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We introduce the notions of generalized join-hemimorphism and generalized Bool-
ean relation as an extension of the notions of join-hemimorphism and Boolean rela-
tion, respectively. We prove a duality between these two notions. We will also define
a generalization of the notion of Boolean algebra with operators by considering a
finite family of Boolean algebras endowed with a generalized join-hemimorphism.
Finally, we define suitable notions of subalgebra, congruences, Boolean equiva-
lence, and open filters.
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1. Introduction. In [4], Halmos generalizes the notion of Boolean homomor-

phism introducing the notion of join-hemimorphism between two Boolean al-

gebras. A join-hemimorphism is a mapping between two Boolean algebras pre-

serving 0 and ∨. As it is shown by Halmos in [4] and by Wright in [10], there

exists a duality between join-hemimorphism and Boolean relations. On the

other hand, Jónsson and Tarski in [5, 6] introduce the class of Boolean alge-

bras with operators (BAO). They showed that a Boolean algebra endowed with

a family of operators can be represented as a subalgebra of a power algebra

�(X), where the operators of �(X) are defined by means of certain finitary rela-

tions on X. This class of algebras plays a key role in modal logic, and has very

important applications in theoretical computer science (see, e.g., [1, 2]). The

Halmos-Wright duality can be extended to a duality between BAO and Boolean

spaces endowed with a set of finitary relations, which are a generalization of

the Boolean relations. The aim of this paper is the study of an extension of

these dualities.

In Section 2, we recall some notions on Boolean duality. In Section 3, we

define the notion of generalized join-hemimorphism as a mapping between a

finite product of a family of Boolean algebras {B1, . . . ,Bn} into a Boolean al-

gebras B0 such that it preserves 0 and ∨ in each coordinate. We will prove

that there exists a duality between generalized join-hemimorphism and cer-

tain (n+ 1)-ary relations called generalized Boolean relations. This duality

extends the duality given by Halmos and Wright. In Section 4, we define the

generalized modal algebra as a pair 〈{B0,B1, . . . ,Bn},♦〉, where B0,B1, . . . ,Bn are

Boolean algebras and ♦ :
∏n
i=1Bi → B0 is a generalized join-hemimorphism.

http://dx.doi.org/10.1155/S016117120311112X
http://dx.doi.org/10.1155/S016117120311112X
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


682 SERGIO CELANI

In Section 5, we define the notions of generalized subalgebra and generalized

Boolean equivalence and we prove that these notions are duals. Similarly, in

Section 6, we introduce the generalized congruences and generalized open fil-

ters and we will prove that there exists a bijective correspondence between

them.

2. Preliminaries. A topological space is a pair 〈X,�(X)〉, or X, for short,

where �(X) is a subset of �(X) that is closed under finite intersections and

arbitrary unions. The set �(X) is called the set of open sets of the topological

space. The collection of all closed sets of a topological space 〈X,�(X)〉 is de-

noted by �(X). The set Clop(X) is the set of closed and open sets of 〈X,�(X)〉.
A Boolean space 〈X,�(X)〉 is a topological space that is compact and totally

disconnected, that is, given distinct points x,y ∈X, there is a clopen subset U
of X such that x ∈U and y ∉U . If 〈X,�(X)〉 is a Boolean space, then Clop(X)
is a basis for X and is a Boolean algebra under set-theoretical complement and

intersection. Also, the application

HX :X �→Ul(Clop(X)
)
, (2.1)

given by HX(x) = {U ∈ Clop(X) : x ∈ U}, is a bijective and continuous func-

tion. To each Boolean algebra A, we can associate a Boolean space Spec(A)
whose points are the elements of Ul(A) with the topology determined by the

clopen basis βA(A) = {βA(a) : a ∈ A}, where βA : A → �(Ul(A)) is the Stone

mapping defined by

βA(a)=
{
P ∈Ul(A) : a∈ P}. (2.2)

By the above considerations, we have that, if X is a Boolean space, then X �
Spec(Clop(X)), and if A is a Boolean algebra, then A� Clop(Spec(A)).

Let B be a Boolean algebra. The filter (ideal) generated by a set H ⊆ A will

be denoted by F(H) (I(H)). The lattice of all filters (ideals) of B is denoted by

Fi(A) (Id(A)).
Let Y be a subset of a set X. The theoretical complement of Y is denoted by

Yc =X−Y .

