ON THE L_{w}^{2}-BOUNDEDNESS OF SOLUTIONS FOR PRODUCTS OF QUASI-INTEGRO DIFFERENTIAL EQUATIONS

SOBHY EL-SAYED IBRAHIM

Received 14 August 2001

Abstract

Given a general quasidifferential expressions $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ each of order n with complex coefficients and their formal adjoints are $\tau_{1}^{+}, \tau_{2}^{+}, \ldots, \tau_{n}^{+}$on $[0, b)$, respectively, we show under suitable conditions on the function F that all solutions of the product of the quasi-integrodifferential equation $\left[\prod_{j=1}^{n} \tau_{j}\right] y=w F\left(t, y, \int_{0}^{t} g(t, s\right.$, $\left.\left.y, y^{\prime}, \ldots, y^{\left(n^{2}-1\right)}(s)\right) d s\right)$ on $[0, b), 0<b \leq \infty ; t, s \geq 0$, are bounded and L_{w}^{2}-bounded on $[0, b)$. These results are extensions of those by the author (1994), Wong (1975), Yang (1984), and Zettl (1970, 1975).

2000 Mathematics Subject Classification: 34A05, 34C11, 34E15, 34G10, 47E05.

1. Introduction. In [8, 11, 15] Wong and Zettl proved that all solutions of a perturbed linear differential equation belong to $L^{2}(0, \infty)$ assuming the fact that all solutions of the unperturbed equation possess the same property. In [6] the author extends their results for a general quasidifferential expression τ of arbitrary order n with complex coefficients, and considered the property of boundedness of solutions of a general quasidifferential equation $\tau[y]-$ $\lambda w y=w f(t, y)$, where $\lambda \in \mathbb{C}$, on $[0, b), f(t, s)$ satisfies

$$
\begin{equation*}
|f(t, y)| \leq e_{1}(t)+r_{1}(t)|y|^{\sigma}, \quad t \in[0, b) \text { for some } \sigma \in[0,1] \tag{1.1}
\end{equation*}
$$

where $e_{1}(t)$ and $r_{1}(t)$ are nonnegative continuous functions on $[0, b)$.
Our objective in this paper is to extend the results in $[4,6,8,9,11,15]$ to more general class of quasi-integrodifferential equation in the form

$$
\begin{equation*}
\left[\prod_{j=1}^{n} \tau_{j}\right] y=w F\left(t, y, \int_{0}^{t} g\left(t, s, y, y^{\prime}, \ldots, y^{\left(n^{2}-1\right)}(s)\right) d s\right) \quad \text { on }[0, b), \tag{1.2}
\end{equation*}
$$

where $0<b \leq \infty ; t, s \geq 0$. Also, we prove under suitable condition on the function F that, if all solutions of the equations $\left(\prod_{j=1}^{n} \boldsymbol{\tau}_{j}\right) y=0$ and $\left(\prod_{j=1}^{n} \boldsymbol{\tau}_{j}^{+}\right) z=0$ belong to $L_{w}^{2}(0, b)$, then all solutions of (1.2) also belong to $L_{w}^{2}(0, b)$, where τ_{j}^{+} is the formal adjoint of $\tau_{j}, j=1,2, \ldots, n$.

We deal throughout this paper with a quasidifferential expression \boldsymbol{T}_{j} each of arbitrary order n defined by Shin-Zettl matrices (see [4, 13]) on the interval $I=[0, b)$. The left-hand end point of I is assumed to be regular but the righthand end point may be regular or singular.
2. Notation and preliminaries. The domain and range of a linear operator T acting in a Hilbert space H will be denoted by $D(T)$ and $R(T)$, respectively and $N(T)$ will denote its null space. The nullity of T, written $\operatorname{nul}(T)$, is the dimension of $N(T)$ and the deficiency of T, written $\operatorname{def}(T)$, is the codimension of $R(T)$ in H; thus if T is densely defined and $R(T)$ is closed, then $\operatorname{def}(T)=$ $\operatorname{nul}\left(T^{*}\right)$. The Fredholm domain of T is (in the notation of [2]) the open subset $\triangle_{3}(T)$ of \mathbb{C} consisting of those values of $\lambda \in \mathbb{C}$ which are such that $(T-\lambda I)$ is a Fredholm operator, where I is the identity operator in H. Thus $\lambda \in \triangle_{3}(T)$ if and only if $(T-\lambda I)$ has a closed range and a finite nullity and deficiency.

A closed operator A in a Hilbert space H has property (C), if it has closed range and $\lambda=0$ is not an eigenvalue, that is, there is some positive number r such that $\|A x\| \geq r\|x\|$ for all $x \in D(A)$.

Note that, property (C) is equivalent to $\lambda=0$ being a regular type point of A. This in turn is equivalent to the existence of A^{-1} as a bounded operator on the range of A (which need not be all of H).

Given two operators A and B, both acting in a Hilbert space H, we wish to consider the product operator $A B$. This is defined as follows

$$
\begin{equation*}
D(A B):=\{x \in D(B) \mid B x \in D(A)\}, \quad(A B) x=A(B x), \quad \forall x \in D(A B) . \tag{2.1}
\end{equation*}
$$

It may happen in general that $D(A B)$ contains only the null element of H. However, in the case of many differential operators, the domains of the product will be dense in H.

The next result gives conditions under which the deficiency of a product is the sum of the deficiencies of the factors.

