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We initiate a study of homeomorphisms f with constant principal strains (cps)
between smoothly bounded planar domains D, D′. An initial result shows that in
order for there to be such a mapping of a given Jordan domainD ontoD′, a certain
condition of an isoperimetric nature must be satisfied by the latter. Thereafter, we
establish the fundamental fact that principal strain lines (characteristics) of such
mappings necessarily have well-defined tangents where they meet ∂D. Using this,
we obtain information about the boundary values of the Jacobian transformation
of f , and finally we determine the class of all cps-homeomorphisms of a half-plane
onto itself.
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1. Introduction. This paper deals with mappings with constant principal

strains, that is, mappings f of a planar domain D into R2 for which the prin-

cipal stretches of the Jacobian matrix Jf of f at z are distinct positive con-

stants m1 and m2. Global properties of such f , to be referred to as (m1,m2)-
mappings or less specifically as cps-mappings, were studied in [2, 3, 5, 6].

Homeomorphisms of this kind represent 2-dimensional deformations with

constant principal strains such as those effected by cryptocrystalline solidi-

fication of a planar lamina, in which context the study of global properties

of cps-mappings will yield, among other things, information about the man-

ner in which such deformations can change shape as well as how the original

mass can be shifted around in the process. In addition, (m1,m2)-mappings

constitute a tractable subclass of (m1,m2)-quasi-isometries (i.e., local home-

omorphisms for which the local stretching factors are merely constrained to

lie between m1 and m2). Because they realize the local length change bounds

extremally at all points, it is reasonable to believe that (m1,m2)-mappings

manifest extremal behavior for some, at least, of the many open distortion

questions for planar quasi-isometries (see [10, 11]).

Although, as we will presently explain, the systems of partial differential

equations which define them are hyperbolic, significant analogies of conformal

mappings discussed here and in the papers cited above lend credence to the

belief that an interesting function theory for cps-mappings can ultimately be

developed. Yet another motivation for this study lies in the fact that, other
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than conformal mappings, the classes of (m1,m2)-mappings are the only ones

that can be defined by restricting the Jacobian to have values in a 2-parameter

family of linear transformations in which no arbitrarily stipulated reference

directions in the domain or image planes appear, a sine qua non for any direct

extension to the more general Riemannian manifold context, as was pointed

out in [2].

To continue this introductory discussion, it is advantageous to outline the

formal local theory of (m1,m2)-mappings. Let D ⊂ C and let f : D → C (we

henceforth associate R2 with C and freely mix real and complex notation)

be differentiable in D. In slight abuse of usual terminology, the nonnegative

square roots m1(z), m2(z) of the eigenvalues of the symmetric matrix

Jf (z)T Jf (z)will be called the principal strains of f at z. An (m1,m2)-mapping

is an orientation-preserving mapping for which (the entries of) Jf are in Lip(D),
the class of locally Lipschitz continuous functions onD, and such thatmk(z)=
mk > 0, k = 1,2 for all z ∈ D; the reason for the Lipschitz requirement will

become clear in what follows. (See also the final paragraph of Section 7). We

henceforth denote the set of all such mappings by the symbol cps(D,m1,m2).
It is immediate that for simply connected D,f ∈ cps(D,m1,m2) if and only if

there are θ = θf and φ=φf in Lip(D) such that Jf = T(−φ)σ(m1,m2)T(θ),
where

T(θ)=
[

cosθ sinθ
−sinθ cosθ

]
, σ

(
m1,m2

)=
[
m1 0

0 m2

]
. (1.1)

At each point z ∈ D, eiθ(z) and ieiθ(z) give the directions in which f effects a

length change by factors m1 and m2, respectively, and eiφ(z) and ieiφ(z) give

the corresponding image directions. For θ ∈ Lip(D), the integral curves of the

direction fields eiθ(z) and ieiθ(z) will be called 1- and 2-characteristics, respec-

tively. Straightforward calculations based on the equality of mixed second-

order partial derivatives show that if D is simply connected and θ,φ∈ Lip(D),
then T(−φ)σ(m1,m2)T(θ) is the Jacobian matrix of an (m1,m2)-mapping if

and only if m1θ−m2φ and m2θ−m1φ are constant along each 1- and 2-

characteristic, respectively, that is, if and only if θ, φ constitute a solution, in

an appropriate sense, of the system

D1
(
m1θ−m2φ

)= 0; D2
(
m2θ−m1φ

)= 0, (1.2)

where D1u= cosθux+sinθuy and D2u=−sinθux+cosθuy . Because of the

obviously hyperbolic nature of this system, it is clear how we can manufacture

large classes of cps-mappings as solutions to Cauchy or characteristic initial

value problems. Further calculations show that a C2-function θ is associated
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in this manner with an (m1,m2)-mapping if and only if it satisfies either of

the second-order hyperbolic equations

D2D1θ =
[
D1θ

]2
or D1D2θ =−

[
D2θ

]2. (1.3)

For any θ satisfying these equations in D, the corresponding φ is determined

to within an additive constant by (1.2). In the case of multiply connected D,

of course, the φ so determined, and consequently the corresponding f , will in

most cases be multiple-valued.

Equations (1.2), together with the appropriate weak counterpart of (1.3), to

be explained in the following section, form the basis of the global theory of

cps-mappings. The latter say exactly how the curvatures Dkθ of the charac-

teristics change as we move along the orthogonal characteristics and imply,

in particular, that the curvatures, unless initially 0, must eventually blow up,

that is, that θ, and consequently Jf , must loose its local Lipschitz continuity

if given enough room. Specifically, we have the sharp bound

∣∣Dkθ(z0
)∣∣≤ 1

dist
(
z0,∂D

) (1.4)

(when the left-hand side is meaningful). This implies that cps(C,m1,m2) con-

tains only affine mappings, a cps-analogue of Liouville’s theorem for analytic

functions. More importantly, though, (1.4) tells us that {Jf : f ∈ cps(D,m1,
m2)} is locally uniformly Lipschitz in D, and, in addition, allows us to derive

a sharp distortion theorem (see [3]) to the effect that f(N(z,r)) is convex for

all f ∈ cps(N(z,1),m1,m2) if and only if r ≤ (min{m1,m2}/max{m1,m2})2,

whereN(z,r) denotes the disk of radius r about z. This fact, together with the

compactness principle (see Proposition 2.3), suggests that it should be possi-

ble to develop further sharp distortion results for cps-mappings which parallel

some of the theorems of classical geometric function theory.

Instead of pursuing this possibility, however, in the present paper we ex-

amine the analogues of several other aspects of analytic function theory, all

related to the general question, loosely referred to as the transformation prob-

lem, of when and how the domains D and D′ can be mapped homeomorphi-

cally onto one another via cps-mappings. After Section 2, in which we for-

malize terminology and state the necessary basic facts, in Section 3 we take

up the question as to whether two given domains D and D′ can be trans-

formed onto one another by cps-mappings. Although for any Jordan domainD
∪m1,m2 cps(D,m1,m2) is a very large class, we show that for any such smoothly

bounded D there are smoothly bounded D′ onto which D cannot be mapped

homeomorphically by any cps-mapping; we do this by deriving a necessary

condition on D′, of an isoperimetric nature, for such a mapping to exist. Even

though, in all likelihood, an intrinsic geometric characterization of all those
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D′ onto which a given D can be so transformed would be difficult to come by,

the determination of all cps-mappings between two given domains, especially

in the case where D = D′, constitutes a significant issue. In order to pursue

this question, however, it is necessary, in view of the hyperbolic nature of the

basic equations, to determine to what extent such mappings are the solution

of relevant Cauchy problems.

Fundamental to any analysis of this issue is the fact, established in Section 4,

that if f is any cps-homeomorphism of D onto D′, where ∂D and ∂D′ are

smooth curves (i.e, with C1 arc length parametrizations) and C is a character-

istic which meets ∂D at p, then the limit of θf (z) as z→ p along C exists. This

allows us to show in Section 5 that for each z0 ∈ ∂D, limz→z0(θf (z),φf (z))
exists in the sense that it tends to the solution of a “Riemann problem” for

system (1.2) in a half-plane, so that the possibilities for the limiting behavior

of θf (z) andφf(z) are governed by just two parameters (or four, if we include

the inclinations of the tangents to ∂D and ∂D′ at p, and f(p)). This “boundary

regularity” of Jf is very much in the spirit of analogous results for the deriva-

tives of conformal mappings such as the well-known theorem of Lindelöf ([12,

Theorems 10.1, 10.4]).

It turns out that in the two significant cases of the half-plane and the exte-

rior of a diskC\N(0,1), geometric arguments based on (1.2) and (1.3) allow one

to show that, apart from certain degeneracies which occasion no difficulties,

all cps-self-homeomorphisms are associated with Cauchy problems, a circum-

stance which enables us to give a complete description of the relevant families;

we do so for half-planes in Section 6 but leave the discussion of the somewhat

more involved case of C\N(0,1) to a subsequent paper. In both instances the

reduction to Cauchy problems strongly depends on the fact that the geometry

of the domains permits us to show that all characteristics meet ∂D in exactly

one point, a feature patently absent in the case, for example, of Jordan do-

mains. In the concluding Section 7, we discuss some of the issues suggested

in a natural way by the considerations of the preceding sections.

2. Preliminaries. Most of the facts stated in this section were proved in

complete detail in [5], so that we will include proofs here only for points not dis-

cussed in that paper. To facilitate the discussion of characteristics, we begin by

amplifying the notational conventions given in the introduction. As indicated,

for θ ∈ Lip(D), the complete integral curves of the direction fields eiθ(z) and

ieiθ(z) will be called 1- and 2-characteristics, respectively, of θ, or of f , when

θ = θf . Note that if we regard f as an (m1,m2)-mapping, rather than as an

(m2,m1)-mapping, eiθf (z) gives the direction in which lengths are changed by

a factor ofm1 at z. Throughout, {i,j} = {1,2}. Arcs of k-characteristics will be

called k-arcs or, less specifically, characteristic arcs. Unless otherwise stated,

the term “characteristic” used alone refers to complete characteristics, which

we sometimes emphasize by the inclusion of this modifier. When discussing an
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i-characteristic, the j-characteristics that cross it will be referred to as the or-

thogonal characteristics. If z = z(s), α1 < s <α2 is a parametrization of a com-

plete k-characteristic C , then for any s0 ∈ (α1,α2), z((α1,s0]) and z([s0,α2))
will be called k-half-characteristics. In addition, if lims→αi z(s)= z0 ∈ ∂D, i= 1

or 2, then we say that C exits D at z0. Obviously, a characteristic can either

not exit at all, exit at exactly one end, or exit at both ends (doubly exiting char-

acteristic). When working with a characteristic C parametrized in this way, we

use the term to the right (left) to mean in the direction of −iz′(s) (iz′(s)). The

letter s will always indicate an arc length parametrization.

With reference to a specific such θ, a characteristic arcC joining pointsa,b ∈
D, oriented from a to b, will be denoted by ab, and we use the abbreviation

∆θ(C)=∆θ(ab)= θ(b)−θ(a). (2.1)

A domain Q⊂D will be said to be a characteristic quadrilateral of f if ∂Q is a

Jordan curve lying in D and containing four points a, b, c, d occurring in that

order when ∂Q is traversed (in either the positive or negative sense) and such

that ab and cd are i-arcs, and bc and da are j-arcs. We will refer to such a Q
as abcd and use the abbreviation

∆2θ(abcd)=∆θ(bc)−∆θ(ad)=∆θ(dc)−∆θ(ab). (2.2)

Opposite sides of a characteristic quadrilateral will be referred to as translates

of each other. For a given such Q, if Ck is a k-arc joining opposite sides of Q
parametrized by zk(s), τk ≤ s ≤ σk, k= 1,2, then the standard characteristic co-

ordinate mapping ζ : [τi,σi]×[τj,σj]→Q maps (si,sj) onto the intersection

of the j-characteristic through zi(si) with the i-characteristic through zj (sj ).
Let D ⊂ C be simply connected and let θ,φ ∈ Lip(D). Then, as indicated in

the introduction, Jf = T(−φ)σ(m1,m2)T(θ) is the Jacobian of a mapping if

and only if (1.2) hold a.e., that is, if and only if

Ri =miθ−mjφ, i= 1,2, (2.3)

is constant along each i-characteristic. Moreover, θ ∈ Lip(D) is θf for some

(m1,m2)-mapping f of D if and only if ∆2θ(Q) = 0 for all characteristic

quadrilaterals Q of θ contained in D. Such functions θ are called HP-functions

since the families of integral curves of the two fields eiθ and ieiθ for such

θ are known as Hencky-Prandtl nets (HP-nets). (For the relevance of HP-nets

to other contexts as well as a discussion of their elementary properties, see

[1, 7, 8, 9, 13].) We will refer to the fact that ∆2θ(Q)= 0 as the HP-property.

As indicated in the preceding section, D1 and D2 will denote differentia-

tion with respect to arc length in the directions eiθ(z) and ieiθ(z), respectively.

