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A family of selfadjoint operators of the Friedrichs model is considered. These
symmetric type operators have one singular point, zero of order m. For every
m > 3/2, we construct a rank 1 perturbation from the class Lip1 such that the
corresponding operator has a sequence of eigenvalues converging to zero. Thus,
near the singular point, there is no singular spectrum finiteness condition in terms
of a modulus of continuity of a perturbation for these operators in case ofm> 3/2.
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1. Statement of the problem and main result. Consider selfadjoint opera-

tors Sm, m> 0, given by

Sm = sgnt ·|t|m ·+(·,ϕ)ϕ (1.1)

on the domain of functions u(t) ∈ L2(R) such that |t|mu(t) ∈ L2(R). Here

ϕ ∈ L2(R) and t is the independent variable. The action of the operator Sm
can be written as follows:

(
Smu

)
(t)= sgnt ·|t|mu(t)+ϕ(t)

∫
R
u(x)ϕ(x)dx. (1.2)

The function ϕ is assumed to satisfy the smoothness condition∣∣ϕ(t+h)−ϕ(t)∣∣≤ω(|h|), |h| ≤ 1, (1.3)

where the functionω(t) (the modulus of continuity of the functionϕ) is mono-

tone and satisfies a Dini condition

ω(t) ↓ 0 as t ↓ 0,
∫ 1

0

ω(t)
t
dt <∞. (1.4)

For the operators Sm, the absolutely continuous spectrum fills the real axis

R. The behavior of the singular spectrum of the operators Sm is of interest.

Note that we define the singular spectrum as the union of the point spec-

trum and the singular continuous one. The structure of the spectrum σsing(S1)
(the singular spectrum of the operator S1 = t ·+(·,ϕ)ϕ) has been studied in

detail in [1, 2, 3, 4, 5, 6, 7, 8, 9]. It is shown in [1, 7] that for this operator,
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there exists an exact condition of the singular spectrum finiteness. Namely, if

ω(t)=O(√t) as t→ 0+, σsing(S1) consists of at most a finite number of eigen-

values of finite multiplicity (the singular continuous spectrum is missing). But

if liminfω(t)/
√
t =+∞ as t→ 0+, then we construct examples showing that a

nontrivial singular spectrum appears, in particular, the operator S1 has accu-

mulation points of eigenvalues. Note that the real appearance of a nontrivial

singular spectrum in the Friedrichs model was, for the first time, shown by

Pavlov and Petras [8].

Using the simple change of variables sgnt ·|t|m = x, we can show that out-

side any neighborhood of the origin, the structure of the spectrum σsing(Sm) is

identical with the one of the operator S1. This is due to the smoothness of this

change of variables outside any neighborhood of the origin, and also to the

local character of the main results of [1, 2, 3, 4, 5, 6, 7, 8, 9]. Namely, suppose

that conditions (1.3), (1.4), and also some additional conditions on the func-

tion ϕ are fulfilled only in a certain interval (c,d)⊂ R, then, the main results

of [1, 2, 3, 4, 5, 6, 7, 8, 9], concerning the structure of σsing(S1), will remain

true in any closed subinterval ∆ ⊂ (c,d). At the same time, as shown in this

paper, for the operator Sm, m > 3/2, the behavior of the singular spectrum

has quite different character in a neighborhood of the origin. In this case, it

turns out that the singular spectrum can appear for any modulus of continuity

ω(t). Hence, near zero, there is no condition of the singular spectrum finite-

ness in terms of the modulus of continuity of ϕ(t) like for the operator S1.

Here, we can also use the pointed change of variables but, since, for instance,

(sgnt ·|t|m)′|t=0
= 0 form> 1, it is not smooth (that is, not a diffeomorphism)

near zero. In this sense, zero is a singular point of the operators Sm, m ≠ 1,

and needs a special attention.

We start with a formulation of the main theorem of this paper on the con-

struction of a functionϕ(t) such that the corresponding operator Sm,m> 3/2,

has a nontrivial singular spectrum near the singular point zero and, in partic-

ular, a sequence of eigenvalues converging to the origin. The proof of this the-

orem will be obtained as a combination of a sequence of lemmas. Observe that

the actual modulus of continuity ω̃(h) := sup{|ϕ(t1)−ϕ(t2)| : |t1− t2| < h}
of the function ϕ always satisfies the additional constraint of semiadditivity

ω̃(t1+t2)≤ ω̃(t1)+ω̃(t2) for all t1, t2 ≥ 0.