Lemma 2.1 (cf. [4, Theorem A] and [12]). Let A and B be closed operators with dense domains in a Hilbert space H. Suppose that $\lambda=0$ is a regular type point for both operators and $\operatorname{def} A$ and $\operatorname{def} B$ are finite. Then $A B$ is a closed operator with dense domain, has $\lambda=0$ as a regular type point and

$$
\begin{equation*}
\operatorname{def} A B=\operatorname{def} A+\operatorname{def} B \tag{2.2}
\end{equation*}
$$

Evidently, Lemma 2.1 extends to the product of any finite number of operators $A_{1}, A_{2}, \ldots, A_{n}$.

We now turn to the quasidifferential expressions defined in terms of a ShinZettl matrix F on an interval I. The set $Z_{n}(I)$ of Shin-Zettl matrices on I consists of $n \times n$ matrices $P=\left\{p_{r s}\right\}, 1 \leq r, s \leq n$, whose entries are complex-valued
functions on I which satisfy the following conditions:

$$
\begin{align*}
& p_{r s} \in L_{\mathrm{loc}}^{1}(I) \quad(1 \leq r, s \leq n, n \geq 2), \\
& p_{r s} \neq 0 \quad \text { a.e. on } I(1 \leq r \leq n-1), \tag{2.3}\\
& p_{r s}=0 \quad \text { a.e. on } I(2 \leq r+1<s \leq n) .
\end{align*}
$$

For $P \in Z_{n}(I)$, the quasiderivatives associated with P are defined by

$$
\begin{align*}
& y^{[0]}:=y, \\
& y^{[r]}:=\left(p_{r, r+1}\right)^{-1}\left\{\left(y^{[r-1]}\right)^{\prime}-\sum_{s=1}^{r} p_{r s} y^{[s-1]}\right\} \quad(1 \leq r \leq n-1), \tag{2.4}\\
& y^{[n]}:=\left(y^{[n-1]}\right)^{\prime}-\sum_{s=1}^{n} p_{n s} y^{[s-1]},
\end{align*}
$$

where the prime ' denotes differentiation.
The quasidifferential expression τ associated with P is given by

$$
\begin{equation*}
\tau[y]:=i^{n} y^{[n]} \quad(n \geq 2) \tag{2.5}
\end{equation*}
$$

this being defined on the set

$$
\begin{equation*}
V(\tau):=\left\{y: y^{[r-1]} \in A C_{\mathrm{loc}}(I), r=1, \ldots, n\right\}, \tag{2.6}
\end{equation*}
$$

where $L_{\text {loc }}^{1}(I)$ and $A C_{\text {loc }}(I)$ denote, respectively, the spaces of complex-valued Lebesgue measurable functions on I which are locally integrable and locally absolutely continuous on every compact subinterval of I.

The formal adjoint τ^{+}of τ defined by the matrix $P^{+} \in Z_{n}(I)$ is given by

$$
\begin{align*}
\tau^{+}[z] & :=i^{n} z^{[n]} \quad \forall y \in V\left(\tau^{+}\right), \\
V\left(\tau^{+}\right) & :=\left\{z: z_{+}^{[r-1]} \in A C_{\mathrm{loc}}(I), r=1, \ldots, n\right\}, \tag{2.7}
\end{align*}
$$

where $z_{+}^{[r-1]}, r=1,2, \ldots, n$, are the quasiderivatives associated with the matrix P^{+},

$$
\begin{equation*}
P^{+}=\left\{p_{r s}^{+}\right\}=(-1)^{r+s+1} \bar{p}_{n-s+1, n-r+1} \quad \text { for each } r, s ; 1 \leq r, s \leq n . \tag{2.8}
\end{equation*}
$$

Note that $\left(P^{+}\right)^{+}=P$ and so $\left(\tau^{+}\right)^{+}=\tau$. We refer to $[2,3,6,7,13]$ for a full account of the above and subsequent results on quasidifferential expressions.

Let the interval I have end points $a, b(-\infty \leq a<b \leq \infty)$, and let $w: I \rightarrow \mathbb{R}$ be a nonnegative weight function with $w \in L_{\mathrm{loc}}^{1}(I)$ and $w(x)>0$ (for almost
all $x \in I)$. Then $H=L_{w}^{2}(I)$ denotes the Hilbert function space of equivalence classes of Lebesgue measurable functions such that $\int_{I} w|f|^{2}<\infty$; the innerproduct is defined by

$$
\begin{equation*}
(f, g):=\int_{I} w(x) f(x) \overline{g(x)} d x \quad\left(f, g \in L_{w}^{2}(I)\right) . \tag{2.9}
\end{equation*}
$$

The equation

$$
\begin{equation*}
\tau[y]-\lambda w y=0 \quad(\lambda \in \mathbb{C}) \text { on } I \tag{2.10}
\end{equation*}
$$

is said to be regular at the left end point $a \in \mathbb{R}$, if for all $X \in(a, b), a \in \mathbb{R}$; $w, p_{r s} \in L^{1}[a, X],(r, s=1, \ldots, n)$. Otherwise (2.10) is said to be singular at a. If (2.10) is regular at both end points, then it is said to be regular; in this case we have,

$$
\begin{equation*}
a, b \in \mathbb{R}, \quad w, p_{r s} \in L^{1}(a, b), \quad(r, s=1, \ldots, n) \tag{2.11}
\end{equation*}
$$