3. Generalized join-hemimorphisms

Definition 3.1. Let B0,B1, . . . ,Bn be Boolean algebras. A generalized join-

hemimorphism is a function ♦ :
∏n
i=1Bi→ B0 such that

(1) ♦(a1, . . . ,ai−1,0,ai+1, . . . ,an)= 0,

(2) ♦(a1, . . . ,ai−1,x ∨ y,ai+1, . . . ,an) = ♦(a1, . . . ,ai−1,x,ai+1, . . . ,an) ∨
♦(a1, . . . ,ai−1,y,ai+1, . . . ,an).
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It is easy to see that each generalized join-hemimorphism h :
∏n
i=1Bi → B0

is monotonic in each variable, that is, x,y ∈ Bi, x ≤y , then

♦
(
a1, . . . ,x, . . . ,an

)≤♦(a1, . . . ,y, . . . ,an
)
. (3.1)

A generalized join-hemimorphism h :
∏n
i=1Bi→ B0 defines a generalized meet-

hemimorphism � :
∏n
i=1Bi→ B0 as follows:

�
(
a1,a2, . . . ,an

)=¬♦(¬a1,¬a2, . . . ,¬an
)
. (3.2)

It is clear that � preserves 1 and ∧, and is monotonic in each variable.

Let B0,B1, . . . ,Bn be Boolean algebras and let ♦ :
∏n
i=1Bi→ B0 be a generalized

join-hemimorphism. Let �F = F1 × F2 × ···× Fn, where Fi is a filter of Bi, for

1≤ i≤n. We consider the set

♦
(�F)= {y ∈ B0 :

(∃xi ∈ Fi
) (
♦
(
x1,x2, . . . ,xn

)≤y)}. (3.3)

Theorem 3.2. Let B0,B1, . . . ,Bn be Boolean algebras and let ♦ :
∏n
i=1Bi→ B0

be a generalized join-hemimorphism. Let Fi be a proper filter of Bi, for 1≤ i≤n.

Then

(1) ♦(�F) is a proper filter of B0,

(2) if P ∈ Ul(B0) and ♦(�F) ⊆ P , then there exist Qi ∈ Ul(Bi), for 1 ≤ i ≤ n
such that

Fi ⊆Qi, Q1×Q2×···×Qn ⊆♦−1(P). (3.4)

Proof. (1) It is easy to take into account that the function ♦ is monotonic

in each variable.

(2) Consider the family

�1 =
{
Q1 ∈ Fi

(
B1
)

: F1 ⊆Q1, ♦
(
Q1×F2×···×Fn

)⊆ P}. (3.5)

We note that �1 ≠∅ because F1 ∈�1. By Zorn’s lemma, there exists a maximal

element Q1 in �1. We prove that Q1 ∈ Ul(B1). Let a∈ B1 and suppose that a,

¬a ∉Q1. Consider the filter Fa = F(Q1∪{a}) and F¬a = F(Q1∪{¬a}). Since q1

is maximal in �1, then Fa, F¬a ∉ �1. So, there exist (x1,x2, . . . ,xn) ∈ Fa×F2×
···×Fn and (y1,y2, . . . ,yn)∈ F¬a×F2×···×Fn such that ♦(x1,x2, . . . ,xn) ∉ P
and ♦(y1,y2, . . . ,yn) ∉ P . Since x1 ∈ Fa and y1 ∈ F¬a, then q1∧a ≤ x1 and

q2∧¬a ≤ y1, for some q1,q2 ∈ Q1. As Q1 is a filter of B1, q = q1∧q2 ∈ Q1,

q∧a ≤ x1, and q∧¬a ≤ y1, and as each Fi is a filter, we get zi = xi∧yi ∈ Fi,
for i= 2, . . . ,n. Then

♦
(
q,z2, . . . ,zn

)=♦(q∧(a∨¬a),z2, . . . ,zn
)

=♦((q∧a)∨(q∧¬a),z2, . . . ,zn
)

=♦(q∧a,z2, . . . ,zn
)∨♦(q∧¬a,z2, . . . ,zn

)∈ P.
(3.6)
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If ♦(q∧a,z2, . . . ,zn)∈ P , then

♦
(
q∧a,z2, . . . ,zn

)≤♦(q1∧a,x2, . . . ,xn
)≤♦(x1,x2, . . . ,xn

)∈ P, (3.7)

which is a contradiction. If ♦(q ∧ ¬a,z2, . . . ,zn) ∈ P , then we deduce that

♦(y1,y2, . . . ,yn)∈ P , which also is a contradiction. Thus, a∈Q1 or ¬a∈Q1.

