THE BOOLEAN ALGEBRA OF GALOIS ALGEBRAS

George Szeto and Lianyong Xue

Received 8 February 2002

Let B be a Galois algebra with Galois group G, $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$, and $BJ_g = Be_g$ for a central idempotent e_g , B_a the Boolean algebra generated by $\{0, e_g \mid g \in G\}$, e a nonzero element in B_a , and $H_e = \{g \in G \mid ee_g = e\}$. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group H_e , is investigated.

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. The Boolean algebra of central idempotents in a commutative Galois algebra plays an important role for the commutative Galois theory (see [1, 3, 6]). Let B be a Galois algebra with Galois group G, C the center of *B*, and $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$. In [2], it was shown that $BJ_g = Be_g$ for some idempotent e_g of C. Let B_a be the Boolean algebra generated by $\{0, e_g \mid g \in G\}$. Then in [5], by using B_a , the following structure theorem for B was given. There exist $\{e_i \in B_a \mid i = a\}$ 1,2,...,m for some integer m} and some subgroups H_i of G such that B= $\oplus \sum_{i=1}^{m} Be_i \oplus Bf$ where $f = 1 - \sum_{i=1}^{m} e_i$, Be_i is a central Galois algebra with Galois group H_i for each i = 1, 2, ..., m, and Bf = Cf which is a Galois algebra with Galois group induced by and isomorphic with G in case $1 \neq \sum_{i=1}^{m} e_i$. In [4], let K be a subgroup of G. Then, K is called a nonzero subgroup of G if $\prod_{k \in K} e_k \neq 0$ in B_a , and K is called a maximal nonzero subgroup of G if $K \subset K'$, where K' is a nonzero subgroup of G such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then K = K'. We note that any nonzero subgroup is contained in a unique maximal nonzero subgroup of G. In [4], it was shown that there exists a one-to-one correspondence between the set of nonzero monomials in B_a and the set of maximal nonzero subgroups of G, and that, for a nonzero monomial e in B_a such that $H_e \neq \{1\}$, Be is a central Galois algebra with Galois group H_e if and only if e is a minimal nonzero monomial in B_a . The purpose of the present paper is to characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. Then, the Galois extension Be, generated by a nonzero idempotent eand by a monomial e with Galois group H_e , is investigated, respectively. Let $G(e) = \{g \in G \mid g(e) = e\}$ for each $e \neq 0$ in B_a . We will show that (1) H_e is a normal subgroup of G(e), and (2) Be is a Galois extension of $(Be)^{H_e}$ with Galois group H_e and $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$. In particular, when e is a monomial, $G(e) = N(H_e)$ (the normalizer of H_e), and when e is an atom (a minimal nonzero element) of B_a , Be is a central Galois algebra over Ce with Galois group H_e and Ce is a commutative Galois algebra with Galois group $G(e)/H_e$. This generalizes and improves the result of the components of B in [5, Theorem 3.8] for a Galois algebra.

- **2. Definitions and notations.** Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, and B^G the set of elements in B, fixed under each element in G. B is called a Galois extension of B^G with Galois group G if there exist elements $\{a_i,b_i \text{ in } B,\ i=1,2,...,m\}$ for some integer m such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. B is called a Galois algebra over B if B is a Galois extension of B which is contained in B, and B is called a central Galois extension if B is a Galois extension of B. In this paper, we assume that B is a Galois algebra with Galois group B. Let B is a Galois extension of B is a Galois extension of B. We denote the B in the
- **3. The Boolean algebra.** In this section, we will characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. We begin with several lemmas.
 - **LEMMA 3.1.** Let $\{e_i, f \mid i = 1, 2, ..., m\}$ be given in [5, Theorem 3.8]. Then,
 - (1) $\{e_i, f \mid i = 1, 2, ..., m\}$ is the set of all minimal elements of B_a in case $f \neq 0$,
 - (2) for each $e \neq 0$ in B_a , there exists a unique subset Z_e of the set $\{1, 2, ..., m\}$ such that $e = \sum_{i \in Z_a} e_i$ or $e = \sum_{i \in Z_a} e_i + f$.
- **PROOF.** (1) By the proof of [5, Theorem 3.8], either $e_i = \prod_{g \in H_i} e_g$, where H_i is a maximum subset (subgroup) of G such that $\prod_{g \in H_i} e_g \neq 0$, or $e_i = (1 \sum_{j=1}^t e_j) \prod_{g \in H_i} e_g$ for some t < i, where H_i is a maximum subset (subgroup) of G such that $(1 \sum_{j=1}^t e_j) \prod_{g \in H_i} e_g \neq 0$; so, either e_i is a minimal element of B_a or e_i is a minimal element of $(1 \sum_{j=1}^t e_j)B_a$. Noting that any minimal element in $(1 \sum_{j=1}^t e_j)B_a$ is also a minimal element in B_a , we conclude that each e_i is a minimal element in B_a . Next, we show that f is also a minimal element of B_a in case $f \neq 0$. In fact, by the proof of [5, Theorem 3.8], $e_g f = 0$ for any $g \neq 1$ in G; so, for any $e \in B_a$, ef = 0 or ef = f. This implies that f is a minimal element of B_a in case $f \neq 0$. Moreover, $\sum_{i=1}^m e_i + f = 1$; so, $\{e_i, f \mid i = 1, 2, ..., m\}$ is the set of all minimal elements of B_a in case $f \neq 0$.
- (2) Since $1 = \sum_{i=1}^{m} e_i + f$, a sum of all minimal elements of B_a , the statement is immediate.