Theorem 1.1 (main result). Let a nonnegative, monotone function ω(t),
t ≥ 0, be semiadditive such that ω(t1+ t2) ≤ ω(t1)+ω(t2) for all t1, t2 ≥ 0.

Then for anym> 3/2, a compactly supported functionϕ satisfying the smooth-

ness condition |ϕ(t+h)−ϕ(t)| ≤ω(|h|), h ∈ R, is constructed and such that

the corresponding operator Sm = sgnt·|t|m ·+(·,ϕ)ϕ has a sequence of eigen-

values converging to zero.

Note that the result of Theorem 1.1 can be formulated in terms of real zeros

of some analytic functions. Define in the upper half plane an analytic function
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Mm(z) in the following way:

Mm(z)= 1+
∫ +∞
−∞

∣∣ϕ2(t)
∣∣

sgnt ·|t|m−zdt, Imz > 0. (1.5)

It is easily shown that under conditions (1.3) and (1.4), the function Mm(z) is

continuously extended up to the real axis on the intervals (−∞;0) and (0;+∞).
We define, for λ∈R\{0}, the valueMm(λ) :=Mm(λ+i0) and the roots setN :=
{λ ∈ R\{0} : Mm(λ) = 0}. Then, we have the following inclusion σsing(Sm) ⊆
N ∪{0}. (See, e.g., [10] where similar assertions are proved for the function

1+∫+∞−∞ (|ϕ2(t)|/(t2−z))dt or [8] for the function 1+∫+∞−∞ (|ϕ2(t)|/(t−z))dt.)
Further, the exact condition ω(t) = O(√t), as t → 0+, appears to guarantee

that outside any neighborhood of the origin, there is at most a finite number

of zeros of the functionMm(λ). At the same time, Theorem 1.1 means that, for

m> 3/2, the function Mm(λ) can have a sequence of zeros converging to the

origin for any monotone, nonnegative, and semiadditive functionω satisfying

condition (1.4).

2. Construction of the function ϕ

Lemma 2.1. Let the function ϕ belong to L2(R). Then a point λ ∈ R is an

eigenvalue of the operator Sm = sgnt·|t|m·+(·,ϕ)ϕ if and only if the following

conditions hold:

ϕ(t)
sgnt ·|t|m−λ ∈ L2(R), (2.1)

1+
∫ +∞
−∞

∣∣ϕ2(t)
∣∣

sgnt ·|t|m−λdt = 0. (2.2)

Proof. Solving the eigenvalue problem Smv = λv , we find that v(t) =
Cϕ(t)/(sgnt · |t|m−λ). (Remark that from now on, we denote by C various

constants which may be different even in a single chain of inequalities.) This

expression will be an eigenfunction if it is from the space L2(R) and satisfies

the equation Smv−λv = 0, that is,

(
sgnt ·|t|m−λ) Cϕ(t)

sgnt ·|t|m−λ +ϕ(t)
∫ +∞
−∞

C
∣∣ϕ2(x)

∣∣
sgnx ·|x|m−λdx = 0, (2.3)

or

(
1+

∫ +∞
−∞

∣∣ϕ2(x)
∣∣

sgnx ·|x|m−λdx
)
ϕ(t)= 0. (2.4)

The proof is complete.
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Lemma 2.2. Suppose that a nonnegative, monotone function ω(t) is semi-

additive ω(t1+ t2) ≤ω(t1)+ω(t2) for all t1, t2 ≥ 0. If liminft→0+ω(t)/t = 0,

then ω(t)= 0 for all t ≥ 0.

Proof. According to the semiadditivity,ω(nt)≤nω(t), n∈N. Therefore,

using the notation [t] for the integer part of t, by the monotonicity of ω(t),
we have for all t,x > 0,

ω(t)=ω
((
t
x

)
x
)
≤ω

(([
t
x

]
+1
)
x
)
≤
([
t
x

]
+1
)
ω(x)

≤
(
t
x
+1
)
ω(x)= (t+x)ω(x)

x
.