Suppose that we have determinate ultrafiltersQ1, . . . ,Qk in B1, . . . ,Bk, respec-

tively, such that Fi ⊆ Qi, for 1 ≤ i ≤ k, and ♦(Q1×···×Qk×···× Fn) ⊆ P .

Consider the set

�k+1 =
{
Qk+1 ∈ Bk+1 : Fi ⊆Qi, ♦

(
Q1×···×Qk+1×···×Fn

)⊆ P}. (3.8)

We note that �k+1 ≠ ∅ because Fk+1 ∈ �k+1. By the Zorn’s lemma, there

exists a maximal element Qk+1 in �k+1. As in the above case, we can prove

that Qk+1 ∈Ul(Bk+1).
Therefore, we have ultrafiltersQ1, . . . ,Qn in B1, . . . ,Bn, respectively, such that

Fi ⊆Qi and ♦(Q1×Q2×···×Qn)⊆ P . It is easy to check that the last inclusion

implies that Q1×Q2×···×Qn ⊆♦−1(P).

Example 3.3. Let X0, . . . ,Xn be sets. Let R ⊆ ∏n
i=0Xi. Then, the function

♦R : �(X1)×···×�(Xn)→�(X0), defined by

♦R
(
U1,U2, . . . ,Un

)= {x0 ∈X0 : R
(
x0
)∩(U1×U2×···×Un

)
≠∅}, (3.9)

where R(x0) = {(x1, . . . ,xn) ∈
∏n
i=1Xi : (x0,x1, . . . ,xn) ∈ R}, is a generalized

join-homomorphism.

Definition 3.4. Let X0, . . . ,Xn be Boolean spaces. Consider a relation R ⊆∏n
i=0Xi. Then R is a generalized Boolean relation if

(1) R(x) is a closed subset in the product topology of X1×···×Xn, for each

x ∈X0;

(2) for all Ui ∈ Clop(Xi), with 1≤ i≤n, ♦R(U1, . . . ,Un)∈ Clop(X0).

We note that if 1 ≤ i ≤ 2, then we have the notion of Boolean relation as

defined in [4].

Theorem 3.5. Let B0,B1, . . . ,Bn be Boolean algebras and let ♦ :
∏n
i=1Bi →

B0 be a generalized join-hemimorphism. Then the relation R♦ ⊆
∏n
i=0Ul(Bi),

defined by

(
P,P1, . . . ,Pn

)∈ R♦⇐⇒ P1×···×Pn ⊆♦−1(P), (3.10)
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is a generalized Boolean relation such that

βB0

(
♦
(
a1, . . . ,an

))=♦R♦
((
βB1

(
a1
)
, . . . ,βBn

(
an
)))
, (3.11)

for all (a1, . . . ,an)∈
∏n
i=1Bi.

Proof. We prove that for P ∈Ul(B0),

R♦(P)=
⋂{(

βB1

(
a1
)
, . . . ,βBn

(
an
))c

:♦
(
a1, . . . ,an

)
∉ P

}
. (3.12)

If (P1, . . . ,Pn)∈ R♦(P) and

(
P1, . . . ,Pn

)
∉
⋂{(

βB1

(
a1
)
, . . . ,βBn

(
an
))c

:♦
(
a1, . . . ,an

)
∉ P

}
, (3.13)

then, for some ♦(a1, . . . ,an) ∉ P , we get (P1, . . . ,Pn) ∈ (βB1(a1), . . . ,βBn(an)),
that is, ai ∈ Pi for 1 ≤ i ≤ n. It follows that ♦(a1, . . . ,an) ∈ P , which is a con-

tradiction. The other direction is similar. Thus, R♦(P) is a closed subset of∏n
i=1Ul(Bi).
Equality (3.11) follows by Theorem 3.2.

We note that the relation R♦ ⊆
∏n
i=0Ul(Bi) defined in Theorem 3.5 also can

be defined using the notion of generalized meet-hemimorphism � in the fol-

lowing way:

(
P,P1, . . . ,Pn

)∈ R♦⇐⇒�−1(P)⊆ P1+···+Pn, (3.14)

where P1+···+Pn = {(a1, . . . ,an)∈
∏n
i=1Bi : ai ∈ Pi, for some 1≤ i≤n}.