We use the symbol λk(E), k = 1,2, to denote the k-dimensional measure of

the set E, so that λ1(C), in particular, is the arc length of the simple arc C .
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Furthermore,

N(X,r)=∪{N(z,r) : z ∈X}. (2.4)

Next, we explain the sense in which the blow-up equations (1.3) hold for

general (i.e., not necessarily C2) HP-functions θ. We define Ei = Ei(θ) to be

the set of all points p such that if z = z(s), −ε < s < ε, with z(0) = p is

an arc length parametrization of an i-arc of θ containing p, then θ(z(s)) is

differentiable at s = 0. Obviously, almost all points (with respect to arc length)

of each i-characteristic belong to Ei and almost all points of the domain on

which θ is defined (with respect to λ2) belong to E1∩E2.

Proposition 2.1. Let θ be an HP-function on D and let Ck, k = 1,2 be the

k-characteristic through p ∈ Ei. Then, Cj ⊂ Ei and the relevant equation in (1.3)

holds along Cj when Dk is interpreted as arc length differentiation along Ck in

the direction eiθ for k= 1 and ieiθ for k= 2.

If z = z(s), α < s < β, is an arc length parametrization of an mk-arc, then

since θ ∈ Lip(D), κk(z(s)) = dθ(z(s))/ds = Dkθ(z(s)) exists almost every-

where on (α,β) and gives the curvature of the k-arc through z(s). This means

that if κi(z) exists then z is joined to ∂D by a j-arc of length at most 1/|κi(z)|
emanating from the concave side of the i-characteristic through z. Because of

this, we immediately obtain the following result.

Proposition 2.2. Let f be a cps-mapping on D, then

D+k θ
(
z0
)≤ 1

dist
(
z0,∂D

) (2.5)

for all z0 ∈D, where

D+k θ(p)= limsup
z→p

∣∣Dkθ(z)∣∣. (2.6)

From this, in turn, we easily deduce the following result.

Proposition 2.3 (compactness principle). Let D and B be a bounded do-

mains, and let {fk} be a sequence of CPS mappings for which fk(D)⊂ B. Then

{fk} contains a subsequence which converges uniformly to a cps-mapping f
on D, and for which the corresponding first-order derivatives converge locally

uniformly on D to those of f .

We will also need the following proposition.

Proposition 2.4. Let the mapping ζ : I1× I2 →Q, where Ii = [τi,σi], be a

characteristic coordinate mapping (as described above). If the lengths of all of

the translates of C2 = z2(I2) along C1 = z1(I1×{τ2}) are at least ρ, then the

area of ζ(I1×I2) is at least ρλ1(C1)/2.
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Throughout, the term smooth curve will refer to one with a continuously

turning tangent; that is, one for which the arc length parametrization is C1. If

C is a characteristic of f exiting D at p for which the limit of θ(z) exists as

z→ p (so that C has a well-defined tangent at p), then it follows from (1.2) that

the corresponding limit of φ(z) also exists, which means that f(C) also has a

well-defined tangent at f(p).

Proposition 2.5. There exists a positive function W =W(µ,α), µ > 1, 0 <
α ≤ π , which for any given µ is nondecreasing in α and which has the fol-

lowing property. Let D and D′ be Jordan domains, and let f be an (m1,m2)-
homeomorphism of D onto D′. Let E and E′ be smooth arcs of ∂D and ∂D′. Let

C be a characteristic arc of f which exits D at endpoint p of E and for which

the limit of θf (z) exists as z→ p along C . Let α∈ [0,π] be the angle formed by

C and E at p, and let α′ denote the corresponding angle formed by f(C) and

f(E) in the image. Let mi <mj . Then,

mi

mj
α+W

(mj

mi
,α
)
≤α′ ≤ mj

mi
α if C is an i-characteristic, (2.7)

mi

mj
α≤α′ ≤ mj

mi
α−W

(mj

mi
,α
)

if C is j-characteristic. (2.8)

Proof. First assume that C is an i-characteristic. Without loss of generality,

we can assume that p is the initial point of E. After appropriate compositions

of f with rigid motions, we can assume that p = f(p) = 0, that the positively

oriented tangents to both E and E′ at 0 have the direction of the positive real

axis, and that the unit tangents to C and f(C) at 0 are eiα and eiα′ . Let µ =
mj/mi, and let S(γ) denote the sector {z | 0< argz < γ}. Since C is an i-arc, by

applying the compactness principle to the family of mappings f(nz)/min, we

obtain (1,µ)-homeomorphism g of S(α) onto S(α′) such that g(teiα)= teiα′ ,
t ≥ 0. We have

N(0,1)∩S(α′)⊂ g(N(0,1)∩S(α)), (2.9)

so that

α′

2
= λ2

(
N(0,1)∩S(α′))≤ λ2

(
g
(
N(0,1)∩S(α)))= µα

2
, (2.10)

which gives the upper bound in (2.7). In addition,

N
(

1+µ
2

eiα,
µ−1

2

)
∩N(0,1)=∅, (2.11)
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and S(α) contains one of the semidisks Q(µ,α) into which the line argz = α
cuts the disk

N
(

1+µ
2

eiα,min
{
µ−1
2µ

,
1+µ

2
sin

(
min

{
α,
π
2

})})
. (2.12)

Relation (2.11) implies that Q(µ,α) ∩N(0,1) = ∅. Since g((1+µ)eiα/2) =
(1+µ)eiα′/2, it follows that g(Q(µ,α))⊂ S(α′)∩N(0,µ). We have

g
(
N(0,1)∩S(α))⊂ (S(α′)∩N(0,µ))\g(Q(µ,α)), (2.13)

so that

µα
2
= λ2

(
g
(
N(0,1)∩S(α)))≤ α′µ2

2
−µλ2

(
Q(µ,α)

)
; (2.14)

that is, α≤ µα′ −2λ2(Q(µ,α)), so that we have

α
µ
+W1(µ,α)≤α′ ≤ µα, (2.15)

where

W1(µ,α)= π
(
min

{
(µ−1)/2µ,(1+µ)/2sin

(
min

{
α,π/2

})})2

µ
. (2.16)

If C is a j-characteristic, then we apply (2.15) to the (1/m1,1/m2)-homeomor-

phism f−1 to obtain

α′ ≤ µα−µW1(µ,α′), α′ ≥ α
µ
. (2.17)

Since for fixed µ, W1(µ,α) is nondecreasing in α, it follows that W1(µ,α′) ≥
W1(µ,α/µ). Thus, in the case that C is a j-characteristic, we have

α
µ
≤α′ ≤ µα−µW1

(
µ,
α
µ

)
, (2.18)

so that Proposition 2.5 is established with

W(µ,α)=min
{
W1(µ,α),µW1

(
µ,
α
µ

)}
, (2.19)

which is clearly a positive nonincreasing function of α.
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Proposition 2.6. There is a positive decreasing function γ = γm1 ,m2
(t)with

the following property: let D and D′ be Jordan domains and let f : D → D′ be

an (m1,m2)-homeomorphism of D onto D′ under which smooth boundary arcs

E and E′ correspond to each other. Let C be a characteristic of f joining the

endpoints a and b of E for which the limits of θ(z) exist as z → a,b along C ,

and for which the interior angles of the simple closed curve E∪C at a and b are

α and β. Let the change in the tangent inclinations along E and E′ (measured

in the positive direction along the boundaries) be d and d′. Then, |d|+ |d′| ≥
γ(α)+γ(β).

Proof. Let mi < mj and let C be an i-characteristic taken as positively

oriented with respect to the interior of E∪C . Let µ =mj/mi. Then,

∆θ(C)+d=α+β,
∆θ(C)
µ

+d′ =∆φ(C)+d′ =α′ +β′ ≥ α+β
µ

+W(µ,α)+W(µ,β), (2.20)

where α′ and β′ are the image angles corresponding to α and β, and W is the

function of the preceding proposition defined in (2.16) and (2.19). Thus

α+β−d
µ

+d′ ≥ α+β
µ

+W(µ,α)+W(µ,β), (2.21)

so that

|d|+|d′| ≥ d′ − d
µ
≥W(µ,α)+W(µ,β). (2.22)

A similar bound holds in the case that C is a j-characteristic.

An examination of the proof (with d = d′ = 0) shows that under the same

hypotheses, there cannot exist a characteristic which joins an interior point of

E to itself.

Proposition 2.7. There is a τ0 = τ0(mi,mj) > 0 with the following prop-

erty: let D, D′, E, E′, and f be as in the preceding proposition. Let a, b, and c
be interior points of E. Let C be an i-arc which joins a and b and let C be a

j-arc joining a point e of C to c outside the subdomain U of D bounded by C
and the arc ab of E. Assume that the limits of θ(z) exist as z→ a along C and

as z→ c along C . Let the interior angle of ∂U at a be α≥ 0 and let ∆θ(ae)= δ.

If α,|δ|< τ0, then |d|+|d′| ≥ τ0, where d and d′ are the changes in the angle

tangent to ∂D and ∂D′ along ac and f(ac), respectively.

Proof. Let T be the curvilinear triangle bounded by the arc ae of C , C , and

the subarc B of E joining a and c. Let γ ≥ 0 and ω be the interior angles of
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T at c and e, respectively. There are two cases: (i) ω= 3π/2 and (ii) ω=π/2,

corresponding, respectively, to the cases that a comes before and after c when

E is traversed in the positive sense with respect toD. Let δ and δ be the changes

in θ along ae and C when these arcs are traversed in the positive sense with

respect to T , and letd andd′ be the corresponding changes in the tangent angle

along B and f(B). Let µ =mj/mi and letα′ and γ′ be the angles corresponding

to α and γ in f(T). In case (i) we have

δ= π
2
+γ+α−δ−d, µδ= π

2
+γ′ +α′ − 1

µ
δ−d′. (2.23)

Let α,|δ| < τ0. Assume first that µ > 1. From Proposition 2.5 and the second

of these equations it follows that

µδ≤ π
2
+µγ+µα− 1

µ
δ−d′, (2.24)

so that in light of the first equation,

µδ≤ π
2
+µ

(
δ− π

2
−α+δ+d

)
+µα− 1

µ
δ−d′

≤ (1−µ)π
2
+µδ+2µτ0+µ

(|d|+|d′|), (2.25)

so that |d|+|d′| ≥ ((µ−1)(π/2)−2µτ0)/µ, which gives the desired conclusion

with an appropriate τ0. If µ < 1, then we have

µδ≥ π
2
+µγ+µα− 1

µ
δ−d′

= π
2
+µ

(
δ− π

2
−α+δ+d

)
+µα− 1

µ
δ−d′

≥ (1−µ)π
2
+µδ− 2

µ
τ0−

(|d|+|d′|),
(2.26)

so that |d|+|d′| ≥ (1−µ)(π/2)−(2/µ)τ0, which again gives the desired result.

Case (ii) is handled similarly; here we have

δ= π
2
+γ−α−δ−d, µδ= π

2
+γ′ −α′ − 1

µ
δ−d′. (2.27)

Assume first that µ > 1. From Proposition 2.5 and the second of these equa-

tions it follows that

µδ≤ π
2
+µγ− 1

µ
δ−d′, (2.28)
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so that in light of the first equation,

µδ≤ π
2
+µ

(
δ− π

2
+α+δ+d

)
− 1
µ
δ−d′

≤ (1−µ)π
2
+µδ+3µτ0+µ

(|d|+|d′|),
(2.29)

so that |d| + |d′| ≥ ((µ − 1)(π/2)− 3µτ0)/µ, which again gives the desired

conclusion. Finally, if µ < 1, we have

µδ≥ π
2
+µ

(
δ− π

2
+α+δ+d

)
− 1
µ
α− 1

µ
δ−d′

≥ (1−µ)π
2
+µδ− 3

µ
τ0−

(|d|+|d′|),
(2.30)

so that |d|+|d′| ≥ (1−µ)(π/2)−(3/µ)τ0, and we are done.

Proposition 2.8. Let D be a Jordan domain, and let z = z(s), α < s < β
be an arc length parametrization of a full characteristic C of an HP-net on D.

Then, limz→α z(s) and limz→β z(s) exist and belong to ∂D.

Proof. First of all, dist(z(s),∂D)→ 0 as s → α (and similarly as s → β). If

this were not true, then there would be a z0 ∈ D and an ε > 0 such that for

some sequence {si} tending to α, z(si)→ z0 but z([si,si+1])∩∂N(z0,ε) ≠∅.