(2.5)

Thus,

ω(t)≤ liminf
x→0+

(t+x)ω(x)
x

= lim
δ→0+

inf
0<x<δ

(t+x)ω(x)
x

≤ lim
δ→0+

(t+δ) inf
0<x<δ

ω(x)
x

= t · liminf
x→0+

ω(x)
x

= 0.
(2.6)

The lemma is proved.

Corollary 2.3. If additionally ω(t) → 0+ as t → 0+, then for any t0 > 0,

there exists a constant C > 0 such that

Ct ≤ω(t), t ∈ [0;t0
]
. (2.7)

Proof. It suffices to show that there exists a positive ε less than t0 such

that the inequality Ct ≤ω(t) is fulfilled with a certain constant C > 0 for all

t ∈ [0;ε]. If this is the case, put C̃ := min{C,ω(ε)/t0}. Then, the inequality

C̃t ≤ω(t) already holds for all t ∈ [0;t0]. Indeed, using the monotonicity of

ω, we have for t ∈ [ε;t0]

C̃t ≤ ω(ε)
t0

·t ≤ inf
x∈[ε;t0]

(
ω(x)
x

)
·t ≤ ω(t)

t
·t =ω(t). (2.8)

We prove that there are such constants ε and C . By assuming the converse, we

construct two positive sequencesCk and tk tending to 0 such thatω(tk)≤ Cktk.
Hence, limk→+∞ω(tk)/tk = 0. Since

liminf
t→0+

ω(t)
t

≤ liminf
k→+∞

ω
(
tk
)

tk
= 0, (2.9)

by Lemma 2.2, ω= 0. This completes the proof.

Remark that the nonnegativity of ω is a consequence of its semiadditivity

and monotonicity as ω(t+0)≤ω(t)+ω(0), and hence 0≤ω(0)≤ω(t).



EXAMPLES OF FRIEDRICHS MODEL OPERATORS . . . 629

Corollary 2.3 shows that it is sufficient to prove Theorem 1.1 forω(t)= Cωt
with an arbitrary constant Cω > 0.

Let {un}+∞n=0 and {εn}+∞n=1 be two sequences from the interval (0;10−1) satis-

fying the condition

un < εn <
un−1

8
, n= 1,2, . . . . (2.10)

On the real axis, we define a sequence of functions ϕn as follows:

ϕn(t) :=



ω
(
t− un

2

)
, t ∈

[
1
2
un;

3
4
un
]
,

ω
(
un−t

)
, t ∈

[
3
4
un;un

]
,

0, t ∉
[

1
2
un;un

]
,

(2.11)

where ω(t)= Cωt.
We will show that for any real-valued Lipschitz function γ(t) compactly

supported in the interval (−∞;−1), it is possible to select the sequences un
and εn, and a bounded sequence of nonnegative numbers {cn}+∞n=1 such that

the points λn := (un+ εn)m will be eigenvalues of the operator Sm = sgnt ·
|t|m ·+(·,ϕ)ϕ with the function

ϕ(t) :=K ·
+∞∑
k=1

(
ck
)1/2ϕk(t)+γ(t). (2.12)

Here K > 0 is a parameter. It will be shown that for all K large enough, the

function ϕ satisfies the required smoothness condition |ϕ(t+h)−ϕ(t)| ≤
ω(|h|), t,h∈R.

Lemma 2.4. For the points λn to be eigenvalues of the operator Sm defined

by (1.1), it is necessary and sufficient that

∫ +∞
−∞

∣∣ϕ2(t)
∣∣

sgnt ·|t|m−λ1
dt =−1, (2.13)

∫ +∞
−∞

∣∣ϕ2(t)
∣∣(

sgnt ·|t|m−λn
)(

sgnt ·|t|m−λn+1
)dt = 0, n= 1,2, . . . . (2.14)

Proof. We need to verify conditions (2.1) and (2.2) for λ= λn, n= 1,2, . . . .
As un < un−1/8, the supports of the functions ϕn are disjoint. Thus, the

function ϕ is bounded and compactly supported. According to (2.10), λn =
(un+εn)m < tm for t ≥ un−1/2. Therefore, ϕ vanishes identically in a neigh-

borhood of λn. Hence, condition (2.1) is fulfilled for any λ = λn, n = 1,2, . . . .
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Now putting in (2.2) λ = λn, n = 1,2, . . . we then pass from the obtained sys-

tem of equations to an equivalent one by subtracting the nth equation from

the (n+1)st for n = 1,2, . . . . As a result, we get system (2.13) and (2.14). The

lemma is proved.