Lemma 3.6. Let X0, . . . ,Xn be Boolean spaces. Consider a relation R ⊆∏n
i=0Xi. Suppose that for all Ui ∈ Clop(Xi), with 1 ≤ i ≤ n, ♦R(U1, . . . ,Un) ∈

Clop(X0). Then the following conditions are equivalent:

(1) R is a generalized Boolean relation;

(2) if (Hx0(x0), . . . ,HXn(xn))∈ R♦R , then (x0, . . . ,xn)∈ R.

Proof. (1)⇒(2). Suppose that (HX0(x0), . . . ,HXn(xn))∈ R♦R and (x0, . . . ,xn)
∉ R. Since R(x0) is a closed subset of

∏n
i=1Xi, there exist Ui ∈ Clop(Xi) such

that R(x0)∩(U1, . . . ,Un) =∅ and xi ∈ Ui. Then, x0 ∉ ♦R((U1, . . . ,Un)), that is,

(U1, . . . ,Un) ∉HX1(x1)×···×HXn(xn), which is a contradiction.

(2)⇒(1). We have to prove that R(x) is a closed subset of X0 × ··· ×X1.

Suppose that (x1, . . . ,xn) ∉ R(x). Then, (HX0(x), . . . ,HXn(xn)) ∉ R♦R , that is,

for each 1 ≤ i ≤ n, there exist Ui ∈ Di such that R(x)∩ (U1, . . . ,Un) = ∅ and

xi ∈Ui. Thus, R(x) is a closed subset.
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By the above results, we deduce that there exists a duality between general-

ized Boolean relations and generalized join-hemimorphisms.

Theorem 3.7. Let X0, . . . ,Xn be Boolean spaces. Let R ⊆ ∏n
i=0Xi be a gen-

eralized Boolean relation. Then the mapping ♦R : Clop(X1)×···×Clop(Xn)→
Clop(X0), defined as in Example 3.3, is a generalized join-hemimorphism such

that (Hx0(x0), . . . ,HXn(xn)) ∈ R♦R if and only if (x0, . . . ,xn) ∈ R, for all

(x0, . . . ,xn)∈
∏n
i=0Xi.

Proof. It is clear that if (x0, . . . ,xn) ∈ R, then (Hx0(x0), . . . ,HXn(xn)) ∈
R♦R . The other direction follows by Lemma 3.6.

As an application of the above duality, we prove a generalization of the result

that asserts that the Boolean homomorphisms are the minimal elements in the

set of all join-hemimorphisms between two Boolean algebras (see [3]).

Let {Bi} = {B0, . . . ,Bn} be a family of Boolean algebras. Let GJH(
∏n
i=1Bi,B0)

be the set of all generalized join-hemimorphisms between
∏n
i=1Bi and B0 en-

dowed with the pointwise order. Similarly, let GBR(
∏n
i=0Xi) be the set of all

generalized Boolean relations defined in
∏n
i=0Xi endowed with the pointwise

order. Let♦1 and♦2 ∈ GJH(
∏n
i=1Bi,B0) and letR♦1 andR♦2 ∈ GBR(

∏n
i=0Ul(Bi))

be the associate generalized Boolean relations. It is clear that ♦1 ≤ ♦2 if and

only if R♦1 ⊆ R♦2 .

Theorem 3.8. An element of GBR(
∏n
i=0Xi) is minimal if and only if it is a

continuous function.

Proof. Let R ⊆ ∏n
i=0Xi be a minimal element in GBR(

∏n
i=0Xi). We prove

that it is a function. Let x ∈ X0 and let �x, �y ∈∏n
i=1Xi such that �x, �y ∈ R(x).

Suppose that �x ≠ �y . Then, xi ≠ yi for some 1 ≤ i ≤ n. Then, there exist

Ui ∈ Clop(Xi) such that xi ∈ Ui and yi ∉ Ui. Consider the sequence �U =
(X1, . . . ,Ui, . . . ,Xn). Then, �x ∈ �U and �y ∉ �U . We define an auxiliary relation

R�U ⊆
∏n
i=0Xi by

R�U(x)=


R(x), if x ∉ ♦R

(�U),

R(x)∩ �U, if x ∈♦R
(�U).

(3.15)

We prove that R�U is a generalized Boolean relation. It is clear that R�U is closed.