But from this it would follow that some orthogonal characteristic crosses C
twice, an impossible occurrence in light of the simple connectivity ofD. We can

now show that, in fact, z(s)→ a, b ∈ ∂D as s →α,β, respectively. Assume that

this is not so, as s → β, for example. The foregoing then implies that there is an

arc E of ∂D, each point of which is an accumulation point of Cγ = {z(s) : s > γ}
for each γ ∈ (α,β). Since in this case C is clearly not a straight line segment,

it follows from the comment immediately following Proposition 2.1 that there

is an orthogonal half-characteristic C′ of finite length which joins some z(σ)
to a point e∈ ∂D. Since C cannot cross C′ twice in D, Cσ ⊂D\C′. Let z1, z2 be

distinct points of E\{e}. For each δ > 0, Cσ has a subarc pp′ ⊂ N(∂D,δ)\C′,
with p,p′ ∈N(z1,δ) and a point p′′ ∈ pp′ ∩N(z2,δ). For obvious topological

reasons, for each sufficiently small δ, there must be a point q on pp′ which is

joined to a point in N(z,δ) by an orthogonal characteristic arc B of length at

least |z1−z2|−2δ such that the curvature of C at q tends to infinity as δ→ 0

and C is concave towards the side from which B emanates. But this clearly

violates Proposition 2.1, as indicated in the paragraph immediately following

its statement.

Proposition 2.9. If D is a Jordan domain with smooth boundary, then all

characteristics of every HP-net on D have finite length.
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Proof. Let C be parametrized as in the statement of the preceding lemma

and let b = limz→β z(s). Without loss of generality we assume that b = 0 and

that the positively oriented tangent to ∂D at 0 has the direction of the positive

real axis. We only consider the part of C+ = z([(α+β)/2,β)) that is within ε
of b, where |z((α+β)/2)−b| ≥ 2ε and ε is so small that N(0,2ε)∩D is so

close to being a semidisk that for 0 < δ ≤ 2ε, ∂N(0,δ)∩D is connected and

dist(δi,∂D)≥ δ/2. Now consider any δ≤ ε and look at the part Cδ = C+∩{z :


z > 0, (1/2)δ < |z| < δ} of C+ in the right half of the “semiring” of points

of D within (1/2)δ and δ of b. Note that Cδ may have several components.

For each p ∈ Cδ let Ep denote the maximal orthogonal characteristic arc in

N(0,2δ)∩D emanating rightwards from p (as we move along C towards b). By

our choice of ε, λ1(Ep)≥ (1/4)δ. In addition, all of the Ep are disjoint. It then

follows from the lower bound for the area of characteristic quadrilaterals given

in Proposition 2.4 that 4πδ2 = λ2(N(0,2δ))≥ (1/8)δλ1(Cδ), so that λ1(Cδ)≤
32πδ. Obviously, the same bound will hold when the left half of the semiring

is considered instead of the right half. But by considering δ= (1/2)nε, n≥ 0,

we will then have that the length of the part of C+ within ε of b is at most

128πε. This shows that λ1(C+) <∞. By symmetry, λ1(C) <∞.

3. A property of image domains. Let D be a simply connected domain. Be-

cause an (m1,m2)-homeomorphism can alter lengths of curves only by factors

between m1 and m2, it is obviously not possible to transform D onto every

other simply connected domain by means of a homeomorphism in cps(D,m1,
m2). Furthermore, because of the local Lipschitz continuity of such f ,

cps-homeomorphisms necessarily preserve both smoothness and irregularity

of the boundary to some extent. It is, however, not unreasonable to ask if

each smoothly bounded Jordan domain D can be transformed by some cps-

homeomorphism, with appropriate m1, m2 onto any other such domain. We

show that cps-mappings, while clearly forming a “large” class, do not pos-

sess this transformation capability; indeed, the following theorem shows that

all homeomorphic cps-images of a smoothly bounded Jordan domain D must

satisfy a shape requirement of an isoperimetric nature. In the following the-

orem, ι(E) = sup{r : N(z,r) ⊂ E}, the inradius of the Jordan domain E. It is

clear that there is a z0 in E such that N(z0, ι(E))⊂ E.

Theorem 3.1. For each smoothly bounded Jordan domain D, there exists a

constant C = CD such that λ1(∂E) ≤ Cλ2(E)/ι(E) for every Jordan domain E
which is the image of D under a cps-homeomorphism.

Proof. Let g ∈ cps(N(z0,ρ),m1,m2). It follows from Proposition 2.2 that

for 0 < ξ < 1, θg is Lipschitz continuous with Lipschitz constant (ρ(1−ξ))−1

in the concentric diskN(z0,ξρ). Upon taking into account what this says about

the curvature of characteristics of such g, we see that for very small ξ char-

acteristic arcs in N(z0,ξρ) are “virtually” straight line segments, so that there
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is a ξ0 such that any two distinct i-arcs a1b1 and a2b2 of g in N(z0,ρ) with

a1,b1,a2,b2 ∈ ∂N(z0,2ξ0ρ) may be joined by a j-arc of g lying entirely in

N(z0,ρ). From this it follows that if F ⊃N(z0,ρ) is any simply connected do-

main and g ∈ cps(F) and A is any i-arc of g in F , then A∩N(z0,2ξ0ρ) has

at most one component. Indeed, were it to have more than one, then by the

foregoing these could be joined by a j-arc B of g in N(z0,ρ). But then B and A
would have at least two points of intersection, which is incompatible with the

simple connectedness of F . By making ξ0 smaller, if necessary, we can assume

that all i-arcs ab in N(z0,ξ0ρ) are contained in N([a,b],ξ0ρ/100), so that for

any m<ξ0ρ/100 and any i-arc A,

λ2
(
N(A,m)∩N(z0,ξ0ρ

))≤ 10ξ0ρm. (3.1)

If m≥ ξ0ρ/100, then clearly we have

λ2
(
N(A,m)∩N(z0,ξ0ρ

))≤π(ξ0ρ
)2 <C0ξ0ρm, (3.2)

with C0 = 100π , so that (3.2) holds for all m, ρ. These numbers ξ0 and C0 are

universal constants, that is, (3.2) is valid for all ρ > 0 and all i-arcs A of any

cps-mapping of any domain F which contains a disk N(z0,ρ).
Obviously, there is a cps-homeomorphism of D onto E if and only if there

is one onto F = √λ2(D)/λ2(E)E. We show that there is a constant C′ such that

if F is a cps-homeomorphic image of D, for which

F ⊃N(z0,r
)
, λ2(F)= λ2(D), (3.3)

then λ1(∂F)≤ C′/r . The desired result follows with CD = C′/λ2(D).
Let D′ be any fixed Jordan subdomain of D for which D′ ⊂D and such that

λ2(D\D′) < π(ξ0r/2)2. On the basis of the a priori bound on the Lipschitz

constants for θ mentioned at the beginning of the first paragraph of the proof,

it is easy to see that there exists some integer K such that for each f ∈ cps(D),
there is a set {C1,C2, . . . ,Cl} of l ≤ K j-arcs of f with the property that each

point ofD′ can be joined to some point of their union by an i-arc of f of length

at most 1. We stress that K depends only on D′, and so is fixed, since D′ is.

The arcs C1,C2, . . . ,Cl themselves, of course, depend on f ∈ cps(D).
Let f be an (mi,mj)-homeomorphism of D with mi < mj , for which F =

f(D) satisfies (3.3). It follows from the foregoing that all points of f(D′) are

within mi of
⋃l
k=1f(Ck), that is, that

f(D′)⊂
l⋃

k=1

N
(
f
(
Ck
)
,mi

)
. (3.4)
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Since λ2(F)= λ2(D), it follows that mimj = 1, so that

λ2
(
N
(
z0,ξ0r

)\f(D′))≤ λ2
(
F\f(D′))= λ2(D\D′) < π

(
ξ0r

)2

4
. (3.5)

Thus,

λ2
(
N
(
z0,ξ0r

)∩f(D′))≥ 3π
4

(
ξ0r

)2. (3.6)

Now, for each k, A = f(Ck) is a characteristic arc of g = f−1 in F , so that

(3.2) holds with ρ = r and m =mi. But then by (3.4) and (3.6), 3π(ξ0r)2/4 ≤
C0Kξ0mir , so that mi ≥ 3πξ0r/4C0K, and therefore, since mimj = 1, mj ≤
4C0K/3πξ0r . Since f increases lengths at most by a factor of mj , this bound

implies that λ1(∂F) = λ1(f (∂D)) ≤ C′/r , where C′ = (4C0K/3πξ0)λ1(∂D).
This finishes the proof of the theorem.

4. Tangents to characteristics at boundary points. The main result of this

section, Theorem 4.1, tells us that any characteristic of a cps-homeomorphism

of a smoothly bounded domain D onto another such domain that meets ∂D
does so at a well-defined angle. This is the key to most of what is to follow since

without knowledge of this fact we would, in effect, be limited to studying the

transformation problem for cps-mappings within the confines of artificially

imposed a priori hypotheses about regularity at the boundary.

LetD andD′ be Jordan domains, and let f be an (m1,m2)-homeomorphism

of D onto D′. The mapping f obviously has a unique continuous extension

to a homeomorphism of D onto D′. Let K and K′ be open C1 arcs of ∂D, ∂D′

which correspond to each other under f . Let C be a characteristic arc of f
which joins a point of D to p ∈ K. It easily follows from Proposition 2.9 that

λ1(C) <∞. Let C be parametrized by z =w(s), 0 ≤ s ≤ σ0, where w(σ0) = p.

For notational convenience we may assume, without loss of generality, that

p = f(p) = 0, and that the positively oriented tangents to both ∂D and ∂D′

at 0 point in the direction of the positive x-axis. Under these assumptions we

will prove the following result.

Theorem 4.1. The limits of θ(w(s)) and φ(w(s)) as s → σ0 exist.

Examples can be constructed to show that the smoothness ofK′ is necessary.

Before beginning the proof, we establish the following lemma.

Lemma 4.2. If lims→σ0 θ(w(s)) does not exist, then there is some ξ > 0 such

that for all σ <σ0 there are numbers s1 < s2 and s′1 < s
′
2 in (σ ,σ0) such that

∆θ
(
w
(
s1
)
w
(
s2
))≥ ξ, ∆θ

(
w
(
s′1
)
w
(
s′2
))≤−ξ. (4.1)



BOUNDARY VALUES AND THE TRANSFORMATION PROBLEM . . . 753

Proof. If (4.1) does not hold for any ξ > 0, then either

limsup
s1,s2→σ0

∆θ
(
w
(
s1
)
w
(
s2
))≤ 0 or liminf

s1,s2→σ0
∆θ

(
w
(
s1
)
w
(
s2
))≥ 0, (4.2)

where it is understood that s1 < s2. If, for example, the upper limit is nonposi-

tive, then the only way lims→σ0 θ(w(s)) could fail to exist would be for θ(w(s))
to tend to −∞, in which case the curve C would ultimately be an infinite (in-

ward) clockwise spiral when traversed in the direction of increasing s, which is

incompatible with the hypothesis thatw(s)→ p ∈ ∂D. In the case of a nonneg-

ative lower limit we arrive at the same contradiction with a counterclockwise

spiral.

Proof of Theorem 4.1. Let C be an i-characteristic. To prove the theo-

rem, it is enough to obtain a contradiction from the assumption that the limit

of θ(w(s)) does not exist since the existence of that of φ(w(s)) will then fol-

low from (1.2). Furthermore, it is sufficient to assume that mi >mj since the

truth of the theorem in the opposite case will follow from consideration of

f−1.

The curvature κ(s)= dθ(w(s))/ds exists a.e. on (0,σ0). It follows immedi-

ately from Lemma 4.2 and the fact that σ0 <∞ that for each k > 0 and each

σ <σ0

λ1
({
s ∈ (σ,σ0

)
: κ(s)≥ k})> 0, λ1

({
s ∈ (σ,σ0

)
: κ(s)≤−k})> 0. (4.3)

Now, for each s ∈ (0,σ0) we denote by Cs the entire open j-characteristic

arc passing through w(s). In addition, we denote by C+s and C−s the j-half-

characteristics emanating rightwards and leftwards from w(s), respectively.