LEMMA 3.2. Let e be a nonzero element in B_a . Then,

- (1) there exists a monomial e' of B_a such that $e \le e'$ and $H_e = H_{e'}$,
- (2) H_e is a maximal nonzero subgroup of G.
- **PROOF.** (1) For any nonzero element e in B_a , let $e' = \prod_{g \in H_e} e_g$. We claim that $e \leq e'$ and $H_e = H_{e'}$. In fact, for any $h \in H_e$, $e \leq e_h$; so, $e \leq \prod_{h \in H_e} e_h = e'$. Moreover, for any $h \in H_e$, $e_h \geq \prod_{g \in H_e} e_g = e'$; so, $h \in H_{e'}$. Hence, $H_e \subset H_{e'}$. On the other hand, for any $h \in H_{e'}$, $e_h \geq e' = \prod_{g \in H_e} e_g \geq e$; so, $h \in H_e$. Thus, $H_{e'} \subset H_e$. Therefore, $H_e = H_{e'}$.
- (2) By [4, Theorem 3.2], $H_{e'}$ is a maximal nonzero subgroup of G for e' is a monomial. Hence, H_{e} (= $H_{e'}$) is a maximal nonzero subgroup of G.

Next is an expression of H_e for a nonzero $e \in B_a$.

THEOREM 3.3. For any $e \neq 0$ in B_a , $H_e = \bigcap_{i \in Z_e} H_{e_i}$ or H_1 , where $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$ as given in Lemma 3.1(2).

PROOF. We first show that for e=e'+e'' for some $e',e''\neq 0$ in $B_a, H_e=H_{e'}\cap H_{e''}$. In fact, since $e\geq e'$ and $e\geq e''$, we have $H_e\subset H_{e'}\cap H_{e''}$. Conversely, for any $g\in H_{e'}\cap H_{e''}$, $e_g\geq e'$ and $e_g\geq e''$; so, $e_g\geq e'+e''=e$. Hence, $g\in H_e$; so, $H_e=H_{e'}\cap H_{e''}$. Therefore, by induction, if $e=\sum_{i\in Z_e}e_i$, then $H_e=\cap_{i\in Z_e}H_{e_i}$. Now, by Lemma 3.1, for any $e\neq 0$ in B_a , $e=\sum_{i\in Z_e}e_i$ or $e=\sum_{i\in Z_e}e_i+f$. Similarly, if $e=\sum_{i\in Z_e}e_i+f$, then $H_e=H_{(\sum_{i\in Z_e}e_i)+f}=(\cap_{i\in Z_e}H_{e_i})\cap H_f$. But, for $g\in G$ such that $e_g\neq 1$, $e_gf=0$; so, $H_f=H_1$. Therefore, $H_e=(\cap_{i\in Z_e}H_{e_i})\cap H_1=H_1$ for $H_1\subset H_{e_i}$ for each i.

We observe that there exist some $e \neq 0$ such that $H_e = \cap_{i \in Z_e} H_{e_i}$ and $H_e \subset H_{e_j}$ for some $j \notin Z_e$, and that not all $e \neq 0$ are monomials. Next, we identify which element $e \neq 0$ in B_a is a monomial. Two characterizations are given. We begin with a definition.

DEFINITION 3.4. An $e \neq 0$ in B_a is called a maximal G-element if $H_e \neq H_1$ and, for any $e' \in B_a$ such that $e \leq e'$ and $H_e = H_{e'}$, e = e'.

LEMMA 3.5. (1) If $e \neq 0$ such that ef = 0, then $e = \sum_{i \in Z_e} e_i$.