Let �V = (V1, . . . ,Vn)∈ Clop(X1)×···×Clop(Xn). Then

♦R�U
(�V)= {x ∈X0 : R�U(x)∩ �V ≠∅

}

= {x ∈X0 : x ∈♦R
(�U), R(x)∩ �U∩ �V ≠∅}

∪{x ∈X0 : x ∉ ♦R
(�U), R(x)∩ �V ≠∅}

=♦R
(�U∩ �V)∪♦R

(�V)∩♦R
(�U)c ∈ Clop

(
X0
)
.

(3.16)
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Thus, R�U is a generalized Boolean relation. It is clear that R�U ⊂ R, that is, R is

not a minimal element in GBR(
∏n
i=0Xi), which is a contradiction. Thus, R is a

continuous function.

If R is continuous function, then it is easy to see that R is a minimal element

in GBR(
∏n
i=0Xi).

4. Generalized modal algebras. Now we consider a finite family of Boolean

algebras endowed with a generalized join-hemimorphism. This class of struc-

tures is a generalization of the notion of Boolean algebra with operators. In

the sequel, we will write {Xi} to denote the family of sets {Xi : 1≤ i≤n}.

Definition 4.1. Let {Bi} be a family of Boolean algebras. A generalized

modal algebra is a pair B = 〈{Bi},♦〉, where ♦ :
∏n
i=1Bi → B0 is a generalized

join-hemimorphism.

Definition 4.2. A generalized modal space is a structure � = 〈{Xi},R〉,
where X0,X1, . . . ,Xn are Boolean spaces and R is generalized Boolean relation.

Definition 4.3. Let B = 〈{Bi},♦B〉 and A = 〈{Ai},♦A〉 be two generalized

modal algebras. A generalized homomorphism between B and A is a finite se-

quence h= (h0,h1, . . . ,hn) such that

(1) hi : Bi→Ai is a Boolean homomorphism for each 1≤ i≤n,

(2) h0(♦B(a1, . . . ,an))=♦A(h1(a1), . . . ,hn(an)).

We write h : B→A to denote that there exists a generalized homomorphism

h between the generalized modal algebras B and A. We say that a generalized

homomorphism h between two generalized modal algebrasA and B is injective

if each Boolean homomorphism hi, 1 ≤ i ≤ n, is injective, and h is surjective

if each hi surjective. Finally, h is a generalized isomorphism if h is bijective

generalized homomorphism.

Theorem 4.4. Let B = 〈{Bi},♦〉 be a generalized modal algebra. Then the

structure �(B) = 〈{Ul(Bi)},R♦〉 is a generalized modal space such that B is

isomorphic to the generalized modal algebra A(�(B))= 〈{Clop(Ul(Bi))},R♦R〉.
Proof. It is clear that R♦ is a generalized join-hemimorphism. By Theorem

3.5 we have that β = (βB0 ,βB1 , . . . ,βBn) is a generalized homomorphism, and

since each βBi : Bi → Clop(Ul(Bi)), for 1 ≤ i ≤ n, is a Boolean isomorphism,

then β is an generalized isomorphism.

Definition 4.5. Let � = 〈{Xi},R〉 and �g = 〈{Yi},S〉 be two generalized

modal spaces. A generalized morphism between � and � is a sequence f =
(f0,f1, . . . ,fn) such that

(1) fi :Xi→ Yi are continuous functions,

(2) if (x0,x1, . . . ,xn)∈ R, then (f0(x0),fi(x1), . . . ,fn(xn))∈ S,
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(3) if (f0(x0),y1, . . . ,yn) ∈ S, then there exist xi ∈ Xi, with 1 ≤ i ≤ n, such

that (x0,x1, . . . ,xn)∈ R and fi(xi)=yi with 1≤ i≤n.

We write f : � → � to denote that there exists a generalized morphism f
between the generalized modal spaces � and �.

Proposition 4.6. Let � = 〈{Xi},R〉 and �g = 〈{Yi},S〉 be two generalized

modal spaces. If f : � → � is a generalized morphism, then the map A(f) :

A(�)→A(�), defined by A(f)= (f−1
0 , . . . ,f−1

n ) with f−1
i : Clop(Yi)→ Clop(Xi),

is a generalized homomorphism.