These half-characteristics are considered to contain w(s) (and so are half-

open). On both C+s and C−s we consider the positive direction to be that which

corresponds to movement away from C . Now, Proposition 2.1 tells us that at

each point s ∈ (0,σ0) for which κ(s) exists,

λ1
(
C−s
)≤ 1

κ(s)
, if κ(s) > 0, λ1

(
C+s
)≤− 1

κ(s)
if κ(s) < 0. (4.4)

From this, the fact that by (4.3) κ(sj)→ +∞ and κ(s′j)→ −∞ for appropriate

sequences {sj}, {s′j} tending to σ0 and the fact that distinct j-characteristics

cannot intersect in D, it follows that

lim
s→σ0

diam
(
Cs
)= 0. (4.5)

Now let s0 > 0 be a density point of {s : κ(s) > 0}. Let 0 < ξ <min{s0,σ0−s0}
be such that

λ1
({
s ∈ (s0−ξ,s0+ξ

)
: κ(s) > 0

})
>

3ξ
2
. (4.6)
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Since by (4.3) s0 can be chosen arbitrarily close to σ0, it follows from (4.5) that

we may in addition assume that

⋃{
Cs : s0−ξ ≤ s ≤ s0+ξ

}⊂N(p,R), (4.7)

where N(p,R)∩∂D ⊂K. Let z = v(s), 0≤ s < ρ, be the arc length parametriza-

tion of C+s0 with v(0) = w(s0). For τ > 0 sufficiently small, the characteris-

tic quadrilateral consisting of the translates of the i-arc w([s0 − ξ,s0 + ξ])
along the j-arc v([0,τ)) exists, that is, lies entirely in D. Let τ1 = sup{τ :

Qτ exists}. Let ζ(s,s) give the standard characteristic coordinate mapping of

[s0−ξ,s0+ξ]×[0,τ1] ontoQτ1 . It follows from (4.6) that for τ < τ1, the lengths

of the translates ofw([s0−ξ,s0]) and ofw([s0,s0+ξ]) along Cs0 down to v(τ)
are at least ξ/2. From Proposition 2.8 it follows that ζ(s,τ1)= limτ→τ1 ζ(s,τ)
exists for each s ∈ w([s0 − ξ,s0 + ξ]). But then for some s1, ζ(s1,τ1) ∈ ∂D,

since otherwise, by compactness, ζ([s0−ξ,s0+ξ],τ1)⊂D, which contradicts

the definition of τ1. If s0−ξ ≤ s1 ≤ s0, then at all points at which it exists the

curvature of the characteristic arc ζ(s1,[0,τ1]) (with the positive sense corre-

sponding to movement away from C) is bounded above by 2/ξ, by what was

pointed out above about the length of the translates of w([s0,s0+ξ]). Simi-

larly, if s0 ≤ s1 ≤ s0+ξ, then this curvature is bounded below by −2/ξ. From

Lemma 4.2 (together with its consequence (4.3)), it therefore follows that if s0

is a density point of {s : κ(s) > 0} for which (4.6) and (4.7) hold, then there are

points s1 arbitrarily close to s0 for which the limit of θ(z) as z approaches ∂D
along C+s1 exists. Obviously, the analogous statement (with C+s1 replaced with

C−s1 ) holds for density points of {s : κ(s) < 0}.
We are now in a position to derive a contradiction from our assumption that

lims→σ0 θ(w(s)) does not exist. It follows quite easily from what we have just

established, and from Lemma 4.2 and (4.3) that there exist η > 0 and sequences

{sk}, {tk} tending to σ0 for which

(i) sk < tk,
(ii) the limits of θ(z) as z→ ∂D along C+sk and C−tk exist,

(iii) ∆θ(w(tk)w(sk))≤−η.

For each k let Lk be the curve Csk ∪Ek∪Ctk , where Ek is the subarc of C from

w(sk) to w(tk) (with the same orientation as C). Let pk and qk be the points

at which C+sk and C−tk meet ∂D. From (4.5) it follows that pk,qk → 0. Let Kk be

the arc of ∂D joining pk and qk; obviously, Kk ⊂K for all sufficiently large k.

Let αk and βk be the interior angles of the simple closed curve Kk∪Lk at

pk and qk. Note that Kk might be {p}; in this case, αk is the angular size

of the sector containing C−tk which is bounded by C+sk and an arc of ∂D, and

analogously for βk. We denote by α′k and β′k the interior angles of the image of

this simple closed curve at f(pk) and f(qk). Then, by Proposition 2.5 we have

α′k+β′k ≥
mj

mi

(
αk+βk

)
. (4.8)
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We consider that the simple closed curve Kk∪Lk is oriented positively, with

the orientations of its arcs Kk, C+sk , C
−
tk , and Ek taken accordingly. Let δk denote

the change in the tangent direction along Kk, and let δ′k be the corresponding

amount for f(K). Upon taking into account that change in the argument of the

tangent along the characteristic arcs C+sk , E, C−tk is simply the corresponding

change in θ and the change in the argument of the tangent along their images

is the corresponding change in φ, obvious geometric considerations tell us

that

∆θ
(
Lk
)=αk+βk+δk, ∆φ

(
Lk
)=α′k+β′k+δ′k. (4.9)

However, by (1.2) it follows that

∆φ
(
C+s
)= mj

mi
∆θ

(
C+s
)
, ∆φ

(
C−s
)= mj

mi
∆θ

(
C−s
)
, ∆φ

(
Ek
)= mi

mj
∆θ

(
Ek
)
.

(4.10)

By (4.8) and the fact that ∆θ(Ek)≤−η, we have

mj

mi

(
αk+βk

)+δ′k ≤α′k+β′k+δ′k
=∆φ(Lk)

= mj

mi

(
∆θ

(
C−tk

)+∆θ(C+sk))+mi

mj
∆θ

(
Ek
)

= mj

mi
∆θ

(
Lk
)+(mi

mj
−mj

mi

)
∆θ

(
Ek
)

≤ mj

mi
∆θ

(
Lk
)−m2

i −m2
j

mjmi
η

= mj

mi

(
αk+βk+δk

)−m2
i −m2

j

mjmi
η.

(4.11)

Sinceδk,δ′k→0 as k→∞, this is a clear-cut contradiction, so that lims→σ0θ(w(s))
must indeed exist.

Corollary 4.3. Let D and D′ be Jordan domains and let f be a cps-homeo-

morphism of D onto D′ under which open smooth arcs B and B′ of ∂D and

∂D′ correspond to each other. Let C and C′ be i- and j-characteristics of f ,

respectively, which exit at p ∈ B. Then, C and C′ cannot cross in D.

Proof. Assume for definiteness that C lies to the left of C′ (near p) and

that µ =mj/mi > 1. Assume that the corollary is false and let q ∈ C∩C′ ∩D.

Let the arc pq of C be parametrized by z = z(s), 0 ≤ s ≤ L, with z(0) = p.

Then the j-half-characteristic C′(s) emanating rightward from z(s) exits at p.

The simple closed curve E with sides C(s) = z([0,s]) and C′(s) has interior

angles β at p and π/2 at z(s); the corresponding angles in the image are
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γ and π/2, where by Proposition 2.5 (1/µ)β ≤ γ ≤ µβ. Let the changes in θ
along C(s) and C′(s) be δ and δ′, when E is traversed in the positive sense.

Then δ+δ′ = β+π/2 and (1/µ)δ+µδ′ = γ+π/2. But

γ+ π
2
− 1
µ
δ= µδ′ = µ

(
β+ π

2
−δ

)
≥ γ+µπ

2
−µδ, (4.12)

which is impossible since δ→ 0 as s → 0.

5. Boundary behavior of θf and φf . In this section we show that if f is

a cps-homeomorphism of D onto D′ under which open C1 arcs B ⊂ ∂D and

B′ ⊂ ∂D′ correspond to each other, then at each point p ∈ B the functions θ
andφ are well-behaved, a fact that may be interpreted as indicating the extent

to which the cryptocrystalline nature of a solidified lamina persists right up

to its boundary. In the context of conformal mappings g, there is the theorem

of Lindelöf (see [12, Theorem 10.1]), which says that in this situation, the ar-

gument of g′ has a continuous extension to D∪B. We show that there is an

analogue of this theorem for cps-mappings, except that the possibility of jump

discontinuities in θ and φ arises.

We begin with some notational conventions. First of all, when considering

the boundary behavior of f at p ∈ B, it constitutes no loss of generality to

assume that ∂D is a C1 Jordan curve, so that in particular all characteristics

have finite length by Proposition 2.9. When discussing a characteristic C which

exits D at p, we use the arc length parametrization z = zC : [0,λ1(C)] → D,

with z(0) = p. Here we are dealing with full characteristics, that is, z(λ1(C))
is the other exit point of C . We denote the set of full k-characteristics exiting

at p by �k(f ,p) or simply by �k(p). Furthermore, α(C,p)∈ [0,π] will denote

the angle formed by the characteristic C and ∂D at p, specifically, α(C,p) =
arccos(z′C(0) ·v), where v is the positively oriented unit tangent to ∂D at p.

For a given cps-homeomorphism f of D onto D′, we denote by E(f) the set

of all points of ∂D at which some characteristic of f exits. An i-fan at p is

an � ⊂ �i(f ,p) which is maximal with respect to the property that any two

characteristics in � are connected by a j-arc.

We define the HP-function θ(z)= θ(z,αR,αL,δR,δL) as follows:

θ
(
reiτ

)=




αR, −π
2
< τ <αR,

τ, αR ≤ τ ≤αR+δi,
αR+δR, αR+δR < τ <αR+δR+ π

2
,

τ− π
2
, αR+δR+ π

2
≤ τ ≤π−αL,

αR+δR+δL, π−αL < τ < 3
2
π,

(5.1)
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where αR,αL,δR,δL ≥ 0,

αR+αL+δR+δL = π
2
,

tan−1
(mj

mi
tanαR

)
+mj

mi
δR+mi

mj
δL+tan−1

(
mi

mj
tanαL

)
= π

2
.

(5.2)

Note that although we are primarily interested in θ in the half-plane, we have

made the first sector (−π/2,αR), rather than (0,αR), and similarly for the

last sector, in order to accommodate points p ∈ ∂D at which the tangent line

contains points of D arbitrarily close to p. Furthermore, we define

φ(z)=φ(z,αR,αL,δR,δL)= θ
(
z,βR,βL,

mj

mi
δR,

mi

mj
δL
)
, (5.3)

where

βR = tan−1
(mj

mi
tanαR

)
, βL = tan−1

(
mi

mj
tanαL

)
. (5.4)

It is easy to see that conditions (5.2) imply that there is a unique (mi,mj)-
homeomorphism h(z)= h(z,αR,αL,δR,δL) of the upper half-plane onto itself

with h(0)= 0, θh = θ, and φh =φ. We prove the following theorem.

Theorem 5.1. Let D and D′ be Jordan domains and let f be a cps-homeo-

morphism of D onto D′ under which open smooth arcs B and B′ of ∂D and ∂D′

correspond to each other. Then for each pointp ∈ B, there existαR,αL,δR,δL ≥ 0

satisfying (5.2) such that for some integers n and n′,

θf (z)−ξ−θ
(
e−iξz,αR,αL,δR,δL

)
�→ nπ

2
,

φf (z)−ξ′ −φ
(
e−iξz,αR,αL,δR,δL

)
�→ n′π

2
,

(5.5)

as z→ p in D, where eiξ and eiξ′ are the positively oriented unit tangents to ∂D
and ∂D′ at p and f(p), respectively.

Here the correct ordering of mi and mj is such that the fans of f and h
“match up”; the integers n and n′ are necessary to compensate for the nor-

malization implicit in the definitions of θ andφ. The proof essentially amounts

to showing that f actually has fans matching those of θ at each point of ∂D.

We accomplish this by first showing that if there is a characteristic C exit-

ing at p, then the corresponding fans exist, and that θ and φ satisfy (5.5) at p;

there are, however, some technical complications in showing that these desired
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limits hold as z→ p to the right (left) of the right (left) fan. Then we show that

E(f) is dense in B and finally that E(f)∩B is closed in B, from which it follows

that, in fact, E(f)⊃ B. It is to be noted that E(f)⊃ B is not at all obvious since

not all HP-nets on smoothly bounded Jordan domains have exiting character-

istics at all boundary points. For this reason the proof that E(f)∩B is closed

in B does require a fairly lengthy argument.

We begin with several lemmas.

Lemma 5.2. Let p ∈ B, let εn → 0, let {Qn} be a sequence of nondegenerate

curvilinear quadrilaterals with vertices p, b = bn, c = cn, and d= dn (in clock-

wise order), and letα=αn be the interior angle ofQn at p. Assume furthermore

that

(i) pd⊂ B,

(ii) pb and dc are i-characteristics and bc is a j-characteristic,

(iii) λ1(θ(pb)), λ1(θ(bc)) < εn,

(iv) diam(Qn) < εn,

(v) α∈ [0,π/2].
Then λ1(θ(Qn))→ 0.

Proof. In this proof we will in some instances suppress the subscript n;

this should cause no confusion. Let C = Cn be the complete i-characteristic

of which pb is an initial arc. Without loss of generality we can assume that

argz′C(s) = θ(zC(s))+π/2 and that the argument of the positive tangent to

∂D at p is 0. Let θn = lims→0θ(zC(s)) = α−π/2. Note that in light of (v),

θn ∈ [0,−π/2]. If the conclusion of the lemma is not valid, then there is some

ξ ∈ (0,1/10) such that for arbitrarily large n there is aw =wn ∈Qn, and a ξn
with ξ < |ξn|< 2ξ for which

θ
(
wn

)= θn+ξn, (5.6)

π
2
+2ξ ≥ ∣∣θ(wn

)∣∣≥ ξ
2
, (5.7)∣∣∣∣θ(wn

)+ π
2

∣∣∣∣≥ ξ2 . (5.8)

Passing to a subsequence, we can assume that these conditions hold for all n.

Let C′ be the maximal j-arc passing throughwn contained inQn. It is clear that

for sufficiently large n, C′ cannot join a point of pb to one of cd since then it

would be the j-side of a characteristic quadrilateral whose opposite side is bc.