We will be concerned with the case when a is a regular end point of (2.10), the end point b being allowed to be either regular or singular. Note that, in view of (2.8), an end point of I is regular for (2.10), if and only if it is regular for the equation

$$
\begin{equation*}
\tau^{+}[z]-\bar{\lambda} w z=0 \quad(\lambda \in \mathbb{C}) \text { on } I . \tag{2.12}
\end{equation*}
$$

Note that, at a regular end point $a, y^{[r-1]}(a)\left(z_{+}^{[r-1]}(a)\right), r=1, \ldots, n$, is defined for all $u \in V(\tau)\left(v \in V\left(\tau^{+}\right)\right)$. Set

$$
\begin{align*}
D(\tau) & :=\left\{y: y \in V(\tau), y, w^{-1} \tau[y] \in L_{w}^{2}(a, b)\right\}, \\
D\left(\tau^{+}\right) & :=\left\{z: z \in V\left(\tau^{+}\right), z, w^{-1} \tau^{+}[z] \in L_{w}^{2}(a, b)\right\} . \tag{2.13}
\end{align*}
$$

The subspaces $D(\tau)$ and $D\left(\tau^{+}\right)$of $L_{w}^{2}(a, b)$ are domains of the so-called maximal operators $T(\tau)$ and $T\left(\tau^{+}\right)$, respectively, defined by

$$
\begin{align*}
T(\tau) y & :=w^{-1} \tau[y] \quad(y \in D(\tau)), \\
T\left(\tau^{+}\right) z & :=w^{-1} \tau^{+}[z], \quad\left(z \in D\left(\tau^{+}\right)\right) . \tag{2.14}
\end{align*}
$$

For the regular problem, the minimal operators $T_{0}(\boldsymbol{\tau})$ and $T_{0}\left(\boldsymbol{\tau}^{+}\right)$are the restrictions of $w^{-1} \tau[y]$ and $w^{-1} \boldsymbol{\tau}^{+}[z]$ to the subspaces

$$
\begin{align*}
D_{0}(\tau) & :=\left\{y: y \in D(\tau), y^{[r-1]}(a)=y^{[r-1]}(b)=0, r=1, \ldots, n\right\}, \\
D_{0}\left(\tau^{+}\right) & :=\left\{z: z \in D\left(\tau^{+}\right), z_{+}^{[r-1]}(a)=z_{+}^{[r-1]}(b)=0, r=1, \ldots, n\right\}, \tag{2.15}
\end{align*}
$$

respectively. The subspaces $D_{0}(\boldsymbol{\tau})$ and $D_{0}\left(\tau^{+}\right)$are dense in $L_{w}^{2}(a, b)$, and $T_{0}(\tau)$ and $T_{0}\left(\tau^{+}\right)$are closed operators (see [2, 3, 6] and [13, Section 3]).

In the singular problem, we first introduce the operators $T_{0}^{\prime}(\boldsymbol{\tau})$ and $T_{0}^{\prime}\left(\tau^{+}\right)$; $T_{0}^{\prime}(\tau)$ being the restriction of $w^{-1} \tau[\cdot]$ to the subspace

$$
\begin{equation*}
D_{0}^{\prime}(\tau):=\{y: y \in D(\tau), \text { supp } y \subset(a, b)\} \tag{2.16}
\end{equation*}
$$

and with $T_{0}^{\prime}\left(\tau^{+}\right)$defined similarly. These operators are densely defined and closable in $L_{w}^{2}(a, b)$, and we defined the minimal operators $T_{0}(\tau), T_{0}\left(\tau^{+}\right)$to be their respective closures (see [2] and [13, Section 5]). We denote the domains of $T_{0}(\tau)$ and $T_{0}\left(\tau^{+}\right)$by $D_{0}(\tau)$ and $D_{0}\left(\tau^{+}\right)$, respectively. It can be shown that

$$
\begin{align*}
& y \in D_{0}(\tau) \Rightarrow y^{[r-1]}(a)=0 \quad(r=1, \ldots, n), \\
& z \in D_{0}\left(\tau^{+}\right) \Rightarrow z_{+}^{[r-1]}(a)=0 \quad(r=1, \ldots, n), \tag{2.17}
\end{align*}
$$

because we are assuming that a is a regular end point. Moreover, in both regular and singular problems, we have

$$
\begin{equation*}
T_{0}^{*}(\boldsymbol{\tau})=T\left(\boldsymbol{\tau}^{+}\right), \quad T^{*}(\boldsymbol{\tau})=T_{0}\left(\boldsymbol{\tau}^{+}\right), \tag{2.18}
\end{equation*}
$$

see [13, Section 5] in the case when $\boldsymbol{\tau}=\boldsymbol{\tau}^{+}$and compare it with treatment in [2, Section III.10.3] and [3] in general case.
3. Some technical lemmas. The proof of the general theorem is based on the results in this section. We start by listing some properties and results of quasi-differential expressions $\tau_{1}, \boldsymbol{\tau}_{2}, \ldots, \boldsymbol{\tau}_{n}$ each of order n. For proofs, the reader is referred to $[4,12,13,14]$.

$$
\begin{gather*}
\left(\tau_{1}+\tau_{2}\right)^{+}=\tau_{1}^{+}+\tau_{2}^{+}, \\
\left(\tau_{1} \tau_{2}\right)^{+}=\tau_{2}^{+} \tau_{1}^{+}, \quad(\lambda \tau)^{+}=\bar{\lambda} \tau^{+}, \quad \text { for } \lambda \text { is a complex number } . \tag{3.1}
\end{gather*}
$$

A consequence of properties (3.1) is that if $\tau^{+}=\tau$, then $P(\tau)^{+}=P\left(\tau^{+}\right)$for P is any polynomial with complex coefficients. Also we note that the leading coefficients of a product is the product of the leading coefficients. Hence the product of regular differential expressions is regular.

