(k)}(r-c)$, Math. Notae 35 (1991), 53-61.
[4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vols. I, II, McGraw-Hill, New York, 1953.
[5] I. M. Gel'fand and G. E. Shilov, Generalized Functions., Academic Press, New York, 1964.
[6] C. K. Li, The product of r^{-k} and $\nabla \delta$ on \mathbb{R}^{m}, Int. J. Math. Math. Sci. 24 (2000), no. 6, 361-369.
[7] L. Schwartz, Théorie des distributions, Hermann, Paris, 1996 (French).
Manuel A. Aguirre Téllez: Núcleo Consolidado Matemática Pura y Aplicada (NUCOMPA), Facultad de Ciencias Exactas, UNCentro, Pinto 399, (7000) Tandil, Provincia de Buenos Aires, Argentina

E-mail address: maguirre@exa.unicen.edu.ar