By the HP-property, this would imply that λ1(θ(C′)) < εn by (iii), and therefore,

(also by (iii)) that for all z ∈ C′, |θ(z)−θ|< 2εn, which contradicts (5.6).

We next observe that for all sufficiently large n, C′ cannot have both of its

endpoints on pd. To see this, assume that C′ joins the endpoints of a subarc

E of pd⊂ B and let β1 and β2 be the interior angles of the curvilinear bilateral

C′ ∪E. Then in light of Proposition 2.6 and (iv), β1 and β2 tend to 0 as n →
∞, so that for sufficiently large n they are both smaller than the number τ0
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of Proposition 2.7. If there is some point u of C′ which is not joined to bc
by an i-arc in Q, then u would have to be joined to pd by an i-arc lying in

Qn but outside of C′ ∪E. But a simple application of Proposition 2.7 shows

that this cannot be. Thus C′ is the j-side of some characteristic quadrilateral

whose opposite side is on the j-arc bc. Then in light of the HP-property and

(iii), λ1(θ(C′))→ 0. But then, since β1,β2 → 0 and the tangent to ∂D at p has

argument 0, the fact that |θ(wn)| ≤ π/2+2ξ implies that θ(wn)→ 0, which

contradicts (5.7).

Thus, for sufficiently large n, either

(1) C′ joins a point q ∈ pd to a point t ∈ pb, or

(2) C′ joins a point q ∈ pd to a point t ∈ dc.

We claim that in either of these cases λ1(θ(C′)) → 0 as n → 0. Let C′ be

parametrized by ω(s), 0≤ s ≤ l= ln, with ω(0)= t. If for all s, ω(s) is joined

to bc by an i-arc, then, as above, by the HP-property and (iii), λ1(θ(C′)) < εn.

Thus assume that there is some s for whichω(s) is joined to pd by the i-half-

characteristic emanating from C′ leftwards in case (1) and rightwards in case

(2), and let σ = σn be the smallest such s. Then, as before, λ1(θ(ω([0,σ]))) <
εn. Also, the complete i-characteristic through ω(σ) must join two points of

pd in Qn, and it is clear that the same must be the case for the complete

i-characteristic through all ω(s) for σ ≤ s ≤ l. Let F be the i-characteristic

through ω(η), for some η ∈ [σ ,l), and say that it joins the endpoints p1 and

p2 (in this order when pd is traversed positively) of an arc E ⊂ pd. Let F be

parametrized by ζ(s), 0≤ s ≤ ρ with ζ(0)= p1. By taking into account that by

Proposition 2.6 the interior angles β1 and β2 of the bilateral E∪F at p1 and

p2 must tend to 0 as n→∞, it follows from Proposition 2.7 that dθ(ζ(s))/ds
must be uniformly bounded above by some number τ1 > 0. From this it easily

follows that for s1 < s2, we must have θ(ζ(s2)) < θ(ζ(s1))+2εnτ1, for n suffi-

ciently large. But then the minimum of θ(ζ(s2))−θ(ζ(s1)) must also tend to

0 as n→∞, since |∆θ(p1p2)| tends to 0. Thus, we indeed have that

δn = λ1
(
θ(C′)

)
�→ 0, as n �→∞. (5.9)

In case (1) we have a contradiction since λ1(θ(twn))→ 0, together with (iii),

implies that θ(wn)−θn → 0, which is impossible in light of (5.6). In case (2)

for sufficiently large n, θ(wn)−θn = ξn > 0, since if ξn > 0, C′ would meet

pb because λ1(θ(C′))→ 0. Replace εn by max{εn,δn}. Let ζ = ζ(s), 0≤ s ≤ L,

parametrize dc with ζ(0) = d. Let t = ζ(s0). Then argζ′(s0) is within εn of

θ+π/2+ξn. Since the inclination of dc at c is within 2εn of θ+π/2, there

is a subinterval [s1,s2] of [s0,L] on which that argζ′(s) varies from θ+π/2+
ξn− εn to θ+π/2+2εn. Since by (iv) ζ([s1,s2]) is contained in N(pb,2εn),
the length of the arc ζ([s1,s2]) is certainly less than 10εn. Therefore, there is

a point on this arc at which the curvature is least (ξ−3εn)/10εn and at which

dc is convex towards the inside of Qn. This implies that the full characteris-

tic containing C′ intersects ∂D at a point e outside of Qn at distance at most
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3εn+10εn/(ξ−3εn)→ 0 from p. However, by Proposition 2.6, the interior an-

gles of the bilateral formed by C′ and the arc qe of ∂D tend to 0. But this is

inconsistent with the facts that the inclination of the tangent to C′ at wn is

bounded away from 0 and δn = λ1(θ(C′))→ 0. This is the desired contradic-

tion.

Lemma 5.3. Let f have an i-fan � at p ∈ ∂D. If � has a rightmost (leftmost)

characteristic C for which 0<α(C,a)≤ (π/2)(π/2≤α(C,p) < π). Then θ(z)
has a limit as z→ a in D to the right (left) of C .

Proof. For definiteness we deal with the rightmost characteristic case, the

leftmost case being treated analogously. For each positive integer n there is

a point bn ∈ C such that λ1(pbn), λ1(θ(pbn)) < 1/n. Let C′ be the j-half-

characteristic emanating rightwards from bn, parametrized by ζ = ζ(s), with

ζ(0)= bn. Let C(s) denote the i-half-characteristic emanating rightwards from

ζ(s). Then, since C is the rightmost characteristic in �, there is an s0 > 0 such

that p ∉ C(s) for s ∈ (0,s0], and, by making s0 smaller if necessary, we can

assume that λ1(θ(ζ[0,s0])) < 1/n. We claim that for all sufficiently small s,
C(s)⊂N(pbn,1/n). Indeed, were this not so, it would follow from simple con-

tinuity properties of the solutions of ordinary differential equations that there

is some η > 0 such that for all ε > 0 there is a σ ∈ (0,ε) for which C(σ) has

a subarc E(σ)⊂N(pbn,1/n) which joins ζ(σ) to a point q within ε of p and

another subarc E′(σ)which joins q to a point r ∈D\N(p,η). But then it is easy

to see that there must be a point t ∈ E′(σ)∩N(r ,2ε) at which the curvature

is greater than 2/η and C(σ) is concave towards the left side (as one moves

away from ζ(σ)) since otherwise for sufficiently small ε, the corresponding

E′(σ)∩N(r ,2ε) would be virtually straight lines and would intersect ∂D, con-

tradicting the existence of the point q. But the j-half-characteristic emanating

to the left of this C(σ) from t would have to intersect C(σ) in another point,

which is impossible. Let cn = ζ(s), where s < s0 and C(s)⊂N(pbn,1/n), and

let dn be the point at which C(s) exits D. The desired conclusion now follows

from a simple application of Lemma 5.2.

Lemma 5.4. Let f have an i-fan � at p ∈ ∂D. If inf{α(C,p) : C ∈ �} = 0

(sup{α(C,p) : C ∈ �} = π), then for any ε > 0 there is a C ∈ � and a δ > 0

such that λ1(θ(G∩N(p,δ))) < ε, where G is the part ofD to the right (left) of C .

Proof. It is sufficient to handle the case in which inf{α(C,p) : C ∈�} = 0.

Let C ∈ � be such that α(C,p) < ε. Without loss of generality we can assume

that argz′C(s) = θ(z′C(s)). Let C′(s) denote the j-half-characteristic emanat-

ing to the right of zC(s) considered as oriented from zC(s) towards ∂D. We

consider two cases.

Case 1. For each sufficiently small ε > 0, there is an s0 = s0(ε) < ε such that

all points of C′(s) are joined to p by an i-arc for all s < s0. Then it is easy to see

that λ1(θ(C′(s))) < ε, and in fact that for s < s0, C′(s) is everywhere concave
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towards p and that the curvature at all points of C′(s) is asymptotic to 1/s as

s → 0. From this it follows for sufficiently small ε, that T = ∪{C′(s) : s < s0}
contains a set of the form G∩N(p,δ) as in the statement. But λ1(θ(T)) ≤
λ1(θ(z(0,s0)))+ε < 2ε, for sufficiently small ε. Thus the lemma is established

in this case.

Case 2. For arbitrarily small ε > 0 there are arbitrarily small s such that

there are i-half-characteristics emanating rightwards from C′(s) which do not

exit at p. In this case for each positive integern, pick a particular such ε < 1/n,

and a corresponding s < 1/n for which λ1(θ(pzC(s))) < 1/n and such that

there are i-half-characteristics emanating rightwards from C′(s) which do not

exit at p. Let bn = zC(s). Then, it is easy to see that there is a cn ∈ C′(s) such

that the i-half-characteristic emanating rightwards from cn exits D at a point

dn ≠ p and such that cndn ⊂ N(p,2/n). The desired conclusion now follows

easily from Lemma 5.2.

Lemma 5.5. Let C,C′ ∈ Ci(f ,p) be joined by a j-arc A. Then the length of

the translate of A down to q ∈ C tends to 0 as q→ p.

Proof. Let A be parametrized byw =w(s), 0≤ s ≤ L, withw(0)∈ C . Since

each point of A is connected to p by an i-arc between C and C′, it is clearly

enough to show that the conclusion is valid under the additional assumption

that λ1(θ(A)) < 1/10. But then, if the length of the translates of A does not

tend to 0, there is a j-arc joining p to a point of C′, which is impossible by

Corollary 4.3.

It follows immediately from this lemma and the HP-property that for a fan

�, {α(C,p) : C ∈�} is an interval. The length of this interval, which gives the

angular aperture of �, will be denoted by δ(�). It also follows from this lemma

that if i-characteristics C , C′, and C′′ exit at p and the pairs C , C′ and C′, C′′ are

joined by j-arcs, then so are C and C′′. The following is also a straightforward

consequence of Lemma 5.5.

Lemma 5.6. Let � be a fan of f at p ∈D and let C,C′ ∈�. Then, there is an

integer n such that θf (z)−arg(z−p)→nπ/2 as z→ p in the closed subregion

of D between C and C′.

Lemma 5.7. Let f have an i-fan � at p ∈ ∂D. If the infimum of α(C,p) > 0

(supremum of α(C,p) < π ), then � has a rightmost (leftmost) characteristic.

Proof. We consider the rightmost case. Let β be the lower endpoint of the

interval {α(C,p) : C ∈ �}. Obviously, we can assume that for all ε > 0 there

is a C′ ∈ � with α(C′,p) = β+ ε since otherwise the interval would be {β}.
Let C′′ be the j-half-characteristic emanating rightwards from zC′(s0), where

s0 < ε is so small that λ1(θ(zC′(0,s0))) < ε. Let w = w(σ), 0 ≤ σ < L, be

the arc length parametrization of C′′, with w(0) = zC′(s0). Let E(σ) denote

the i-characteristic through w(σ). If E(σ) exits at p, then E(σ ′) exits at p
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for all σ ′ ∈ [0,σ] so that for all such σ ′, E(σ ′) ∈ �. From this we conclude

that if E(σ) exits at p, then λ1(θ(w([0,σ]))) < ε. But then for ε sufficiently

small there is a σ0 < L for which E(σ) does not exit at p. Indeed, if this were

not so, then as ε → 0 we would have curvilinear triangles with right angle at

w(0), such that along each of the three sides the inclination of the tangent

is contained in an interval of length ε (making them virtually straight line

segements), and such that the angle at p tends to 0. However, it is clear that

the ratio of the length of the side opposite to p to that of the side zC′([0,s0]) is

bounded away from 0, which is obviously inconsistent with these conditions.

The desired rightmost characteristic is then the one containing E(σ1), where

σ1 = sup{σ : E(σ) exits at p}.
Proof of Theorem 5.1. Say we have an i-characteristic C exiting at p;

without loss of generality, we can assume that p = 0 and that the positively

oriented unit tangent vector at p is 1. We also assume that 0≤α(C,p)≤π/2,

the opposite case being handled analogously. Obviously, there is an i-fan �i at

p. Let Ii = {α(C,p) : C ∈�i}. By Lemma 5.7, �i will have a rightmost (leftmost)

characteristic unless the lower (upper) endpoint Ii is 0 (π ). In the case that the

lower endpoint is 0, we define αR = 0; otherwise, we define it to be α(C,p),
where C is the rightmost characteristic in �i.

Let δR = δ(�i). Then we have δR+αR ≤π/2. To see this, say δR+αR > π/2.