Lemma 3.1 (cf. [4, Theorem 1]). Suppose that τ_{j} is a regular differential expression on the interval $[0, b]$ such that the minimal operator $T_{0}\left(\tau_{j}\right)$ has property (C) for $j=1,2, \ldots, n$. Then
(i) the product operator $\prod_{j=1}^{n}\left[T_{0}\left(\tau_{j}\right)\right]$ is closed and has dense domain, property (C), and

$$
\begin{equation*}
\operatorname{def}\left[\prod_{j=1}^{n} T_{0}\left(\boldsymbol{\tau}_{j}\right)\right]=\sum_{j=1}^{n} \operatorname{def}\left[T_{0}\left(\boldsymbol{\tau}_{j}\right)\right] \tag{3.2}
\end{equation*}
$$

(ii) the operators $T_{0}\left(\tau_{1} \boldsymbol{\tau}_{2} \cdots \tau_{n}\right)$ and $\prod_{j=1}^{n}\left[T_{0}\left(\boldsymbol{\tau}_{j}\right)\right]$ are not equal in general, that is, $\left[T_{0}\left(\tau_{1} \tau_{2} \cdots \tau_{n}\right)\right] \subseteq \prod_{j=1}^{n}\left[T_{0}\left(\tau_{j}\right)\right]$.

Lemma 3.2 (cf. [4, Theorem 2]). Let $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ be regular differential expressions on $[0, b]$. Suppose that $T_{0}\left(\tau_{j}\right)$ satisfies property (C) for $j=1,2, \ldots, n$. Then

$$
\begin{equation*}
T_{0}\left(\boldsymbol{\tau}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}\right)=\prod_{j=1}^{n} T_{0}\left(\boldsymbol{\tau}_{j}\right) \tag{3.3}
\end{equation*}
$$

if and only if the following partial separation condition is satisfied:

$$
\begin{equation*}
\left\{f \in L_{w}^{2}(a, b), f^{[s-1]} \in A C_{\mathrm{loc}}[a, b)\right\}, \tag{3.4}
\end{equation*}
$$

where s is the order of product expression $\left(\boldsymbol{\tau}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}\right)$ and $\left(\boldsymbol{\tau}_{1} \boldsymbol{T}_{2} \cdots \boldsymbol{\tau}_{n}\right)^{+} f \in$ $L_{w}^{2}(a, b)$ together imply that $\left(\prod_{j=1}^{k}\left(\tau_{j}^{+}\right)\right) f \in L_{w}^{2}(a, b), k=1, \ldots, n-1$.

Furthermore, $T_{0}\left(\boldsymbol{\tau}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}\right)=\prod_{j=1}^{n} T_{0}\left(\boldsymbol{\tau}_{j}\right)$ if and only if

$$
\begin{equation*}
\operatorname{def}\left[T_{0}\left(\boldsymbol{\tau}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}\right)\right]=\sum_{j=1}^{n} \operatorname{def}\left[T_{0}\left(\boldsymbol{\tau}_{j}\right)\right] \tag{3.5}
\end{equation*}
$$

then the product ($\boldsymbol{\tau}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}$) is partially separated expressions in $L_{w}^{2}(0, b)$ whenever property (3.4) holds.

Lemma 3.3 (cf. [4, Corollary 1]). Let τ_{j} be a regular differential expression on $[0, b]$ for $j=1, \ldots, n$. If all solutions of the differential equations $\left(\boldsymbol{\tau}_{j}\right) y=0$ and $\left(\tau_{j}^{+}\right) z=0$ on $[0, b]$ are in $L_{w}^{2}(0, b)$ for $j=1, \ldots, n$, then all solutions of $\left(\tau_{1} \tau_{2} \cdots \tau_{n}\right) y=0$ and $\left(\tau_{1} \tau_{2} \cdots \tau_{n}\right)^{+} z=0$ are in $L_{w}^{2}(0, b)$.

The special case of Lemma 3.3 when $\tau_{j}=\tau$ for $j=1,2, \ldots, n$ and τ is symmetric was established in [14]. In this case, it is easy to see that the converse also holds. If all solutions of $\tau^{n} u=0$ are in $L_{w}^{2}(0, b)$, then all solutions of $\tau y=0$ must be in $L_{w}^{2}(0, b)$. In general, if all solutions of $\left(\tau_{1} \boldsymbol{\tau}_{2} \cdots \tau_{n}\right) y=0$
are in $L_{w}^{2}(0, b)$, then all solutions of $\tau_{n} y=0$ are in $L_{w}^{2}(0, b)$ since these also the solutions of $\left(\tau_{1} \tau_{2} \cdots \tau_{n}\right) y=0$. If all solutions of the adjoints equation $\left(\boldsymbol{T}_{1} \boldsymbol{\tau}_{2} \cdots \boldsymbol{\tau}_{n}\right)^{+} \boldsymbol{z}=0$ are also in $L_{w}^{2}(0, b)$, then it follows similarly that all solutions of $\tau_{1}^{+} z=0$ are in $L_{w}^{2}(0, b)$. So, in particular, for $n=2$ we have established the following lemma.