(2) If e is a monomial, $e = \prod_{g \in S} e_g$ for some $S \subset G$, then e = 1 or $e = \sum_{i \in Z_e} e_i$.

PROOF. (1) By Lemma 3.1, $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$. If $e \neq \sum_{i \in Z_e} e_i$, then $e = \sum_{i \in Z_e} e_i + f$ and $f \neq 0$. But then, $f = (\sum_{i \in Z_e} e_i + f)f = ef = 0$. This is a contradiction. Hence, $e = \sum_{i \in Z_e} e_i$.

(2) In case e=1, we are done. In case $e\neq 1$. Since $e_gf=0$ for each $g\in G$ such that $e_g\neq 1$, $e_gf=\prod_{g\in S}e_gf=0$. Thus, by (1), $e=\sum_{i\in Z_e}e_i$.

THEOREM 3.6. Keeping the notations of Lemma 3.1 for any $e \neq 0,1$ in B_a , the following statements are equivalent:

- (1) $e = \prod_{g \in S} e_g$ for some $S \subset G$, a monomial in B_a ;
- (2) e is a maximal G-element in B_a ;

(3) $e = \sum_{i \in Z_e} e_i$ where $\{e_i \mid i \in Z_e\}$ are all atoms such that $H_e \subset H_{e_i}$ and $H_e \neq H_1$.

PROOF. (1) \Rightarrow (2). Since e is a monomial and $e \neq 1$, $e = \prod_{g \in H_e} e_g$ where $e_g \neq 1$ for some $g \in H_e$. Thus, $H_e \neq H_1$. Next, for any e' such that $e \leq e'$ and $H_e = H_{e'}$,

$$e \le e' \le \prod_{g \in H_{\varrho'}} e_g = \prod_{g \in H_{\varrho}} e_g = e. \tag{3.1}$$

Hence, e = e'. This implies that e is a maximal G-element in B_a .

- $(2)\Rightarrow(1)$. Let e be a maximal G-element and $e'=\prod_{g\in H_e}e_g$. Then, by Lemma 3.2, $e\leq e'$ and $H_e=H_{e'}$. But e is a maximal G-element; so, e=e' which is a monomial.
- $(1)\Rightarrow(3)$. By Lemma 3.5, $e=\sum_{i\in Z_e}e_i$. Now, let e_j be an atom such that $H_e\subset H_{e_j}$. Then, $e_j\leq\prod_{g\in H_{e_j}}e_g\leq\prod_{g\in H_e}e_g$. But, by hypothesis, e is a monomial; so, $e=\prod_{g\in H_e}e_g$. Hence, $e_j\leq e$. This implies that e_j is a term in e. Thus, $e=\sum_{i\in Z_e}e_i$ where $\{e_i\mid i\in Z_e\}$ are all atoms such that $H_e\subset H_{e_i}$. Moreover, since $e=\prod_{g\in S}e_g\neq 1$, there exists $g\in G$ such that $e\leq e_g\neq 1$. Thus, $g\in H_e$ and $g\notin H_1$. Therefore, $H_e\neq H_1$.
- (3)⇒(1). Let $e' = \prod_{g \in H_e} e_g$. Then, by Lemma 3.2, $e \le e'$ and $H_e = H_{e'}$. Since $H_e \ne H_1$, $H_{e'} \ne H_1$. Also, since e' is a monomial, $e' = \sum_{j \in Z_{e'}} e_j$ by Lemma 3.5(2). Now, suppose that $e \ne e'$. Then, there is a $j \in Z_{e'}$ but $j \notin Z_e$, that is, e_j is a term of $e' = \sum_{j \in Z_{e'}} e_j$ but not a term of $e = \sum_{i \in Z_e} e_i$. But then, $H_e = H_{e'} = \cap_{j \in Z_{e'}} H_{e_j} \subset H_{e_j}$ such that $j \notin Z_e$. This contradicts the hypothesis that $e = \sum_{i \in Z_e} e_i$ where $\{e_i \mid i \in Z_e\}$ are all atoms such that $H_e \subset H_{e_i}$. Thus, e = e' which is a monomial in B_a .
- **4. Galois extensions.** In [5], it was shown that Be is a central Galois algebra with Galois group H_e for any atom $e \neq f$ of B_a . Also, for any $e \neq 0$ in B_a , Be is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)|_{Be} \cong G(e)$ where $G(e) = \{g \in G \mid g(e) = e\}$ (see [5, Lemma 3.7]). In this section, we are going to show that, for any $e \neq 0$ in B_a (not necessary an atom), (1) H_e is a normal subgroup of G(e), and (2) Be is a Galois extension of $(Be)^{He}$ with Galois group H_e and $(Be)^{He}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$. This generalizes and improves the result for Be when e is an atom of B_a as given in [5, Theorem 3.8]. In particular, for a monomial e, $G(e) = N(H_e)$, the normalizer of H_e in G.