Proof. It is clear that each map f−1
i : Clop(Yi) → Clop(Xi) is a Boolean

homomorphism. Let Ui ∈ Clop(Xi), 1 ≤ i ≤ n, and x0 ∈ X0 such that x0 ∈
f−1

0 (♦S(U1, . . . ,Un)). Then S(f0(x0))∩(U1, . . . ,Un)≠∅. It follows that there ex-

istyi ∈ Yi, with i= 1, . . . ,n, such that (f0(x0),y1, . . . ,yn)∈ S. Since f is a gener-

alized morphism, there exist xi ∈Xi, with i= 1, . . . ,n, such that (x0,x1, . . . ,xn)
∈ R and fi(xi)=yi. So, xi ∈ f−1

i (Ui), with 1≤ i≤n and this implies that

R
(
x0
)∩(f−1

1

(
U1
)
, . . . ,f−1

n
(
Un
))
≠∅, (4.1)

that is, x0 ∈♦R(f−1
1 (U1), . . . ,f−1

n (Un)).
The other direction is easy and left to the reader.

Theorem 4.7. Let B = 〈{Bi},♦B〉 and A = 〈{Ai},♦A〉 be two generalized

modal algebras and let h= (h0, . . . ,hn) be a generalized homomorphism. Then

the sequence �(f )= (h−1
0 , . . . ,h−1

n ) is a generalized morphism between the dual

spaces �(�(A)) and �(�(B)).

Proof. It is clear that each h−1
i :Ul(Bi)→Ul(Ai) is a continuous function.

We prove conditions (2) and (3) of Definition 4.5.

(2) Let (P0, . . . ,Pn)∈ R♦B and let (a1, . . . ,an)∈ h−1
1 (P1)×···×h−1

n (Pn). Since

P×···×Pn ⊆♦−1
B (P0),

♦A
(
h1
(
a1
)
, . . . ,hn

(
an
))= h0

(
♦B
(
a1, . . . ,an

))∈ P0. (4.2)

So, (a1, . . . ,an)∈♦A(h−1
0 (P0)).

(3) Let (h−1
1 (P0),Q1, . . . ,Qn)∈ R♦B . We prove that

♦A
(
h1
(
Q1
)×···×hn

(
Qn
))⊆ P0. (4.3)

Let qi ∈Qi, with 1≤ i≤n, such that (h1(q1), . . . ,hn(qn)) ∉ ♦−1
A (P0). Then

♦A
(
h1
(
q1
)
, . . . ,hn

(
qn
))= h0

(
♦B
(
q1, . . . ,qn

))
∉ P0, (4.4)
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that is, (q1, . . . ,qn) ∉ ♦−1
B (h

−1
0 (P0)), which is a contradiction. Thus,

♦A
(
h1
(
Q1
)×···×hn

(
Qn
))⊆ P0. (4.5)

We consider the filter Fi = F(hi(Qi)), for 1≤ i≤n. Then it is clear that

F1×F2×···×Fn ⊆♦−1
B
(
P0
)
. (4.6)

By Theorem 3.2, there exist ultrafilters Pi ∈ Ul(Ai), for 1 ≤ i ≤ n, such that

Fi ⊆ Pi and P1×P2×···×Pn ⊆ ♦−1
A (P0). Since hi(Qi) ⊆ Fi ⊆ Pi, we get Qi =

h−1
i (Pi), 1≤ i≤n.

We denote by ��� the class of generalized modal algebras with generalized

homomorphisms and denote by ��� the class of generalized modal spaces

with generalized morphism. By the above results and by the Boolean duality,

we can say that the classes ��� and ��� are dually equivalents.

5. Generalized subalgebras. It is known that there exists a duality between

Boolean subalgebras of a Boolean algebra A and equivalence relations defined

on the dual space Ul(A) [7]. The duality is given as follows. Let X be a Boolean

space and let E be an equivalence relation on X. A subset U ⊆ X is said to be

E-closed if for any x,y ∈X, such that (x,y)∈ E and x ∈U , then y ∈U , that is,

UE =
{
y ∈X : (x,y)∈ E, x ∈U}⊆U. (5.1)

A Boolean equivalence is an equivalence E defined on X such that, for any

x,y ∈ X, if (x,y) ∉ E, there exists an E-closed U ∈ Clop(X) such that x ∈
U and y ∉ U . The Boolean subalgebra of Clop(X) associated with a Boolean

equivalence E is defined by

B(E)= {U ∈ Clop(X) :UE =U
}
. (5.2)

If A is a Boolean algebra and B is a Boolean subalgebra of A, then the relation

E(B)⊆Ul(A)2, given by

(P,Q)∈ E(B)⇐⇒ P∩B =Q∩B, (5.3)

is a Boolean equivalence.