Lemma 3.4. Suppose that τ_{1}, τ_{2}, and $\tau_{1} \tau_{2}$ are all regular expressions on $[0, b]$. Then the product is in the maximal deficiency case at b if and only if both τ_{1}, τ_{2} are in the maximal deficiency case at b, see [4, Corollary 2] for more details.

Denote by $S(\tau)$ and $S\left(\tau^{+}\right)$the sets of all solutions of the equations

$$
\begin{equation*}
\left(\prod_{j=1}^{n} \tau_{j}\right) y=0, \quad\left(\prod_{j=1}^{n} \tau_{j}^{+}\right) z=0 \tag{3.6}
\end{equation*}
$$

respectively. Let $\phi_{k}(t), k=1,2, \ldots, n^{2}$, denote the solutions of the homogeneous equation $\left(\prod_{j=1}^{n} \boldsymbol{\tau}_{j}\right) y=0$ determined by the initial conditions

$$
\begin{equation*}
\phi_{k}^{[r]}\left(t_{0}\right)=\delta_{k, r+1} \quad \forall t_{0} \in[0, b] \tag{3.7}
\end{equation*}
$$

(where $k=1,2, \ldots, n^{2} ; r=0,1, \ldots, n^{2}-1$). Let $\phi_{k}^{+}(t), k=1,2, \ldots, n^{2}$, denote the solutions of the homogeneous equation $\left(\prod_{j=1}^{n} \tau_{j}^{+}\right) z=0$ determined by the initial conditions

$$
\begin{equation*}
\left(\phi_{k}^{+}\right)^{[r]}\left(t_{0}\right)=(-1)^{k+r} \delta_{k, n^{2}-r} \quad \forall t_{0} \in[0, b], \tag{3.8}
\end{equation*}
$$

where $k=1,2, \ldots, n^{2} ; r=0,1, \ldots, n^{2}-1$.
Remark 3.5. If all solutions $\phi_{k}(t), \phi_{k}^{+}(t), k=1,2, \ldots, n^{2}$, of $\left(\prod_{j=1}^{n} \boldsymbol{\tau}_{j}\right) y=0$ and $\left(\prod_{j=1}^{n} \tau_{j}^{+}\right) z=0$, respectively are bounded (L_{w}^{2}-bounded) on $[0, b)$, then $S(\boldsymbol{\tau})$ and $S\left(\tau^{+}\right)$are bounded (L^{2}-bounded) and hence $S(\tau) \cup S\left(\tau^{+}\right)$is bounded (L^{2}-bounded) on [0,b); see [6] and [7, Lemmas 3.4 and 3.5].

The next lemma is a form of the variation of parameters formula of a general quasidifferential equation, see [6, Section 3] and [7, 13].

Lemma 3.6. For f locally integrable, the solution ϕ of the quasidifferential equation

$$
\begin{equation*}
\left(\prod_{j=1}^{n} \tau_{j}\right) y=w f \quad \text { on }[0, b) \tag{3.9}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\phi^{[r]}\left(t_{0}\right)=\alpha_{r+1} \quad \forall t_{0} \in[0, b), r=0,1, \ldots, n^{2}-1 \tag{3.10}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\phi(t)=\sum_{j=1}^{n^{2}} \alpha_{j} \phi_{j}(t)+\frac{1}{i^{n^{2}}} \sum_{j, k=1}^{n^{2}} \zeta^{j k} \phi_{j}(t) \int_{t_{0}}^{t} \overline{\phi_{k}^{+}(s)} f(s) w(s) d s \tag{3.11}
\end{equation*}
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n^{2}} \in \mathbb{C}$, where $\phi_{j}(t)$ and $\phi_{k}^{+}(t), j, k=1,2, \ldots, n^{2}$, are solutions of the equations in (3.6), respectively, $\zeta^{j k}$ is a constant which is independent of t.

In the sequel, we will require the following nonlinear integral inequality which generalizes those integral inequalities used in [1, 5, 9, 10].

Lemma 3.7 (cf. [5, 10]). Let $u(t), v(t), f(t, s), g_{i}(t, s)$, and $h_{i}(t, s) \quad(i=$ $1,2, \ldots, n^{2}$) be nonnegative continuous functions defined on the interval I and $I \times I$, respectively, here $I=(0, c), 0<c \leq \infty$, with their ranges in \mathbb{R}^{+}. Let $v(t)$ be nondecreasing on I, and $f(t, s), g_{i}(t, s)$, and $h_{i}(t, s),\left(i=1,2, \ldots, n^{2}\right)$ be nondecreasing in t for each $s \in I$ fixed. Suppose that the inequality

$$
\begin{equation*}
u(t) \leq v(t)+\int_{0}^{t} f(t, s) u(s) d s+\sum_{j=1}^{n^{2}} \int_{0}^{t} g_{i}(t, s)\left[\int_{0}^{s} h_{i}(t, s)[u(\tau)]^{\sigma} d \tau\right] d s \tag{3.12}
\end{equation*}
$$

holds for all $t \in I$, where $\sigma \in(0,1]$ is constant. Then
(i) if $0<\sigma<1$,

$$
\begin{equation*}
u(t) \leq\left[[v(t) F(t)]^{1-\sigma}+(1-\sigma) \sum_{i=1}^{n^{2}} G_{i}(t) F(t) \int_{0}^{t} h_{i}(t, s) d s\right]^{1 /(1-\sigma)}, \quad t \in I \tag{3.13}
\end{equation*}
$$

