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It is proved that a Riemannian manifold M isometrically immersed in a Sasakian
space form M̃(c) of constant ϕ-sectional curvature c < 1, with the structure vec-
tor field ξ tangent to M , satisfies Chen’s basic equality if and only if it is a 3-
dimensional minimal invariant submanifold.
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1. Introduction. Let M̃ be an m-dimensional almost contact manifold en-

dowed with an almost contact structure (ϕ,ξ,η), that is, ϕ be a (1,1)-tensor

field, ξ be a vector field, and η be a 1-form, such thatϕ2 =−I+η⊗ξ and η(ξ)=
1. Then, ϕ(ξ)= 0, η◦ϕ = 0, and m is an odd positive integer. An almost con-

tact structure is said to be normal, if in the product manifold M̃×R the induced

almost complex structure J defined by J(X,λd/dt)= (ϕX−λξ,η(X)d/dt) is

integrable, where X is tangent to M̃ , t is the coordinate of R, and λ is a smooth

function on M̃×R. The condition for an almost contact structure to be normal

is equivalent to the vanishing of the torsion tensor [ϕ,ϕ]+ 2dη⊗ ξ, where

[ϕ,ϕ] is the Nijenhuis tensor of ϕ.

Let g be a compatible Riemannian metric with the structure (ϕ,ξ,η), that is,

g(ϕX,ϕY)= g(X,Y)−η(X)η(Y) or equivalently, g(X,ϕY)=−g(ϕX,Y) and

g(X,ξ) = η(X) for all X,Y ∈ TM̃ . Then, M̃ becomes an almost contact metric

manifold equipped with the almost contact metric structure (ϕ,ξ,η,g). More-

over, if g(X,ϕY)= dη(X,Y), then M̃ is said to have a contact metric structure

(ϕ,ξ,η,g), and M̃ is called a contact metric manifold. A normal contact metric

structure in M̃ is a Sasakian structure and M̃ is a Sasakian manifold. A nec-

essary and sufficient condition for an almost contact metric structure to be a

Sasakian structure is

(∇̃Xϕ
)
Y = g(X,Y)ξ−η(Y)X, X,Y ∈ TM̃, (1.1)

where ∇̃ is the Levi-Civita connection of the Riemannian metric g. The mani-

folds R2n+1 and S2n+1 are equipped with standard Sasakian structures. The

sectional curvature K̃(X ∧ϕX) of a plane section spanned by a unit vector

X orthogonal to ξ is called a ϕ-sectional curvature. If M̃ has a constant
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ϕ-sectional curvature c, then it is called a Sasakian space form and is denoted

by M̃(c). For more details, we refer to [2].

Let M be an n-dimensional submanifold immersed in an almost contact

metric manifold M̃(ϕ,ξ,η,g). Also let g denote the induced metric on M . We

denote by h the second fundamental form ofM and by AN the shape operator

associated to any vector N in the normal bundle T⊥M . Then g(h(X,Y),N) =
g(ANX,Y) for all X,Y ∈ TM andN ∈ T⊥M . The mean curvature vector is given

by nH = trace(h), and the submanifold M is minimal if H = 0.

For a vector field X in M , we put ϕX = PX+FX, where PX ∈ TM and FX ∈
T⊥M . Thus, P is an endomorphism of the tangent bundle of M and satisfies

g(X,PY)=−g(PX,Y) for all X,Y ∈ TM . From now on, let the structure vector

field ξ be tangent to M . Then we write the orthogonal direct decomposition

TM = �⊕{ξ}. Let {e1, . . . ,en} be an orthonormal basis of the tangent space

TpM . We can define the squared norm of P by ‖P‖2 = ∑n
i,j=1g(ei,Pej)2. For

a plane section π ⊂ TpM , we denote the functions α(π) and β(π) of tangent

space TpM into [0,1] by α(π) = (g(X,PY))2 and β(π) = (η(X))2+ (η(Y))2,

where π is spanned by any orthonormal vectors X and Y .

The scalar curvature τ at p ∈M is given by τ =∑i<j K(ei∧ej), where K(ei∧
ej) is the sectional curvature of the plane section spanned by ei and ej . The

well-known Chen’s invariant δM on M is defined by

δM = τ− infK, (1.2)

where (infK)(p)= inf{K(π) |π is a plane section ⊂ TpM}. For a submanifold

M in a real space form Rm(c), Chen [4] gave the following inequality:

δM ≤ n
2(n−2)

2(n−1)
‖H‖2+ 1

2
(n+1)(n−2)c. (1.3)

He also established in [5] the similar basic inequalities for submanifolds in

a complex space form. For an n-dimensional submanifold M in a Sasakian

space form M̃(c) tangential to the structure vector field ξ in [7], the authors

established the following Chen’s basic inequality.

Theorem 1.1. Let M be an n-dimensional (n ≥ 3) Riemannian manifold

isometrically immersed in a Sasakian space form M̃(c) of constant ϕ-sectional

curvature c < 1 with the structure vector field ξ tangent to M . Then,

δM ≤ n
2(n−2)

2(n−1)
‖H‖2+ 1

8

{
n(n−3)c+3n2−n−8

}
(1.4)

with equality holding if and only ifM admits a quasi-anti-invariant structure of

rank (n−2).
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For certain inequalities concerned with the invariant δ(n1, . . . ,nk), which is

a generalization of δM , we also refer to [6].