Theorem 5.1 [7]. LetA be a Boolean algebra. Then there exists a dual order-

isomorphism between Boolean subalgebras of A and Boolean equivalences de-

fined on Ul(A).

Definition 5.2. Let B = 〈{Bi},♦〉 be a generalized modal algebra. A subal-

gebra of B is a sequence A= (A0, . . . ,An) such that, for each 0≤ i≤n, Ai is a

subalgebra of Bi, and for each �a∈∏n
i=1Bi, we get ♦(�a)∈ B0.
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Definition 5.3. Let � = 〈{Xi},R〉 be a generalized modal spaces. A gen-

eralized Boolean equivalence is a sequence E = (E0,E1, . . . ,En) such that, for

each 0 ≤ i ≤ n, Ei is a Boolean equivalence of Xi, and if (a,b) ∈ E0 and

(a,x1, . . . ,xn)∈ R, then there exists (y1, . . . ,yn)∈
∏n
i=1Xi, such that (b,y1, . . . ,

yn)∈ R and (xi,yi)∈ Ei, for each 1≤ i≤n.

Theorem 5.4. Let B = 〈{Bi},♦〉 be a generalized modal algebra. Then the

following conditions are equivalent:

(1) A= 〈{Ai},♦〉 is a subalgebra of B;

(2) the sequence EA = (EB0 ,EB1 , . . . ,EBn) is a generalized Boolean equivalence.

Proof. (1)⇒(2). Let A= 〈{Ai},♦〉 be a subalgebra of B. Let P0,Q0 ∈ Ul(B0)
such that P0∩A0 = Q0∩A0 and let (P0,P1, . . . ,Pn) ∈ RB . We consider the set

♦(F(P1∩A1), . . . ,F(Pn∩An)), where F(Pi∩Ai) is the filter generated by the set

Pi∩Ai. We prove that

♦
(
F
(
P1∩A1

)
, . . . ,F

(
Pn∩An

))⊆Q0. (5.4)

Let �a = (a1, . . . ,an) with ai ∈ Pi∩Ai, for 1 ≤ i ≤ n. Since �a ∈ P1×···×Pn ⊆
♦−1(P0), ♦�a ∈ P0. As �a ∈∏n

i=1Ai and A is a subalgebra of B, then ♦�a ∈ P0 ∈
A0 = Q0 ∩A0. Thus, ♦�a ∈ Q0 and (5.4) is valid. By Theorem 3.2, there exist

ultrafilters Qi ∈ Ul(Bi), for 1 ≤ i ≤ n, such that Pi∩Ai = Qi∩Ai. Therefore,

(Q0,Q1, . . . ,Qn)∈ RB and Pi∩Ai =Qi∩Ai for each 1≤ i≤n.

(2)⇒(1). Suppose that EA = (EB0 ,EB1 , . . . ,EBn) is a generalized Boolean equiv-

alence. Let �a∈∏n
i=1Ai and suppose that ♦�a ∉A0. Consider the set in B0,

(
F
(
♦�a
)∩A0

)∪{¬♦�a}. (5.5)

This set has the finite intersection property. Suppose the contrary. Then, there

exists x ∈ F(♦�a)∩A0 such that x∧¬♦�a = 0. It follows that ♦�a ≤ x ≤ ♦�a,

that is, x =♦�a∈A0, which is a contradiction. Thus, the set (5.5) has the finite

intersection property. So, there exists an ultrafilter P0 ∈Ul(B0) such that

F
(
♦�a
)∩A0 ⊆ P0, ¬♦�a∈ P0. (5.6)

Consider the set

{
♦�a
}∪P0∩A0. (5.7)

This set has the finite intersection property, because in contrary case there

exists p ∈ P0∩A0 such that ♦�a≤¬p. This implies that ¬p ∈ F(♦�a)∩A0 ⊆ P0,

which is a contradiction. Thus, there exists Q0 ∈Ul(B0) such that

♦�a∈Q0, P0∩A0 =Q0∩A0. (5.8)
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Since ♦�a∈Q0, there exists (Q1, . . . ,Qn)∈
∏n
i=1Ul(Bi) such that

(
Q0,Q1, . . . ,Qn

)∈ RB, �a∈ (Q1, . . . ,Qn
)
. (5.9)

By hypothesis, there exists (P1, . . . ,Pn)∈ RB(P0) such that Pi∩A0 =Qi∩A0, for

1 ≤ i ≤ n. Hence, ai ∈ Qi∩A0, we have ♦�a ∈ P0, which is a contradiction by

(5.6). Thus, ♦�a∈A0.