Since ϕ(t)= 0 for t > λ1, it follows that

αm :=
∫ +∞
−∞

ϕ2(t)
sgnt ·|t|m−λ1

dt < 0. (2.15)

Therefore, after solving the homogeneous system (2.14), the first equality (2.13)

will be satisfied by replacing the function ϕ by ϕ/
√|αm|.

Substituting expression (2.12) forϕ(t) in (2.14), we obtain a system of linear

equations for the unknowns cn,

n−1∑
k=1

(−dnkck)+dnncn+ +∞∑
k=n+1

(−dnkck)= γn, n= 1,2, . . . , (2.16)

with the coefficients

dnk :=K2
∫ uk
uk/2

ϕ2
k(t)∣∣(tm−λn)(tm−λn+1

)∣∣dt, (2.17)

γn :=
∫ −1

−∞
γ2(t)(|t|m+λn)(|t|m+λn+1

)dt. (2.18)

In the next section we show that the linear system (2.16) has a nonnegative

solution in the space l∞ of bounded sequences.

3. Solution of the linear system

Lemma 3.1. The coefficients dnk of the linear system (2.16) satisfy the fol-

lowing inequalities:

dnn ≥K2 C1

εmn um−3
n

, (3.1)

n−1∑
k=1

dnk ≤K2 C2

u2m
n−1

, (3.2)

+∞∑
k=n+1

dnk ≤K2C3u3
n+1

εmn εmn+1
, (3.3)

with some positive constants C1, C2, and C3.

Proof. For arbitrary a,b > 0 andm≥ 1, the following inequality obviously

holds:

|a−b|·max
{
am−1,bm−1}≤ ∣∣am−bm∣∣≤ |a−b|·max

{
am−1,bm−1}m. (3.4)
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Thus,

1
|a−b|·max

{
am−1,bm−1

}
m
≤ 1∣∣am−bm∣∣
≤ 1
|a−b|·max

{
am−1,bm−1

} . (3.5)

Using inequalities (3.5) and (2.10) with elementary estimates and a simple

change of variables x :=un−t, we get

dnn ≥K2
∫ un

3un/4

ω2
(
un−t

)
dt((

un+εn
)m−tm)·(tm−(un+1+εn+1

)m)
≥K2

∫ un
3un/4

ω2(un−t)dt
· 1((
un+εn

)m−(3un/4)m)·(umn −(un+1+εn+1
)m)

≥K2
∫ un/4

0
ω2(x)dx

· 1(
m
(
un+εn−(3/4)un

)(
un+εn

)m−1)·(m(un−un+1−εn+1
)
um−1
n

)
≥K2C2

ω
3

(
un
4

)3

· 1(
m
(
un/4+εn

)(
un+εn

)m−1)·(mumn )
≥K2C

u3
n(

un+εn
)m ·umn ≥K2 C1

εmn ·um−3
n

.

(3.6)

Inequality (3.2) is established analogously,

n−1∑
k=1

dnk =
n−1∑
k=1

K2
∫ uk
uk/2

ϕ2
k(t)dt(

tm−(un+εn)m)·(tm−(un+1+εn+1
)m)

≤K2
n−1∑
k=1

∫ uk
uk/2

ϕ2
k(t)dt((

un−1/2
)m−(un+εn)m)·((un−1/2

)m−(un+1+εn+1
)m)

≤K2
∫ u1

0

( +∞∑
k=1

ϕ2
k(t)

)
dt

1((
un−1/2−un−εn

)(
un−1/2

)m−1)
× 1((

un−1/2−un+1−εn+1
)(
un−1/2

)m−1)
≤K2C

1(
un−1/2−un−1/8−un−1/8

)2 ·(un−1/2
)2(m−1) ≤K2 C2

u2m
n−1

.