(ii) if $\sigma=1$,

$$
\begin{equation*}
u(t) \leq v(t) \exp \int_{0}^{t}\left[f(t, s)+\sum_{i=1}^{n^{2}} G_{i}(t) F(t) h_{i}(t, s)\right] d s \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
F(t)=\exp \int_{0}^{t} f(t, s) d s, \quad G_{i}(t)=\int_{0}^{t} g_{i}(s) d s, \quad i=1,2, \ldots, n^{2} . \tag{3.15}
\end{equation*}
$$

Corollary 3.8 (cf. [9, 10]). Let $u(t), f_{1}(t), f_{2}(t), g_{1}(t, s)$, and $g_{2}(t, s)$ be nonnegative continuous functions defined on the intervals $I=[0, b)$ and $I \times I$,
respectively. Suppose that the inequality

$$
\begin{align*}
u(t) \leq & C+\int_{0}^{t} f_{1}(s) u(s) d s+\int_{0}^{t} f_{2}(s) u^{\sigma}(s) d s \tag{3.16}\\
& +\int_{0}^{t}\left(\int_{0}^{s} g_{1}(s, x) u(x) d x\right)+\int_{0}^{t}\left(g_{2}(s, x) u^{\sigma}(x)\right) d s
\end{align*}
$$

holds for all $t \in[0, b)$, where $\sigma \in(0,1]$ and C is constant. Then

$$
\begin{align*}
u(t) \leq & {\left[C^{(1-p)}+(1-\sigma)\right.} \\
& \times \int_{0}^{t}\left[f_{2}(s)+\int_{0}^{s} g_{2}(s, x) d x\right] \\
& \left.\quad \times \exp \left[(1-\sigma) \int_{0}^{s}\left[f_{1}(\tau)+\int_{0}^{s} g_{1}(\tau, x) d x\right] d \tau\right] d s\right]^{1 /(1-p)} \tag{3.17}\\
& \times \exp \left(\int_{0}^{t}\left[f_{1}(s)+\int_{0}^{s} g_{1}(s, x) d x\right] d s\right)
\end{align*}
$$

4. Boundedness of solutions. In this section, we consider the question of determining conditions under which all solutions of (1.2) are bounded and L_{w}^{2}-bounded.

Suppose there exist nonnegative continuous functions $e_{1}(t), e_{2}(t), e_{3}(t)$, $r_{1}(t), r_{2}(t), K_{0}(t, s)$, and $K_{i}(t-s)$ on $[0, b), 0<b \leq \infty ; i=1,2, \ldots, n^{2}-1$ such that,
for $t, s \geq 0$ and some $\sigma \in[0,1]$; see $[5,9,10]$.
Theorem 4.1. Suppose that (4.1) is satisfied with $\sigma=1, S(\tau) \cup S\left(\tau^{+}\right)$is bounded on $[0, b)$, and that
(a) $k_{i}^{(\ell)}(0)=0$ for all $\ell=0,1, \ldots, i-1 ; i=1,2, \ldots, n^{2}-1$,
(b) $e_{1}(t), r_{1}(t)$, and $r_{2} k_{i}^{(\ell)}(t) \in L_{w}^{1}(0, b), \ell=0,1, \ldots, i-1 ; i=1,2, \ldots, n^{2}-1$,
(c) the following integrals are bounded at $t \rightarrow b$,
(i) $\int_{0}^{t} r_{2}(s)\left(\int_{0}^{s}\left[e_{2}(x)+e_{3}(x)\right] d x\right) w(s) d s$,
(ii) $\int_{0}^{t} r_{2}(s)\left(\int_{0}^{s} K_{0}(s, x) d x\right) w(s) d s$,
(iii) $\int_{0}^{t} r_{2}(s)\left(\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\left(\partial^{i} / \partial x^{i}\right) K_{i}(s-x)\right| d x\right) w(s) d s$.

Then all solutions of (1.2) are also bounded on $[0, b)$.
Proof. Note that (4.1) implies that all solutions are defined on $[0, b)$. Let $\left\{\phi_{1}(t), \ldots, \phi_{n^{2}}(t)\right\}$ and $\left\{\phi_{1}^{+}(t), \ldots, \phi_{n^{2}}^{+}(t)\right\}$ be two sets of linearly independent solutions of the equations in (3.6), respectively, and let $\phi(t)$ be any solution of (1.2) on [0,b), then by Lemma 3.6, we have

$$
\begin{equation*}
\phi(t)=\sum_{j=1}^{n^{2}} \alpha_{j} \phi_{j}(t)+\frac{1}{i^{n^{2}}} \sum_{j, k=1}^{n^{2}} \zeta^{j k} \phi_{j}(t) \int_{0}^{t} \overline{\phi_{k}^{+}(s)} F(s) w(s) d s \tag{4.2}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& |\phi(t)| \leq \sum_{j=1}^{n^{2}}\left|\alpha_{j}\right|\left|\phi_{j}(t)\right| \\
& \quad+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
& \quad \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[e_{1}(s)+r_{1}(s)|\phi(s)|\right. \\
& +r_{2}(s)\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)+K_{0}(s, x)|\phi(x)|\right] d x\right. \\
& \tag{4.3}\\
& \left.\left.\quad+\left|\int_{0}^{s} \sum_{i=1}^{n^{2}-1} K_{i}(s-x) \phi^{(i)}(x) d x\right|\right]\right] w(s) d s .
\end{align*}
$$