6. Generalized congruences. Recall that, given a modal algebra B, there

exists a bijective correspondence between congruences of B and filters F of

B closed under �, that is, �a ∈ F when a ∈ F (see, e.g., [8, 9]). This class of

filters are called open filters. In this section, we introduce a generalization of

the notion of congruences and open filter.

Let B be a Boolean algebra. Recall that if F is a filter of B, the relation

θ(F)= {(x,y) : ∃f : x∧f =y∧f} (6.1)

is a Boolean congruence. On the other hand, if θ is a Boolean congruence, then

F(θ)= {x ∈ B : (x,1)∈ θ} (6.2)

is a filter of B such that θ(F(θ))= θ and F(θ(F))= F .

Let B = 〈{Bi},♦〉 be a generalized modal algebra, let Fi be a filter of Bi, 1≤ i≤
n, and let F1+···+Fn = {(a1, . . . ,an)∈

∏n
i=1Bi : ai ∈ Fi, for some 1≤ i≤n}.

Definition 6.1. Let B = 〈{Bi},♦〉 be a generalized modal algebra. A gener-

alized modal filter of B is a sequence �F = (F0,F1, . . . ,Fn) such that

(1) Fi is a filter of Bi, 0≤ i≤n;

(2) for any �a∈ F1+···+Fn, ��a∈ F0.

Definition 6.2. Let B = 〈{Bi},♦〉 be a generalized modal algebra. A gener-

alized modal congruence of B is a finite sequence

θ = (θ0, . . . ,θn
)

(6.3)

such that

(1) θi is a Boolean congruence of Bi, for each 0≤ i≤n;

(2) if (ai,bi)∈ θi with 1≤ i≤n, then (♦(a1, . . . ,an),♦(b1, . . . ,bn))∈ θ0.

Theorem 6.3. Let B = 〈{Bi},♦〉 be a generalized modal algebra. There exists

a bijective correspondence between congruences of B and the generalized modal

filter of B.
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Proof. Let θ = (θ0, . . . ,θn) be a generalized congruence of B. Define the

sequence F(θ) = (F(θ0), . . . ,F(θn)). Let (a1,a2, . . . ,an) ∈ F(θ1)+···+F(θn).
Then there exist some 1 ≤ j ≤ n such that (aj,1) ∈ θj . Since (ai,ai) ∈ θi for

every 1≤ i≤n, then

(
�
(
a1, . . . ,aj, . . . ,an

)
,�
(
a1, . . . ,1, . . . ,an

))= (�(a1, . . . ,aj, . . . ,an
)
,1
)∈ θ0.

(6.4)

Thus, �(a1, . . . ,aj, . . . ,an)∈ F(θ0).
Let �F = (F0,F1, . . . ,Fn) be a generalized modal filter. Consider the sequence

θ(�F) = (θ(F0), . . . ,θ(Fn)). Let (ai,bi) ∈ θ(Fi), for 1 ≤ i ≤ n. Then, for each

1 ≤ i ≤ n, there exist fi ∈ Fi such that ai∧fi = bi∧fi. We prove that there

exists f0 ∈ F0 such that �(a1, . . . ,an)∧ f0 = �(b1, . . . ,bn)∧ f0. Suppose the

contrary, that is, for every f0 ∈ F0,

�
(
a1, . . . ,an

)∧f0 ≠�
(
b1, . . . ,bn

)∧f0. (6.5)

Then there exists P0 ∈Ul(A0) such that

F0 ⊆ P0, �
(
a1, . . . ,an

)∈ P0, �
(
b1, . . . ,bn

)
∉ P0. (6.6)

So, there exists (P1, . . . ,Pn)∈ RB(P0) such that

ai ∉ Pi, ∀1≤ i≤n. (6.7)

Since�(a1, . . . ,an)∈ P0, thenaj ∈ Pj , for some 1≤ j ≤n, and as (0, . . . ,fj, . . . ,0)
∈ F1+···+Fn, we get �(0, . . . ,fj, . . . ,0) ∈ F0 ⊆ P0. It follows that fj ∈ Pj and

since aj ∧fj = bj ∧fj , bj ∈ Pj , which is a contradiction by (6.7). Thus, there

exists f0 ∈ F0 such that �(a1, . . . ,an)∧f0 =�(b1, . . . ,bn)∧f0.
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