(3.7)
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We took into account that the functionsϕk(t) are uniformly bounded and have

disjoint supports, therefore
∫u1
0 (

∑+∞
k=1ϕ

2
k(t))dt ≤ C . Finally, we have

+∞∑
k=n+1

dnk

=K2
+∞∑

k=n+1

∫ uk
uk/2

ϕ2
k(t)dt((

un+εn
)m−tm)·((un+1+εn+1

)m−tm)
≤K2

+∞∑
k=n+1

∫ uk
uk/2

ϕ2
k(t)dt((

un+εn
)m−umn+1

)·((un+1+εn+1
)m−umn+1

)
≤K2

+∞∑
k=n+1

∫ uk
uk/2

ω2
(
uk−t

)
dt((

un+εn−un+1
)(
un+εn

)m−1
)
·
(
εn+1

(
un+1+εn+1

)m−1
)

≤K2
+∞∑

k=n+1

∫ uk
uk/2

ω2
(
un+1−t

)
dt((

un+εn−un/8
)(
un+εn

)m−1
)
·εn+1

(
un+1+εn+1

)m−1

≤K2
∫ un+1

0
ω2(un+1−t

)
dt

C(
un+εn

)m ·εn+1
(
un+1+εn+1

)m−1

≤K2u3
n+1

C3

εmn ·εmn+1
.

(3.8)

The lemma is proved.

We rewrite system (2.16) in matrix form

(I+A)	c = f , (3.9)

where the column vectors 	c = (c1,c2, . . .)T , f = (γ1/d11,γ2/d22, . . .)T , and the

infinite matrix A has the entries (A)nk = (δnk−1)·dnk/dnn. Equation (3.9) will

be considered in the Banach space l∞.

In the sequel, we consider the sequences un and εn defined as follows:

un =uαn−1, εn =uβn−1, n= 1,2, . . . , (3.10)

with some u0 ∈ (0;10−1) and α > β > 2. It is evident that inequality (2.10) is

fulfilled.

Lemma 3.2. For everym> 3/2, the numbersα and β can be found satisfying

the inequality α> β> 2 such that the following estimate:

dnn ≥K2C1 (3.11)

holds for all n= 1,2, . . . .
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Proof. Substituting (3.10) in (3.1), we get

dnn ≥K2 C1

uβm+α(m−3)
n−1

. (3.12)

As un−1 ∈ (0;1) form≥ 3, the assertion of the lemma is true with any α> β>
2. Now let m ∈ (3/2;3). Then, the inequality βm+α(m−3) > 0 is fulfilled if

α< βm/(3−m). It must be α> β> 2, therefore we require that βm/(3−m)>
β. As the last inequality holds for any β > 0, we can take form∈ (3/2;3) any

β > 2, α∈
(
β;

βm
(3−m)

)
. (3.13)

This completes the proof.

By (2.18), γn > 0, and

γn =
∫ −1

−∞

∣∣γ(t)∣∣2dt(|t|m+λn)(|t|m+λn+1
) ≤ ∫ −1

−∞

∣∣γ(t)∣∣2dt ≡ ‖γ‖2
2. (3.14)

Hence, for the l∞-norm of the vector f equal to ‖f‖∞ = supn(γn/dnn), we

obtain the following estimate:

‖f‖∞ ≤ ‖γ‖2
2

K2C1
. (3.15)

Lemma 3.3. For everym> 3/2, the numbersα and β can be found satisfying

the inequality α> β> 2 such that ‖A‖< 1 for all u0 small enough.

Proof. By the definition,

‖A‖ = sup
‖s‖∞=1

‖As‖∞ ≤ sup
‖s‖∞=1

sup
n

+∞∑
k=1

∣∣Anksk∣∣
≤ sup

n

∑
k

∣∣Ank∣∣= sup
n

∑
k≠n

dnk
dnn

= sup
n

n−1∑
k=1

dnk
dnn

+
+∞∑

k=n+1

dnk
dnn

.
(3.16)

Hence, it suffices to require that

S1 :=
(∑n−1

k=1 dnk
)

dnn
<

1
4
, S2 :=

(∑+∞
k=n+1dnk

)
dnn

<
1
4
. (3.17)
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Using (3.1), (3.2), (3.3), and (3.10), we get

S1 ≤ C2

C1
· ε
m
n um−3

n

u2m
n−1

= C2

C1
·uα(m−3)+(β−2)m

n−1 ,

S2 ≤ C3

C1
· u

m−3
n u3

n+1

εmn+1
= C3

C1
·u3α−mβ+m−3

n .