Since $\phi_{k}^{+}(t)$ is bounded on $[0, b), k=1, \ldots, n^{2}$, and $e_{1}(t) \in L_{w}^{1}(0, b)$, then $\phi_{k}^{+}(t) e_{1}(t) \in L_{w}^{1}(0, b), k=1,2, \ldots, n^{2}$. Setting

$$
\begin{equation*}
C_{k}=\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right| e_{1}(s) w(s) d s, \tag{4.4}
\end{equation*}
$$

and integrating the last integral in (4.3) by parts, we have

$$
\begin{align*}
& \sum_{i=1}^{n^{2}-1} \int_{0}^{s} K_{i}(s-x) \phi^{(i)}(x) d x \tag{4.5}\\
& \quad=\sum_{\ell=0}^{i-1}(-1)^{\ell+1} K_{i}^{(\ell)}(s) \phi^{(i-1-\ell)}(0)+(-1)^{i} \int_{0}^{s} \frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x) \phi(x) d x,
\end{align*}
$$

where $K_{i}^{(\ell)}(0)=0$ for all $\ell=0,1, \ldots, i-1 ; i=1,2, \ldots, n^{2}-1$. Then (4.3) becomes

$$
\begin{align*}
& |\phi(t)| \leq \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
& +\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
& \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{1}(s)|\phi(s)|\right. \\
& +r_{2}(s)\left(\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)+K_{0}(s, x)|\phi(x)|\right] d x\right. \\
& +\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s)\right|\left|\phi^{(i-1-\ell)}(0)\right| \\
& \left.\left.+\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right||\phi(x)| d x\right)\right] w(s) d s, \tag{4.6}
\end{align*}
$$

where $\left|\phi^{(i-1-\ell)}(0)\right| \leq \beta$ for all $\ell=0,1, \ldots, i-1 ; i=0, \ldots, n^{2}-1$. Let

$$
\begin{align*}
h(t)= & \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
& +\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{2}(s)\right.
\end{aligned} \quad\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right] \text {. } \quad \begin{aligned}
\left.\left.\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s)\right| \beta\right]\right] w(s) d s .
\end{align*}
$$

Then (4.6) becomes
$|\phi(t)| \leq h(t)$

$$
\left.\left.\begin{array}{l}
+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
\times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{1}(s)|\phi(s)|\right. \\
\\
\quad+r_{2}(s)\left[\int_{0}^{s} K_{0}(s, x)|\phi(x)| d x\right. \tag{4.8}\\
\end{array} \quad+\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right||\phi(x)| d x\right]\right] w(s) d s .
$$

From our assumptions and conditions (i) and (ii), it follows that $h(t)$ is bounded on $[0, b)$. Applying Lemma 3.7 with $\sigma=1$, we obtain

$$
\begin{align*}
& |\phi(t)| \\
& \leq h(t) \exp \left\{\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right|\right. \\
& \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{1}(s)+r_{2}(s)\left[\int _ { 0 } ^ { s } \left[K_{0}(s, x)\right.\right.\right. \\
& \left.\left.\left.\left.+\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right|\right] d x\right]\right] w(s) d s\right\}, \tag{4.9}
\end{align*}
$$

and hence our assumptions and conditions (i), (ii), and (iii) yield that $\phi(t)$ is bounded on $[0, b)$.

Theorem 4.2. Suppose that $S(\tau) \cup S\left(\tau^{+}\right) \subset L_{w}^{2}(0, b)$ with $\sigma=1$, and that
(i) $r_{1}(t)$ and $r_{2}(t)$ are bounded on $[0, b)$,
(ii) $e_{1}(s)$ and $K_{i}^{(\ell)}(s) \in L_{w}^{2}(0, b)$ for all $\ell=0,1, \ldots, i-1 ; i=1,2, \ldots, n^{2}-1$,
(iii) $\int_{0}^{t}\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right]^{2} w(s) d s<\infty$,
(iv) $\int_{0}^{t}\left[\int_{0}^{s}\left[(1 / w)\left(K_{0}^{2}(s, x)\right)+\left[\sum_{i=1}^{n^{2}-1}\left|\left(\partial^{i} / \partial x^{i}\right) K_{i}(s-x)\right|\right]^{2}\right] d x\right] w(s) d s<\infty$.

Then all solutions of (1.2) are in $L_{w}^{2}(0, b)$.
Proof. The proof is the same up to (4.5), since $\phi_{k}^{+}(s), e_{1}(s) \in L_{w}^{2}(0, b)$ (see Lemma 3.3), then $\phi_{k}^{+}(s) e_{1}(s) \in L_{w}^{1}(0, b), k=1,2, \ldots, n^{2}$, for all $s \in(0, b)$. By using (4.4) and applying the Cauchy-Schwartz inequality to the integral in (4.6), we have

$$
\begin{aligned}
&|\phi(t)| \leq \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
&+ \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
& \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right| {\left[\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|^{2} r_{1}^{2}(s) w(s) d s\right)^{1 / 2}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{1 / 2}\right.} \\
&+\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|^{2} r_{2}^{2}(s) w(s) d s\right)^{1 / 2} \\
& \times\left\{\left(\int_{0}^{t}\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right]^{2} w(s) d s\right)^{1 / 2}\right. \\
&+\left(\int_{0}^{t}\left[\int_{0}^{s} K_{0}(s, x)|\phi(x)| d x\right]^{2} w(s) d s\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{align*}
& +\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{[\ell]}(s) \beta\right|\right]^{2} w(s) d s\right)^{1 / 2} \\
& \left.\left.+\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x) \phi(x)\right| d x\right]^{2} w(s) d s\right)^{1 / 2}\right\}\right] \tag{4.10}
\end{align*}
$$