In this note, we prove the following obstruction to the Chen’s basic equality.

Theorem 1.2. Let M be an n-dimensional Riemannian manifold isometri-

cally immersed in an m-dimensional Sasakian space form M̃(c) of a constant

ϕ-sectional curvature c < 1 with the structure vector field ξ tangent toM . Then,

M satisfies the Chen’s basic equality

δM = n
2(n−2)

2(n−1)
‖H‖2+ 1

8

{
n(n−3)c+3n2−n−8

}
, (1.5)

if and only if M is a 3-dimensional minimal invariant submanifold. Hence,

Chen’s basic equality (1.5) becomes

δM = 2. (1.6)

2. Proof of Theorem 1.2. First, we recall the following theorem [3].

Theorem 2.1. Let M̃ be an m-dimensional Sasakian space form M̃(c). Let

M be an n-dimensional (n≥ 3) submanifold isometrically immersed in M̃ such

that ξ ∈ TM . For each plane section π ⊂�p , p ∈M ,

τ−K(π)≤ n
2(n−2)

2(n−1)
‖H‖2+ 1

8

{
n(n−3)c+3n2−n−8

}

+ c−1
8

{
3‖P‖2−6α(π)

}
.

(2.1)

The equality in (2.1) holds at p ∈ M if and only if there exist an orthonormal

basis {e1, . . . ,en} of TpM and an orthonormal basis {en+1, . . . ,em} of T⊥p M such

that (a) en = ξ, (b) π = Span{e1,e2}, and (c) the shape operators Ar ≡ Aer ,

r =n+1, . . . ,m, take the following forms:

An+1 =




hn+1
11 0 0 ··· 0

0 −hn+1
11 0 ··· 0

0 0 0 ··· 0
...

...
...

. . .
...

0 0 0 ··· 0




,

Ar =




hr11 hr12 0 ··· 0

hr12 −hr11 0 ··· 0

0 0 0 ··· 0
...

...
...

. . .
...

0 0 0 ··· 0




, r =n+2, . . . ,m.

(2.2)
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A submanifold M of an almost contact metric manifold M̃ with ξ ∈ TM is

called a semi-invariant submanifold [1] of M̃ if the distributions �1 = TM ∩
ϕ(TM) and �0 = TM∩ϕ(T⊥M) satisfy TM =�1⊕�0⊕{ξ}. In fact, the condi-

tion TM =�1⊕�0⊕{ξ} implies that the endomorphism P is an f -structure [9]

on M with a rank(P) = dim(�1). A semi-invariant submanifold of an almost

contact metric manifold becomes an invariant or an anti-invariant submani-

fold according as the anti-invariant distribution �0 is {0} (i.e., F = 0) or the

invariant distribution �1 is {0} (i.e., P = 0) [1].

For each point p ∈M , we put [3]

δ�
M(p)= τ(p)−

(
inf �K

)
(p)= inf

{
K(π) | plane sections π ⊂�p

}
. (2.3)

For c < 1, we prove the following result.

Theorem 2.2. LetM be ann-dimensional (n≥ 3) submanifold isometrically

immersed in a Sasakian space form M̃(c) such that the structure vector field ξ
is tangent to M . If c < 1, then

δ�
M ≤

n2(n−2)
2(n−1)

‖H‖2+ 1
8

{
n(n−3)c+3n2−n−8

}
. (2.4)

The equality case in (2.4) holds if and only if M is a 3-dimensional minimal

invariant submanifold.

Proof. Since c < 1, in order to estimate δM , we minimize ‖P‖2−2α(π) in

(2.1). For an orthonormal basis {e1, . . . ,en = ξ} of TpM with π = span{e1,e2},
we write

‖P‖2−2α(π)=
n∑

i,j=3

g
(
ei,ϕej

)2+2
n∑

j=3

{
g
(
e1,ϕej

)2+g(e2,ϕej
)2
}
. (2.5)

Thus, the minimum value of ‖P‖2−2α(π) is 0, provided that

span
{
ϕej | j = 3, . . . ,n

}
(2.6)

is orthogonal to the tangent space TpM . Thus, we have (2.4) with equality case

holding if and only if M is a semi-invariant such that rank(P)= 2. This means

that

TM =�1⊕�0⊕{ξ} (2.7)

with the dim(�1)= 2. From (2.2), we see that M is minimal.
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Next, from [8, Proposition 5.2], we have

AFXY −AFYX = η(X)Y −η(Y)X, X,Y ∈�0⊕{ξ}. (2.8)

For X ∈�0 and using (2.8), we have

g(X,X)=−g(AFXξ,X
)
, (2.9)

which in view of (2.2) becomes zero. Thus �0 = {0}, and M becomes invariant.

This completes the proof.

From (1.2) and (2.3), it follows thatδ�
M(p)≤ δM(p). Hence in view of Theorem

2.2, we get the proof of Theorem 1.2.

Remark 2.3. In Theorem 1.1, the phrase “M admits a quasi-anti-invariant

structure of rank(n−2)” is identical with the statement “M is a semi-invariant

submanifold with rank(P) = 2 or equivalently dim(�1) = 2, where �1 is the

invariant distribution.” Thus, nothing is stated here about the dimension of the

anti-invariant distribution �0. But, in the proof of Theorem 2.2, we observe that

M becomes minimal and consequently invariant, which makes dim(�0)= 0 and

dim(M)= 3.
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