(3.18)

Thus, if there exist α> β> 2 such that

α(m−3)+(β−2)m> 0, 3α−mβ+m−3> 0, (3.19)

then

S1 ≤
(
C2

C1

)
·uα(m−3)+(β−2)m

0 , S2 ≤
(
C3

C1

)
·u3α−mβ+m−3

0 . (3.20)

Therefore, (3.17) will be true for all u0 small enough.

Let m ≥ 3. The first inequality in (3.19) holds for all α > β > 2. The second

one is true for α > (βm+3−m)/3. It follows that we can take any β > 2 and

α>max{β,(βm+3−m)/3} = (βm+3−m)/3. Note that this choice of α and

β is consistent with the choice made for m≥ 3 in Lemma 3.2.

Now let m∈ (3/2;3). Then, (3.19) is equivalent to

α<
(βm−2m)
(3−m) , α >

(βm+3−m)
3

. (3.21)

As it must be α> β, find β such that

(βm+3−m)
3

< β<
(βm−2m)
(3−m) . (3.22)

The inequality (βm+ 3−m)/3 < β is fulfilled for all β > 1. The inequality

β < (βm− 2m)/(3−m) is equivalent to β > 2m/(2m− 3). Hence, for m ∈
(3/2;3), we can take any β > max{2;2m/(2m−3)} = 2m/(2m−3) and α ∈
(β;(βm−2m)/(3−m)). We also see thatα and β satisfy (3.13). This completes

the proof.

By virtue of the inequality ‖A‖ < 1, equation (3.9) has a unique solution in

l∞,

	c = (I+A)−1f . (3.23)
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It is easily seen that all the components cn of the vector 	c = (c1,c2, . . .)T are

nonnegative. Indeed, fn = γn/dnn > 0 since, by (2.17) and (2.18), γn,dnn >
0. The Neumann series 	c = (I + (−A)+ (−A)2 + ···)f includes powers of a

matrix with nonnegative entries such that (−A)nk = (1−δnk) ·dnk/dnn ≥ 0

since dnk ≥ 0. Consequently, the vector 	c is obtained as a result of the action

of a matrix with nonnegative entries on a vector whose components are also

nonnegative.

4. Smoothness of the function ϕ. Introducing the convenient notations

u1
n :=un, u2

n := un
2
, ∆n := [u2

n;u1
n
]
,

∆2
n :=

[
u2
n;

(
u1
n+u2

n
)

2

]
, ∆1

n :=
[(
u1
n+u2

n
)

2
;u1
n

]
,

(4.1)

we can write (2.11) as follows:

ϕn(t) :=


ω
(
t−u2

n
)
, t ∈∆2

n,

ω
(
u1
n−t

)
, t ∈∆1

n,

0, t ∉∆n.

(4.2)

Lemma 4.1. Suppose that ω is monotone and semiadditive (and thus non-

negative). Then, the function

ψ(t) :=
+∞∑
k=1

(
ck
)1/2ϕk(t) (4.3)

satisfies the following smoothness condition:

∣∣ψ(t+h)−ψ(t)∣∣≤ sup
k

(
ck
)1/2ω

(|h|), t,h∈R. (4.4)

Inequality (4.4) remains true if {∆n}+∞n=1 is an arbitrary sequence of disjoint finite

intervals.

Proof. If t1 ∈ ∆n and t2 ∉ ∆n, then, as the intervals ∆k are disjoint for

different k, for some i∈ {1,2}, we have

ψ
(
t1
)= (cn)1/2 ·ω(∣∣t1−uin∣∣)≤ (cn)1/2 ·ω(∣∣t1−t2∣∣). (4.5)

Thus,

∣∣ψ(t2)−ψ(t1)∣∣≤max
{
ψ
(
t2
)
,ψ
(
t1
)}≤ sup

k

(
ck
)1/2 ·ω(∣∣t1−t2∣∣). (4.6)
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For t,δ > 0, ω(t + δ)−ω(t) ≤ ω(δ) according to the semiadditivity of ω.