LEMMA 4.1. Let $e \neq 0$ in B_a . Then, H_e is a normal subgroup of G(e) where $G(e) = \{g \in G \mid g(e) = e\}$.

PROOF. We first claim that $H_e \subset G(e)$. In fact, by Lemma 3.1, for any $e \neq 0$ in B_a , there exists a unique subset Z_e of the set $\{1, 2, ..., m\}$ such that $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$ where e_i are given in Lemma 3.1. Moreover, for each i,

 $e_i = \prod_{h \in H_{e_i}} e_h$ or $e_i = (1 - \sum_{j=1}^t e_j) \prod_{g \in H_{e_i}} e_g$ for some t < i. Noting that g permutes the set $\{e_i \mid i = 1, 2, ..., t\}$ for each $g \in G$ by the proof of [5, Theorem 3.8], we have, for each $g \in G$,

$$g(e_i) = g\left(\prod_{h \in H_{e_i}} e_h\right) = \prod_{h \in H_{e_i}} e_{ghg^{-1}} \ge \prod_{h \in H_{e_i}} e_g e_h e_{g^{-1}} = e_g e_i e_{g^{-1}}$$
(4.1)

or

$$g(e_{i}) = g\left(\left(1 - \sum_{j=1}^{t} e_{j}\right) \prod_{h \in H_{e_{i}}} e_{h}\right) = \left(1 - \sum_{j=1}^{t} e_{j}\right) \prod_{h \in H_{e_{i}}} e_{ghg^{-1}}$$

$$\geq \left(1 - \sum_{j=1}^{t} e_{j}\right) \prod_{h \in H_{e_{i}}} e_{g}e_{h}e_{g^{-1}}$$

$$= e_{g}\left(\left(1 - \sum_{j=1}^{t} e_{j}\right) \prod_{h \in H_{e_{i}}} e_{h}\right) e_{g^{-1}} = e_{g}e_{i}e_{g^{-1}}.$$

$$(4.2)$$

Now, in case $e = \sum_{i \in Z_e} e_i$, for any $h \in H_e$,

$$e = e_h e e_{h^{-1}} = \sum_{i \in Z_e} e_h e_i e_{h^{-1}} \le \sum_{i \in Z_e} h(e_i) = h(e). \tag{4.3}$$

Thus, h(e) = e using Lemma 3.1(2). Noting that g permutes the set $\{e_i \mid i = 1, 2, ..., m\}$ for each $g \in G$, we have g(f) = f for each $g \in G$. Thus, we have h(e) = e for each $h \in H_e$ in case $e = \sum_{i \in Z_e} e_i + f$. This proves that $H_e \subset G(e)$. Next, we show that H_e is a normal subgroup of G(e). Since for each $g \in G$, $g(e_i)$ is also an atom, g(e) = e (i.e., $g \in G(e)$) implies that g permutes the set $\{e_i \mid i \in Z_e\}$. Therefore, for each $i \in Z_e$, $g(e_i) = e_j$ and $gH_{e_i}g^{-1} = H_{e_j}$ for some $j \in Z_e$. But, by Theorem 3.3, $H_e = \cap_{i \in Z_e} H_{e_i}$ (or $H_e = H_1$ which is normal); so, for any $g \in G(e)$, $gH_eg^{-1} = g(\cap_{i \in Z_e} H_{e_i})g^{-1} = \cap_{i \in Z_e} gH_{e_i}g^{-1} = \cap_{j \in Z_e} H_{e_j} = H_e$. Therefore, H_e is a normal subgroup of G(e).

THEOREM 4.2. Let e be a nonzero element in B_a . Then,

- (1) Be is a Galois extension of $(Be)^{G(e)}$ with Galois group G(e),
- (2) Be is a Galois extension of $(Be)^{H_e}$ with Galois group H_e and $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$.

PROOF. (1) Since *B* is a Galois algebra with Galois group *G*, *B* is a Galois extension with Galois group G(e). But g(e) = e for each $g \in G(e)$; so, by [5, Lemma 3.7], Be is a Galois extension of $(Be)^{G(e)}$ with Galois group G(e).