We denote by αL the angular size of the sector lying to the left of �i. It follows

from Lemmas 5.3 and 5.4 that the limit of θ(z) as z → p in each of these

sectors exists. Then αR,αL ≤ π/2 and αL+δR+αR = π . Let µ =mj/mi. It is

clear from (1.2), together with Lemma 5.6, that δ(f(�i)) = µδR . In addition,

simple trigonometry, together with Lemma 5.3, implies that the inclination of

the image of the rightmost characteristic of �i is tan−1(µ tanαR) and similarly

for the image of its leftmost characteristic. It therefore follows that

tan−1 (µ tanαR
)+tan−1 (µ tanαL

)+µδR =π. (5.10)

(Minor modifications show that this equation remains valid in the cases where

no rightmost and/or leftmost characteristic exists.) This is clearly impossible

since for µ < 1 (µ > 1), apart from trivial exceptions, all three terms on the

right-hand side of (5.10) are, respectively, less (greater) than αR , αL, δR . In fact,

δR+αR < π/2, unless we are in the “degenerate case” in which αR =π/2 and

δR = 0, which we discuss at the end of the next paragraph.

First, we assume that δR+αR < π/2. In this case there is a j-characteristic

emanating from p and orthogonal to the leftmost i-characteristic in �i. To

see that such an orthogonal characteristic exists, let q be a point of the left-

most i-characteristic of �i (near p) and let A be a (short) j-arc emanating

from q away from �i. Then the length of the translates of A along this i-
characteristic towards p are bounded below (and lie inD), since otherwise this

i-characteristic would not be the leftmost one in �i. A simple limit argument
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then gives the required j-characteristic J. It follows from a simple argument

based on Corollary 4.3 that no j-characteristic to the right of J exits at p, so

that J is the rightmost characteristic of a j-fan �j . Let δL = δ(�j) and let αL
be the acute angle between ∂D and the leftmost characteristic of �j if such

exists, or 0 otherwise. The limit relationship between θ, φ and θ, φ follows

from Lemmas 5.3, 5.4, and 5.6, together with simple trigonometry and (1.2).

In the degenerate case we have αR =π/2 and δR = 0. But then it follows from

Lemma 5.3 that the desired limits exist.

Next, we show that E(f) is dense in B. Let p ∈ B and let ε > 0 be such

that N(p,2ε)∩∂D ⊂ B. If θ is Lipschitz continuous in N(p,ε), then it is easy

to see that there are characteristics exiting at all points of B ∩N(p,ε). On

the other hand, if θ is not Lipschitz continuous in N(p,ε), then one of |D1θ|
or |D2θ| must be unbounded there, so that some characteristic must exit in

N(p,2ε)∩∂D ⊂ B.

Finally, we show that E(f) is closed in B. Let {pn} be a sequence of distinct

points in E(f) which converge to p ∈ B. It follows from the above construction

that there is a δ > 0 such that for each pn there is a characteristic Cn exiting

at pn for which δ≤α(Cn,pn)≤π−δ. By passing to a subsequence, we can as-

sume that all of the Cn are i-characteristics. Similarly, we may assume that the

pn tend monotonically to p from one side; for definiteness, say from the right.

Let Cn be parametrized by z = zn(s), 0 ≤ s ≤ σn, with zn(0) = pn. We regard

Cn as including its end points. In light of Proposition 2.6, the distance between

the endpoints of the Cn is bounded below by some ε0 > 0. Since {Cn} is a fam-

ily of compact sets, some subsequence, which for convenience we continue to

call {Cn}, converges to a set S ⊂D with respect to the Hausdorff metric

d(X,Y)= inf
{
ρ :X ⊂N(Y ,ρ), Y ⊂N(X,ρ)}. (5.11)

It is easy to see that S is a connected compact set consisting of a union i-
characteristics (without their endpoints) and a closed subset E of ∂D and that

p ∈ E. If p is not an accumulation point of E, that is, if dist(E\{p},{p}) >
0, then there is an i-characteristic of f joining p to E\{p}, so we are done.

Thus we may assume that there is a sequence {rn} of distinct points of E\{p}
monotonically approachingp, and from this we obtain a contradiction. Because

the pn lie to the right of p, the Cn move to the left, so that the points of E (near

p) lie to the left of p, and thus the rn lie to the left of p.

We now focus on an individual rk for which |rk−p| < ε0/10 (where ε0 is

the lower bound for the distance between the endpoints of the Cn) and such

that the inclination of the tangent to ∂D along the (short) arc rkp is less than

1/100. Let un = zn(sn) be a point of Cn which minimizes distance to rk, so

that un→ rk. Note that

N
(
rk,
∣∣un−rk∣∣) lies to the left of Cn (5.12)



764 JULIAN GEVIRTZ

since if this were false for some n0, Cn0 would have to exit D between rk and

p, and consequently all the Cn for n > n0 would be contained in the region

bounded by Cn0 and an arc of ∂D joining p to a point between rk and p,

contradicting the assumption that rk ∈ E. Consider the strip Sn of width |rk−
p|/5 whose sides have the normal direction of ∂D at rk and whose centerline

passes through un, and let Wn be the arc of Cn which joins two points of Sn
and passes through un. For w ∈ Wn, let Aw denote the j-half-characteristic

emanating to the right of Cn. We have

λ1
(
Aw

)≥
∣∣rk−p∣∣

10
, (5.13)

for n sufficiently large, since any Aw for which this is not true would cross Cn
twice. Furthermore,

∣∣Djθ(z)∣∣≤ 10∣∣rk−p∣∣ for z ∈Aw∩N
(
w,

∣∣rk−p∣∣
10

)
, (5.14)

for all w ∈Wn, n≥n1, since, otherwise because |rk−p|< ε0/10, there would

be an i-characteristic emanating from Aw which crosses Cn, a contradiction.

In addition, it follows from (5.13) that

dθ
(
zn(s)

)
ds

≥− 10∣∣rk−p∣∣ , for zn(s)∈Wn (5.15)

for n sufficiently large; that is, for such n the curvature of Cn towards the right

is uniformly bounded. Now, from (5.15) and the fact that the subarcs ofWn on

either side of un have length bounded below by |rk−p|/10 and do not touch

∂D, it follows that for all ρ > 0, there is an ε > 0 such that

N
(
un,ε

)∩Wn ⊂
{
z :
∣∣∣∣arg

(
z−un
ξ

)∣∣∣∣< ρ or
∣∣∣∣arg

(
z−un
ξ

)
−π

∣∣∣∣< ρ
}
, (5.16)

for sufficiently large n, where ξ is the positive unit tangent to ∂D at rk. From

(5.14) it follows by compactness that there is a subsequence of {Aun} which

converges to a j-characteristic C′k emanating from rk; from (5.16) it follows

that α(C′k,rk) = π/2. Since all the Cn must cross C′k, it follows that for all

ρ > 0 there is an ε > 0 such that (5.16) holds with un replaced by the point

of intersection of C′k with Wn. This in turn implies that the image of ∂D is

orthogonal to the image of C′k at f(rk).
We can now use our familiar angle change argument on a positively oriented

curvilinear triangle made up of the part of Cn between pn and tn,k ∈ C′k, the

j-arc tn,krk, and the (short) boundary arc from rk to pn. If the changes in the
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tangent inclination on these pieces are α, β, γ, respectively, and the corre-

sponding changes in the images are α′, β′, γ′, and the interior angle at pn is τ
with a corresponding image angle τ′, then β, γ, β′, and γ′ can be made arbi-

trarily small for k and n sufficiently large. But τ ≥ δ > 0 and α′ = (mi/mj)α,

so that we get a contradiction with Proposition 2.5 since

α+β+γ = τ, α′ +β′ +γ′ = τ′. (5.17)

This finishes the proof of the theorem.

Before ending this section, we mention the following simple consequence of

Theorem 5.1 or, more precisely, of its proof.

Corollary 5.8. Let D and D′ be Jordan domains with smooth boundaries,

and let f be a cps-homeomorphism of D onto D′. Then, there is an at most

countable set S ⊂ ∂D such that θf and φf have continuous extensions to D\S.

Proof. Let S denote the set of points p ∈ ∂D at which limz→p θf (z) or

limz→pφf (z) fail to exist (as numbers). From the preceding considerations, it

follows that for each p ∈ S, δi(p)+δj(p) > 0, where δk(p) denotes the angular

size of the k-fan of f emanating from p. Let � be one of these fans with angular

size δ > 0. Let �′ consist of all C ∈� for which α(C,p) > δ/2, other than the

leftmost and rightmost characteristics of �. The angular size of this subfan

�′ of � is at least δ/2. It follows from Proposition 2.6 that there is a γ = γ(δ)
such that λ1(C) ≥ γ for all C ∈ �′. For p ∈ S for which δi(p) > 0, let �′

i(p)
denote the corresponding subfan and let Ei(p) denote the corresponding set

of second exit points. Then,

λ1
(
Ei(p)

)≥ δi(p)γ(δi(p)), Ei
(
p1
)∩Ei(p2

)
for p1 ≠ p2. (5.18)

From (5.18) it follows that

2∑
k=1

∑
p∈S

δk(p)γ
(
δk(p)

)≤ 2λ1(∂D), (5.19)

so that S is indeed at most countable.

6. cps-self-mappings of the half-plane. In this section we use Theorem 4.1,

together with an appropriate uniqueness argument, to completely determine

the class of all (m1,m2)-homeomorphisms f of the upper half-plane H = {z :

z > 0} onto itself. We do this by showing that for all such f , θ = θf has

well-defined values on R = ∂H and that these values are essentially nonchar-

acteristic in the sense that, disregarding simple exceptions, the initial values of

θ (may be taken to) lie entirely in one of the intervals (0,π/2) or (π/2,π). This

reduction to a well-posed initial value problem is not straightforward since we

do not know without the considerations of Section 5 that θ is even bounded in
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a neighborhood of each point of R. Throughout this section f will denote an

(m1,m2)-homeomorphism of H onto itself. We begin with a series of lemmas,

the first of which is the key to the succeeding analysis.

Lemma 6.1. The mapping f does not have any doubly exiting characteristics.

Proof. Assume, to the contrary, that f has a doubly exiting i-characteristic

C . By the remark immediately following the proof of Proposition 2.6, C must

have distinct endpoints a < b. If α and β are the interior angles of the simple

closed curve C ∪ [a,b] at a and b, then it follows from Proposition 2.6 that

α = β= 0. For z ∈ C , let C′z be the j-half-characteristic emanating from z and

lying in the exterior of C∪[a,b]. There is a point w ∈ C at which C is concave

towards the exterior of C∪ [a,b], so that C′w joins w to a point u of ∂H. By

Corollary 4.3, u < a or u > b. If u < a, then for all z ∈ aw ⊂ C , the same

corollary implies that C′z joins z to a point of (−∞,a); in the opposite case for

all z ∈ bw ⊂ C , C′z joins z to a point of (b,∞). Application of Proposition 2.7

then gives a contradiction for z sufficiently close to a in the first case or to b
in the second case.

Lemma 6.2. Let C be a characteristic arc of f given by z = z(s), 0 < s < L.

Then, κ(s) = dargz′(s)/ds has a single sign on (0,L); that is, κ(s) ≥ 0 a.e. on

(0,L) or κ(s)≤ 0 a.e. on (0,L).

Proof. If the conclusion were not true, then by Proposition 2.1 there would

be s+,s− ∈ (0,L) such that the orthogonal half-characteristics C+ issuing from

p+ = z(s+) to the left of C and C− issuing from p− = z(s−) to the right of

C join p+ and p− to points a+ and a− of R. We assume that s+ < s−, the

opposite case being handled similarly. Let C′ denote the closed subarc p+p−

of C . Let D denote the interior of the simple closed piecewise smooth curve

[a+,a−]∪C+ ∪C− ∪C′. If the right-hand side of C faces the interior of D,

then by Proposition 2.8 the half-characteristic E orthogonal to C issuing to the

right of p+ intersects ∂D. Since E∩C = {p+} and E cannot touch the interior

of either C+or C−, E must meet [a+,a−] ⊂ ∂D. But then E∪C+ is a doubly

exiting characteristic, which is impossible by the preceding lemma. If D is on

the left-hand side of C , then an analogous argument produces a doubly exiting

characteristic passing through p−.

Lemma 6.3. Any nonexiting characteristic C must be a horizontal straight

line.

Proof. Clearly, if C is a nonexiting straight-line characteristic, it must be

horizontal. Thus, it is sufficient to show that the curvature is identically 0 on

any nonexiting characteristic. Assume, to the contrary, that this is not the case

for some such i-characteristic C given by z = z(s), −∞ < s <∞. Since by the

preceding lemma argz′(s) is monotone on (−∞,∞), there are two cases:

(i) argz′(s) is unbounded in at least one direction,

(ii) argz′(s) is bounded in both directions.
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In case (i) it is easy to see that at one end or the other, C must have an infinite

inward spiral, which is clearly impossible. In case (ii) C is a U-shaped curve each

end of which must extend upward or at worst be horizontal. Thus there must

be some point p on C with nonvanishing curvature at which C is concave to-

wards the inside of the U. But then by Proposition 2.1, the j-half-characteristic

C′ emanating from p into the U must join p to ∂H. But this implies that C′

intersects C in two points, which is impossible.

Lemma 6.4. If f has a nonexiting characteristic, then f must be affine with

horizontal and vertical characteristics.