Therefore, for t1, t2 ∈∆in, we obtain

∣∣ψ(t1)−ψ(t2)∣∣= (cn)1/2 ·∣∣ω(∣∣t1−uin∣∣)−ω(∣∣t2−uin∣∣)∣∣
≤ (cn)1/2 ·ω(∣∣t1−t2∣∣). (4.7)

Now, let t1 ∈∆in and t2 ∈∆jn, i≠ j. Assume that |t1−uin| ≥ |t2−ujn|, then

∣∣ψ(t1)−ψ(t2)∣∣= (cn)1/2 ·(ω(∣∣t1−uin∣∣)−ω(∣∣t2−ujn∣∣))
≤ (cn)1/2 ·(ω(∣∣t1−ujn∣∣)−ω(∣∣t2−ujn∣∣))
≤ (cn)1/2 ·ω(∣∣t1−t2∣∣).

(4.8)

The lemma is proved.

By (2.12), the functionϕ(t)=Kψ(t)+γ(t) where the function γ is assumed

to satisfy a Lipschitz condition |γ(t + h)− γ(t)| ≤ Cγ|h|, h ∈ R. Since the

functions ψ and γ have disjoint supports and ω(t) = Cωt, we see that the

following inequality:

∣∣ϕ(t+h)−ϕ(t)∣∣≤K sup
k

(
ck
)1/2 ·ω(|h|)+Cγ|h|

≤
(
K sup

k

(
ck
)1/2+ Cγ

Cω

)
ω
(|h|) (4.9)

holds for all t,h∈R.

After finding the solution of system (2.14), we satisfy (2.13) replacing the

function ϕ by ϕ/
√|αm|. This replacement corresponds to a passage from the

functions ψ and γ to ψ/
√|αm| and γ/

√|αm|, respectively. Therefore, for the

new function ϕ, the following smoothness condition will be fulfilled:

∣∣ϕ(t+h)−ϕ(t)∣∣≤
K sup

k

(
ck
)1/2∣∣αm∣∣−1/2+ Cγ

∣∣αm∣∣−1/2

Cω

ω(|h|), h∈R.

(4.10)

Lemma 4.2. The constant

M :=K sup
k

(
ck
)1/2∣∣αm∣∣−1/2+ Cγ

∣∣αm∣∣−1/2

Cω
, (4.11)

in the smoothness condition (4.10), satisfies the inequality M ≤ C/K, and hence,

it is less than one for all K large enough.
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Proof. Since

∣∣αm∣∣= ∫ +∞
−∞

ϕ2(t)∣∣sgnt ·|t|m−λ1

∣∣dt
≥K2

∫ 1

0

ψ2(t)
λ1−tm dt ≥K

2
∫ 1

0
ψ2(t)dt ≡K2‖ψ‖2

2,
(4.12)

it follows that |αm|−1/2 ≤ 1/(K‖ψ‖2). From (3.23), we obtain the inequality

‖	c‖∞ ≤
(
1−‖A‖)−1‖f‖∞. (4.13)

In view of relation (3.15), then

‖	c‖∞ ≤
(
1−‖A‖)−1 ‖γ‖2

2

K2C1
. (4.14)

Therefore, for the first summand in (4.11), we get

K sup
k

(
ck
)1/2∣∣αm∣∣−1/2 ≤K(1−‖A‖)−1/2 ‖γ‖2

KC1/2
1

· 1
K‖ψ‖2

≤ C
K
. (4.15)

Likewise, we find that

Cγ
∣∣αm∣∣−1/2

Cω
≤ Cγ
Cω

· 1
K‖ψ‖2

≤ C
K
. (4.16)

The lemma is proved.

As a result, the function ϕ satisfies the smoothness condition∣∣ϕ(t+h)−ϕ(t)∣∣≤ω(|h|), h∈R, (4.17)

for all K large enough. Theorem 1.1 is, thus, completely proved.
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