(2) Clearly, Be is a Galois extension of $(Be)^{H_e}$ with Galois group H_e by part (1). Next, we claim that $|H_e|$, the order of H_e , is a unit in Be. In fact, by [5, Theorem 3.8], for each atom e_i of B_a , Be_i is a central Galois algebra over Ce_i with Galois group H_{e_i} ; so, $|H_{e_i}|$, the order of H_{e_i} , is a unit in Be_i (see [2, Corollary 3]). Hence, $|H_e|$ (= $|\cap H_{e_i}|$) is a unit in Be if $e = \sum_{i \in Z_e} e_i$. If $e = \sum_{i \in Z_e} e_i + f$ and $f \neq 0$, then $H_e = H_1 = \{g \in G \mid e_g = 1\} = \{g \in G \mid g(c) = c \text{ for each } c \in C\}$. Hence, by

[2, Proposition 5], $|H_e|$ is a unit in B. Thus, $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$ for H_e is a normal subgroup of G(e) by Lemma 4.1.

Lemma 4.1 shows that, for any nonzero element e in B_a , G(e) is contained in (not necessarily equal to) the normalizer $N(H_e)$ of H_e in G. Next, we want to show that $G(e) = N(H_e)$ when e is a monomial. Consequently, for any nonzero element e in B_a , Be is embedded in a Galois extension Be' of $(Be')^{H_e}$ with the same Galois group H_e , and $(Be')^{H_e}$ is a Galois extension of $(Be')^{G(e')}$ with Galois group $G(e')/H_e$ such that $G(e') = N(H_e)$ for some monomial e' in B_a .

LEMMA 4.3. Let e be a nonzero element in B_a . Then, there exists a monomial e' in B_a such that $e \le e'$, $H_e = H_{e'}$, and $N(H_e) = G(e')$ where $G(e') = \{g \in G \mid g(e') = e'\}$ and $N(H_e)$ is the normalizer of H_e in G.

PROOF. By Lemma 3.2, there exists a monomial e' in B_a such that $e \le e'$ and $H_e = H_{e'}$; so, it suffices to show that $N(H_e) = G(e')$. For any $g \in N(H_e)$, $g \in N(H_{e'})$; so, by Theorem 3.3, $H_{e'} = gH_{e'}g^{-1} = g(\cap_{i \in Z_{e'}}H_{e_i})g^{-1} = \cap_{i \in Z_{e'}}gH_{e_i}g^{-1} = \cap_{i \in Z_{e'}}H_{g(e_i)} = H_{\sum_{i \in Z_{e'}}g(e_i)} = H_{g(e')}$. Noting that e' is a monomial, we have g(e') = e' by Lemma 3.2, that is, $g \in G(e')$. This implies that $N(H_e) \subset G(e')$. Conversely, $G(e') \subset N(H_{e'})$ by Lemma 4.1. But $H_e = H_{e'}$; so, $G(e') \subset N(H_{e'}) = N(H_e)$. Therefore, $N(H_e) = G(e')$.

THEOREM 4.4. Let e be a nonzero element in B_a . Then, there exists a monomial e' in B_a such that Be is embedded in Be', Be' is a Galois extension of $(Be')^{H_e}$ with Galois group H_e , and $(Be')^{H_e}$ is a Galois extension of $(Be')^{N(H_e)}$ with Galois group $N(H_e)/H_e$.

PROOF. By Lemma 4.3, there exists a monomial e' in B_a such that $e \le e'$, H_e is a normal subgroup of G(e'), and $N(H_e) = G(e')$. Hence, $Be \subset Be'$. But Be' is a Galois extension of $(Be')^{H_{e'}}$ with Galois group $H_{e'}$ and $(Be')^{H_{e'}}$ is a Galois extension of $(Be')^{G(e')}$ with Galois group $G(e')/H_{e'}$ by Theorem 4.2; so, Theorem 4.4 holds.

ACKNOWLEDGMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University, and the authors would like to thank the Caterpillar Inc. for that support.

REFERENCES

- [1] F. DeMeyer, *Separable polynomials over a commutative ring*, Rocky Mountain J. Math. **2** (1972), no. 2, 299–310.
- [2] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309–317.
- [3] G. Szeto, A characterization of Azumaya algebras, J. Pure Appl. Algebra 9 (1976/1977), no. 1, 65–71.
- [4] G. Szeto and L. Xue, *The Boolean algebra and central Galois algebras*, Int. J. Math. Math. Sci. **28** (2001), no. 4, 237–242.

- [5] _____, The structure of Galois algebras, J. Algebra 237 (2001), no. 1, 238–246.
- [6] O. E. Villamayor and D. Zelinsky, *Galois theory with infinitely many idempotents*, Nagoya Math. J. **35** (1969), 83–98.

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA $\emph{E-mail address:}$ lxue@hilltop.bradley.edu