Proof. If f has a nonexiting i-characteristic C , then by the preceding

lemma it must be a horizontal straight line. Let C′ be any orthogonal char-

acteristic. If the tangent to C′ were nonvertical at any point p ∈ C′, then the

i-characteristic through p would be a straight line intersecting C , an obvious

contradiction. Thus, C′ is a vertical line, so that the two families of characteris-

tics are given by
z = const andz = const, from which the desired conclusion

follows immediately.

Since this lemma gives a complete description of all f possessing a nonex-

iting characteristic, for the remainder of this section, unless otherwise stated,

we assume that all characteristics exit, and so, in light of Lemma 6.1, we as-

sume that they exit exactly once. Each characteristic C will be parametrized by

z = ZC(s), 0≤ s <∞, so that αC = argZ′C(0) is the angle formed by C with the

part of R to the right of C . We adopt the convention 0≤αC ≤π . Furthermore,

each characteristic splits H into two pieces. Since characteristics belonging to

the same family never cross inH, it makes sense to speak of a characteristic as

lying to the right or left of one belonging to the same family. Obviously, C1 lies

to the left of C2 if and only if ZC1(0) ≤ ZC2(0). Since by Lemma 6.2, argZ′C(0)
is monotonic, it follows that

αC ≤ argZ′C ≤π for all s ∈ [0,∞) (6.1)

or

0≤ argZ′C ≤αC for all s ∈ [0,∞). (6.2)

Were this is not so, we would have a doubly exiting characteristic, which is

impossible by Lemma 6.1, or a characteristic with an infinite inward spiral,

which is also impossible.

Lemma 6.5. If C is a characteristic of f , then all of the orthogonal charac-

teristics must exit in the same component of H\C . In fact, this component is the

right-hand one if argZ′C(s) ∈ [0,π/2) for some s ≥ 0 and the left-hand one if

argZ′C(s)∈ (π/2,π] for some s ≥ 0.
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Proof. Let C be an i-characteristic. The first sentence follows easily from

Lemma 6.1, as in the proof of Lemma 6.2. For the second conclusion, assume,

for example, that argZ′C(s) ∈ [0,π/2) for some s ≥ 0. Let C′ be the j-half-

characteristic emanating to the right of Z′C(s). If C′ does not meet ∂H, then

simple geometric considerations imply that as we move along C′ away from

Z′C(s), there will be some point p at which C′ is concave to the left. But then

the i-half-characteristic emanating leftward from p must meet ∂H but at the

same time is trapped inside the infinite subregion of H bounded by {Z′C(σ) :

σ > s}∪C′, which is a contradiction. Therefore, C′ must meet ∂H.

If αC = 0, then because of the monotonicity of argZ′C , this function would

have to be nondecreasing and not constantly 0 on [0,∞). That is, C would

have to be concave to the left. But then Lemma 6.5 and Proposition 2.1 would

together imply that some orthogonal characteristic exits on both sides of C , in

contradiction to Lemma 6.1. We obtain a similar contradiction if αC =π . Thus,

0<αC <π for all C. (6.3)

We denote by �i family i-characteristics of f .

Lemma 6.6. Either for all C ∈�i all orthogonal characteristics exit to the left

or for all C ∈�i they exit to the right.

Proof. If not, then we would have C1 and C2 in �i with orthogonal charac-

teristics exiting to the left and right, respectively. If ZC1(0)≤ ZC2(0), then let C′1
and C′2 be infinite j-half-characteristics emanating from C1 and C2 with initial

inclinations in [0,π/2) and (π/2,π], respectively. The only possibility is that

the inclinations are 0 and π since otherwise they would cross. But then they

must be horizontal lines since otherwise we would have doubly exiting char-

acteristics. Appropriate downward translates of these lines will then coincide,

which again produces a doubly exiting characteristic. Thus ZC1(0) > ZC2(0). In

this case the only possibility is that C1 and C2 are vertical lines, since otherwise

they would cross. Let p ∈ C1. If the j-arc C through p crossed C2, then it would

exit both to the left and to the right of C2, making it a doubly exiting charac-

teristic. Therefore, it must exit in [ZC2(0),ZC1(0)). But then if we translate the

part of C1 above p downward along C , we will obtain i-arcs which are rays

with inclination in (π/2,π), which will necessarily cross C2. This is impossible

since distinct i-characteristics cannot cross in H.

Lemma 6.7. Let C1,C2 ∈�i with ZC1(0) < ZC2(0). Then αC1 ≥αC2 .

Proof. We prove this for the case in which for all C ∈�i, the j-characteris-

tics crossing it exit to its right, that is, in which all of the characteristics in �i

are concave to the right; the opposite case is handled analogously. If C2 is a

vertical line, then C1 must be one too since otherwise C1 would intersect C2,

so that αC1 = αC2 = π/2. We therefore assume that C2 is not a vertical line. It
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follows from the preceding lemma that the characteristics in �j are concave

to the left. By assumption the j-half-characteristic E′ emanating to the left

of C2 from ZC2(s) is infinite and must therefore intersect C1 at some point

ZC1(s′). Since E′ is concave to the left, we have αC1 ≥ argZ′C1
(s′)≥ argZ′C2

(s).
The desired conclusion now follows since argZ′C2

(s)→αC2 as s → 0.

Lemma 6.8. Let C0 ∈ �i and assume that all j-characteristics which cross

C0 exit H to the right of C0. If C0 exits H at x0 and x < x0, then there is an

i-characteristic of f which exits H at x.

Proof. First of all, it is easy to see by a simple compactness argument that

the set E of exit points x ≤ x0 of C ∈ �i is closed in R. If E ≠ (−∞,x0], then

there is some x1 ≤ x0 in E, such that (x2,x1)∩E = ∅, for some x2 < x1. Let

C be the leftmost i-characteristic exiting at x1. Let the j-half-characteristic

C′s emanating leftward from ZC(s) be parametrized by ws(σ), σ ≥ 0. Then it

is easy to see that the i-characteristic through ws(σ) will exit H at a point

x ≠ x1 arbitrarily near x1 for s,σ > 0 sufficiently small, which contradicts the

definition of x2.

We are now in a position to obtain a description of the initial values of θ = θf
and φ=φf . It follow from Lemma 6.6 that with appropriate choice of i and j,
all j-characteristics passing through a point of any i-characteristic C exit to the

right of C , and oppositely when i and j are reversed. Thus from Lemma 6.5,

we conclude that

αC ∈
(

0,
π
2

]
for all C ∈�i, αC ∈

[
π
2
,π
)

for all C ∈�j. (6.4)

Obviously,

all C ∈�i
(
C ∈�j

)
are concave to the right (left). (6.5)

For C ∈ �i we work with the angles αC and call them θ∗(x), where x ∈ ∂H
is the point where the C exits. If we define θ∗(x) to be 0 for all x for which

there is no C ∈ �i exiting at x, then Lemmas 6.7 and 6.8 imply that θ∗ is a

nonincreasing function on all of R = ∂H; at the jump points of θ∗ there are

fans of exiting characteristics as described in Section 5. For definiteness we

take θ∗ to be continuous from the right. From the considerations of Section 5

it follows that there is at least one exiting characteristic at each point of ∂H,

so that in light of the concavity of the characteristics and the monotonicity of

θ∗, there are three intervals Iπ/2, I, I0 on which the function θ∗(x) takes only

the value π/2, only values in (0,π/2), and the value 0, respectively. Any of

these three intervals may be empty; in fact, the only thing that cannot happen

is that ∂H = Iπ/2 or ∂H = I0 since in the former (latter) case it can easily be

seen that all j-characteristics (i-characteristics) would be horizontal. Finally,
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if f is of the form mix+mjy+x0 or mjx+miy+x0, then we regard θ∗ as

being identically 0 or π/2, respectively, on all of ∂H.

Theorem 6.9. If f is a cps-homeomorphism of H onto itself, then the func-

tion θ∗ = θ∗f on ∂H =R defined in the preceding paragraph (i) is nonincreasing,

(ii) is continuous from the right, and (iii) has all of its values in [0,π/2]. Further-

more, given any such θ∗ and anym1,m2, there is a unique (m1,m2)-mapping

f for which θ∗f = θ∗ and f(0)= 0.

Comment. This theorem says that the class � of cps-homeomorphisms f
ofH onto itself with principal strainsm1 andm2 and for which f(0)= 0 can be

decomposed as �=�1∪�2, where �1∩�2 consists of the two linear mappings

m1x+m2y and m2x+m1y , and where there is a one-to-one correspondence

between each �i and the set of functions satisfying conditions (i), (ii), and (iii)

of the statement of the theorem. Here �i consists of the mappings for which

the characteristics corresponding to stretch factormi are concave to the right.

To finish the proof of Theorem 6.9, we need to show existence and unique-

ness of the f corresponding to a given θ∗. To establish existence, we initially

let θ∗ be a strictly decreasing C∞-function with values in some compact subin-

terval I of (0,π/2) and let

φ∗(x)= arctan
(
m2

m1
tanθ∗(x)

)
. (6.6)

By well-known existence theorems for hyperbolic systems, there exists a C∞

solution θ,φ of (1.2) in some neighborhood of R with initial data θ∗,φ∗. Now,

for such θ, φ,

θx = (cosθ)D1θ−(sinθ)D2θ,

φx = (cosθ)D1φ−(sinθ)D2φ= m1

m2
(cosθ)D1θ−m2

m1
(sinθ)D2θ.

(6.7)

From (6.6), it follows that on R= ∂D there hold

D1θ = θxm2
2 sin2θ(

m2
1 cos2θ+m2

2 sin2θ
)
cosθ

< 0,

D2θ =− θxm2
1 cos2θ(

m2
1 cos2θ+m2

2 sin2θ
)
sinθ

> 0,

(6.8)

so that the 1-characteristics are initially concave to the right and the 2-charac-

teristics are initially concave to the left. But then as we move upward away from

∂H along the characteristics, the solution has decreasing |D1θ| and |D2θ|, and

furthermore from the concavity of the characteristics, it follows that we always

have θ(z) in I. Thus, we can extend the solution little by little into all ofH with-

out any singularities developing. By the assignment (6.6) of φ∗ the mapping f
for which f(0) = 0, θf = θ and φf =φ is an (m1,m2)-homeomorphism of H
onto itself.
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Now let θ∗ be any nonincreasing function onRwith values in [0,π/2]which

is continuous from the right, and let {θ∗n} be a sequence of strictly decreasing

C∞-functions such that θ∗n(R)⊂ (0,π/2), and such that for each a< b,

∫ b
a

∣∣θ∗n(x)−θ∗(x)∣∣dx �→ 0 as n �→∞. (6.9)

Let (θn,φn) be the solution in H of the initial value problem for (1.2) with

initial data θ∗n(x) and φ∗n(x) = arctan((m2/m1)tanθ∗n(x)), and let fn be the

corresponding mapping of H onto H with fn(0)= 0. By the compactness prin-

ciple, some subsequence of {fn}, which for convenience we continue to call

{fn}, converges locally uniformly on H to an (m1,m2)-homeomorphism f of

H onto itself. Since

∂fn(x,0)
∂x

= (m2
1 cos2θ∗n(x)+m2

2 sin2θ
∗
n(x)

)1/2, (6.10)

it follows from (6.9) that

f(b)−f(a)= lim
n→∞fn(b)−fn(a)

= lim
n→∞

∫ b
a

(
m2

1 cos2θ∗n(x)+m2
2 sin2θ∗n(x)

)1/2dx

=
∫ b
a

(
m2

1 cos2θ∗(x)+m2
2 sin2θ∗(x)

)1/2dx,

(6.11)

so that ∂f(x,0)/∂x = (m2
1 cos2θ∗(x)+m2

2 sin2θ∗(x))1/2 a.e. onR. Because θ∗

is continuous from the right, it therefore follows that θ∗f (x) = θ∗(x) for all

x ∈R, as desired.

Finally, we have to show that given any such function θ∗ on R, together

with its companion function φ∗(x) = arctan((m2/m1)tanθ∗(x)), the corre-

sponding (m1,m2)-self-homeomorphism f of H with f(0) = 0 is unique; in

other words, that the functions θ and φ in H corresponding to these bound-

ary functions are uniquely determined in H. This is not completely obvious

since θ∗ and φ∗ may not be Lipschitz continuous (nor even continuous for

that matter). We deduce uniqueness by “spreading out,” in effect, the initial

line so as to transform the given problem into a standard Cauchy problem

with Lipschitz data.

We begin by proving uniqueness (in the domain of dependence of [a,b])
under the assumption that θ∗([a,b])⊂ (ε,π/2−ε) for some ε > 0, that θ∗ is

nonincreasing, and that it is continuous at a and b. The general case follows

easily from this, as we indicate below.

Let θ(a) = α ≥ β = θ(b). Without loss of generality, we can assume that

a= 0. Let θ(x)=α−θ∗(x), so that θ is nondecreasing on [0,b] with values in

[0,α−β]. Let P denote the countable set of points of [0,b] at which this func-

tion has jumps, the jump at p being denoted by δ(p) = δ1(p)+δ2(p), where

δ1(p) and δ2(p) are the angles of the associated fans of 1- and 2-characteristics
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emanating fromp (see Section 5). For eachn≥ 1, let 0= a0 <a1 < ···<an = b
be a set of points of [0,α−β]\P such that |ak−ak−1−1/n|< 1/n2 for 1≤ k≤
n. We define ξn(ak) = ak+θ(ak), 0 ≤ k ≤ n, and let ξn be linear on each of

the intervals [ak−1,ak]. Then obviously, the inverse ηn of ξn on the interval

J = [0,b+α−β] satisfies a Lipschitz condition with constant 1. Also, if we de-

fine θn on J to be the piecewise linear function for which θn(ξn(ak))= θ(ak),
then θn is also Lipschitz continuous with constant 1 on J. Using the com-

pactness of the families {ηn} and {θn}, we obtain functions η, θ
∗

satisfying

a Lipschitz condition with constant 1 such that η maps J onto [0,b] and θ
∗

maps J onto [0,α−β] with derivative 1 on the subintervals of J corresponding

to the jumps in θ and such that for each x for which the original θ is continu-

ous at η(x) we have θ
∗
(x)= θ(η(x)). For p ∈ P we denote limx→p− θ∗(x) by

θ−(p) and similarly for φ∗. Note that since θ∗ and φ∗ are continuous from

the right, θ∗(p) and φ∗(p) are equal to their limits as x → p+. Also, by the

relationship between the fan angles of θ∗ at p and the sizes of their images

under f at f(p) established in Section 5, it follows that

φ−(p)= lim
x→p−

φ∗(x)=φ+(p)+
(
m1

m2

)
δ2(p)+

(
m2

m1

)
δ1(p). (6.12)

For any x ∈ J for which θ∗, and consequently φ∗ also, is continuous at

η(x), we let Θ(x) = θ∗(η(x)) and Φ(x) = φ∗(η(x)). On the other hand, on

the interval I ⊂ J corresponding to p ∈ P , we let Θ vary linearly from θ−(p)
to θ∗(p) and Φ vary linearly from φ−(p) to φ∗(p). The functions Θ and Φ so

defined on the interval J are clearly Lipschitz continuous.

For t ∈ J, let L1(t), L2(t) be the halves of the lines x−y = t and x+y = t
emanating upwards from the x-axis. We extend Θ and Φ to the triangle T
bounded by L1(0) and L2(b+α−β) by letting R′i =miΘ−mjΦ be constant on

the each line Li(ρ) for all ρ ∈ J. The functions Θ and Φ are obviously Lipschitz

continuous on T . Now consider a Lipschitz continuous mapping z = u+ iv :

T → C which satisfies the initial condition

z(x,0)= η(x) (6.13)

and the differential equations

arg
{
zx+zy

}=Θ(x,y), arg
{
zy−zx

}=Θ(x,y)+ π
2
, (6.14)

that is,
(
vy+vx

)
cosΘ−(uy+ux)sinΘ= 0,(

vy−vx
)
sinΘ+(uy−ux)cosΘ= 0.

(6.15)

Writing these differential equations in the form

Vy+Vx =−
(
Θy+Θx

)
U, Uy−Ux =−

(
Θy−Θx

)
V, (6.16)
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where U = ucosΘ+v sinΘ and V = v cosΘ−usinΘ, and converting them to

integral equations, it is easy to see that the linear hyperbolic system (6.15) with

initial condition (6.13) has at most one Lipschitz continuous solution. We now

consider the restriction to the domain of dependenceD corresponding to [a,b]
of any (m1,m2)-mapping f corresponding to initial values θ∗ and φ∗, and

define z : T →D as follows. For p ∈ P , let I(p)⊂ J be the corresponding closed

interval. If t ∈ I(p), let R(t) be the union of the two legs of the closed isosceles

right triangle T(p) with base I(p), and for all other t ∈ J let R(t)= t. Note that

each Li(ρ)meets a unique R(t). If ζ ∈ T(p) for some p, then we define z(ζ)=
p. If {ζ} = L1(ρ1)∩L2(ρ2) and ζ is not in any T(p), then we define ζi, ti, by

{ζi} = Li(ρi)∩R(ti). We then define z(ζ) to be the point on the intersection of

the 1-characteristic of f through η(ρ1), whose initial inclination is Θ(ζ1), with

the 2-characteristic through η(ρ2), whose initial inclination is Θ(ζ2)+π/2.

This mapping is well defined. Indeed, for each ρ not in any I(p), p ∈ P , the

indicated characteristics emanate from η(ρ), in light of what we deduced about

the fans in Section 5. On the other hand, if ρ ∈ I(p) for some p ∈ P , then on the

left side of any R(ρ), Θ decreases linearly from θ−(p)−δ2(p) to θ∗(p) and Φ
decreases linearly from φ−(p)−(m1/m2)δ2(p) to φ∗(p). Since an analogous

statement holds for the right side of R(ρ), we again have that the indicated

characteristics are well defined. Obviously, z(t)= η(t) for t ∈ J. Because of the

definition of Θ and Φ in terms of the invariance of R′i =miΘ−mjΦ on the Li,
and the fact that the Ri =miθ−mjφ are invariant on the i-characteristics of f ,

we see that the inclination of the curve z(L1(ρ)) at z(ζ) is Θ(ζ) and that that

of z(L2(ρ)) is Θ(ζ)+π/2, that is, that θ(z(ζ))=Θ(ζ). In addition, this means

that changes in Θ(ζ) and θ(z(ζ)) coincide on segments of the Li(t). It is clear

that there is some K = K(m1,m2), such that Θ is Lipschitz continuous with

constant K on each Li(t). It is also clear that all the characteristics of f in the

domain of dependence D have length bounded by some M <∞. Moreover, the

initial points of z(Lj(ρ1)) and z(Lj(ρ2)) are at most |η(ρ1)−η(ρ2)| ≤ |ρ1−ρ2|.
From these last two facts, together with the convexity of the characteristics of

f and the fact that ∆Θ and ∆θ ◦z coincide on segments of the Li, it is easy

to show using the HP-property that if S is a segment of Li(ρ), then the length

of z(S) is at most (KM +1)λ1(S), so that z is Lipschitz continuous. Thus, z
is a Lipschitz continuous solution of the initial value problem for (6.15) with

initial values (6.13). From this it follows that the characteristics are uniquely

determined in the entire domain of dependence D of [a,b] and, in turn, that

the Ri =miθ−mjφ, and consequently θ and φ also, are uniquely determined

there.

The foregoing establishes the desired uniqueness in the domain of depen-

dence of largest open interval I on which 0< θ∗(x) < π/2, so that we only need

to consider the case that I ≠ R. Thus we assume that I = (a,b) ≠ R. Assume

first that I = (a,b)≠∅, a,b ∈R. In this case the domain of dependence is the

curvilinear triangle made up of I, an arc A of the rightmost 1-characteristic
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exiting at a, and an arc B of the leftmost 2-characteristic exiting at b. Since

the fan angles at b are determined by the size of the jump in θ∗ at b, we see

that an initial piece of the 2-fan at b, being determined by the corresponding

fan angle and B, is unique. Now, the 1-characteristics making up the 1-fan at

b emanate from b, are concave towards the right and have angles which tend

to 0, and furthermore do not exit to the right of b. From this it follows that

they are horizontal lines, which gives us the uniqueness of the 1-fan at b and

hence the uniqueness of θ and φ in N([b,∞),ε) for some ε > 0. (The case in

which there is no jump at b is essentially the same, with only minor changes.)

Similarly, we get uniqueness in a neighborhood N([−∞,a),ε). Since θ and φ
are Lipschitz continuous on all horizontal lines in H, their uniqueness in the

entire half-plane follows immediately. That f itself is unique follows from the

condition f(0)= 0. The cases in which a=−∞ or b =∞ are in effect included

in this argument. The only remaining cases are those in which (a,b)=∅, that

is, those in which θ∗ is identically 0 or π/2 on R or in which θ∗(x) jumps

from π/2 to 0 at a ∈ R. In the first two of these cases, f is easily seen to be

linear. In the final case, let the angular sizes of the 1- and 2-fans at a be δ1 and

δ2, and let the angular sizes of the sectors to the right and left of these fans,

respectively, be αR and αL. Then, it is clear from Theorem 5.1 that αR =αL = 0

since if αR > 0, for example, there would be a 1-characteristic exiting to the

right of a. As above, on the basis of the concavity of the characteristics, we see

that the fans at a are made up of straight lines. The uniqueness then follows

since the numbers δ1 and δ2 are uniquely determined by conditions (5.2).

It is clear that the proof can be modified to show uniqueness for solutions to

Cauchy problems for (1.2) associated with transformation problems in much

greater generality.

7. Closing remarks. In this section we briefly discuss some issues pertinent

to further investigation of the transformation problem for cps-mappings. We

begin by pointing out that although Theorem 6.9 might lead one to believe that

“exterior domains” are somewhat simpler to deal with than Jordan domains,

the half-plane situation is, in effect, a fluke because the absence of doubly ex-

iting characteristics essentially (i.e., apart from the simple degenerate cases in

which θ*(x)=π/2 on (−∞,a) and/or 0 on (b,∞), discussed in the final para-

graph of the preceding section) means that all of the mappings in question are

reducible to Cauchy problems. It is not too hard to show that this favorable

circumstance arises also in the case of cps-self-homeomorphisms of the exte-

rior of a disk, making possible their complete description. This case, though,

is substantially more complex than that of half-planes since it involves two

fundamentally different classes of mappings, corresponding to the two kinds

of HP-nets with a single isolated singularity in C (see [5, Theorem 3.3]). More-

over, in contrast to the half-plane case in which the Cauchy data is given on a

straight line and so (interpretation aside) has the standard initial value format,
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in the case of C\N(0,1), the data given on ∂N(0,1) actually generates a unique

solution in the entire exterior of the disk. Because it would appear that there

are few domains for which no cps-self-homeomorphisms have doubly exiting

characteristics, it would be of considerable interest to determine all of them;

in fact, it may well turn out that the only possibilities are half-planes and the

exteriors of disks.

Although the most appealing transformation problems for cps-mappings

are ones for which D and D′ are (piecewise smoothly bounded) Jordan do-

mains, this case unfortunately leads to a highly over-determined situation in

which there is no way of working exclusively with Cauchy problems since all

of the characteristics are necessarily doubly exiting, and which is further com-

plicated by the possibility of nonexistence established in Theorem 3.1. These

circumstances suggest that one seek explicit nonexistence and qualitative re-

sults, and in this direction we formulate two conjectures.

Conjecture 7.1. There is a very strong tendency for cps-homeomorphisms

to bend domains (because of the way they change total curvature of character-

istics); specifically, there are no cps-self-homeomorphisms of disks.

Conjecture 7.2. For any two given smoothly bounded Jordan domains and

any given m1, m2 there are at most a finite number of (m1,m2)-homeomor-

phisms of one onto the other.

We believe that the case of cps-self-homeomorphisms of strips should prove

both interesting, because they are “almost” Jordan domains, and tractable,

because of the geometric simplicity of their boundaries, even though it is likely

that it nonetheless gives rise to subtle blow-up questions.

In [5] we showed that for an HP-function θ defined on a smoothly bounded

Jordan domain D the nontangential limits of θ exist a.e. on ∂D, a conclusion

considerably weaker than that of Corollary 5.8. We believe, however, that one

can replace the proof of [5] by one that yields the conclusion of this corollary

without any assumption beyond the smoothness of ∂D. Doing so, however, will

require an analysis of the local behavior and global consequences associated

with the two kinds of boundary singularities that we have shown cannot arise

in the context of a cps-homeomorphism of D onto a smoothly bounded image

domain, namely, points p ∈ ∂D at which there is an exiting characteristic along

which limz→p θ(z) does not exist and those at which there are simply no exiting

characteristics at all, both of which possibilities can present themselves in the

more general context.

One can contemplate the extension of some of the results about planar cps-

mappings to their higher-dimensional counterparts. In that context, the under-

lying equations corresponding to (1.2) have in some sense a similar form (see

[4]), but are substantially more complex and allow considerably more leeway

for the avoidance of singularity formation. In particular, there exist nontrivial

cps-self-homeomorphisms of R3, examples of which were found by Yin [14],
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and we believe that an interesting investigation would result from an attempt

to discover all of them.

Before closing, we must mention the significant foundational conjecture

that the partial derivatives of a C1 mapping f : D → C with constant prin-

cipal strains m1 ≠ m2 are necessarily locally Lipschitz continuous. In this

direction we showed in [3] that if Jf is Hölder continuous with exponent

α > (1/2)(
√

5−1), f is necessarily an (m1,m2)-mapping, and the proof can

be sharpened to show that α> 1/2 is sufficient.
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