Since $r_{1}(s), r_{2}(s)$ are bounded on $[0, b)$ and $\phi_{k}^{+}(s) \in L_{w}^{2}(0, b)$, then $\phi_{k}^{+}(s) r_{1}(s)$, $\phi_{k}^{+}(s) r_{2}(s) \in L_{w}^{2}(0, b) ; k=1,2, \ldots, n^{2}$ for all $s \in[0, b)$ and hence there exist positive constants ζ_{1}, ζ_{2} such that

$$
\begin{equation*}
\left\|\phi_{k}^{+}(s) r_{i}(s)\right\|_{L_{w}^{2}(0, b)} \leq \xi_{i} \quad \forall k=1,2, \ldots, n^{2} ; i=1,2 \tag{4.11}
\end{equation*}
$$

Therefore (4.10) becomes
$|\phi(t)|$

$$
\begin{align*}
& \leq \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
&+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right|\left[\xi_{1}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{1 / 2}\right. \\
&+ \xi_{2}\left\{\left(\int_{0}^{t}\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right]^{2} w(s) d s\right)^{1 / 2}\right. \\
&+\left(\int_{0}^{t}\left[\int_{0}^{s} K_{0}(s, x)|\phi(x)| d x\right]^{2} w(s) d s\right)^{1 / 2} \\
&+\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s) \beta\right|\right]^{2} w(s) d s\right)^{1 / 2} \\
&\left.\left.+\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x) \phi(x)\right| d x\right]^{2} w(s) d s\right)^{1 / 2}\right\}\right] \tag{4.12}
\end{align*}
$$

Let

$$
\begin{align*}
& h(t)=\sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
&+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| {\left[\xi_{2}\left(\int_{0}^{t}\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right]^{2} w(s) d s\right)^{1 / 2}\right.} \\
&\left.+\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s) \beta\right|\right]^{2} w(s) d s\right)^{1 / 2}\right] \tag{4.13}
\end{align*}
$$

then

$$
\begin{align*}
|\phi(t)| \leq & h(t)+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
\times & {\left[\xi_{1}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{1 / 2}\right.} \\
& +\xi_{2}\left\{\left(\int_{0}^{t}\left[\int_{0}^{s} K_{0}(s, x)|\phi(x)| d x\right]^{2} w(s) d s\right)^{1 / 2}\right. \\
& \left.\left.+\left(\int_{0}^{t}\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x) \phi(x)\right| d x\right]^{2} w(s) d s\right)^{1 / 2}\right\}\right] \tag{4.14}
\end{align*}
$$

Applying the Cauchy-Schwartz inequality and squaring both sides of (4.1), we have

$$
\begin{align*}
|\phi(t)|^{2} \leq & 2 h^{2}(t) \\
& +4 \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right|^{2} \\
& \times\left[\xi_{1}^{2}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)\right. \\
& +\xi_{2}^{2} \int_{0}^{t}\left(\int_{0}^{s} \frac{1}{w}\left(K_{0}^{2}(s, x)+\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right| d x\right]^{2}\right) d x\right) \\
& \left.\times\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)\right] . \tag{4.15}
\end{align*}
$$

If $u(t)=\int_{0}^{t}|\phi(s)|^{2} w(s) d s$, then

$$
\begin{align*}
u(t) \leq & 2 \int_{0}^{t} h^{2}(s) w(s) d s \\
& +4 \xi_{1}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right| \int_{0}^{t}\left|\phi_{j}(s)\right|^{2} w(s) d s \\
& +4 \xi_{2}^{2} \sum_{j, k=1}^{n^{2}} \zeta^{j k} \int_{0}^{t}\left|\phi_{j}(s)\right|^{2} \\
& \times\left[\int_{0}^{s}\left(\int_{0}^{\tau} \frac{1}{w}\left(K_{0}^{2}(s, x)+\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right|\right]^{2}\right) d x\right)\right. \\
& \times u(\tau) w(\tau) d \tau] w(s) d s \tag{4.16}
\end{align*}
$$

From conditions (ii) and (iii), it follows that the integral $\int_{0}^{t} h^{2}(s) w(s) d s$ will be finite and by using Lemma 3.7, we obtain

$$
\begin{align*}
& u(t) \leq\left(2 \int_{0}^{t} h^{2}(s) w(s) d s\right) \\
& \quad \times \exp \left\{4 \xi_{1}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right| \int_{0}^{t}\left|\phi_{j}(s)\right|^{2} w(s) d s\right. \\
& \quad+4 \xi_{1}^{2} \sum_{j, k=1}^{n^{2}} \zeta^{j k} \int_{0}^{t}\left|\phi_{j}(s)\right|^{2} \\
& \\
& \quad \times\left[\int_{0}^{s}\left(\int_{0}^{\tau} \frac{1}{w}\left(K_{0}^{2}(s, x)+\left[\sum_{i=1}^{n^{2}-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right|\right]^{2}\right) d x\right)\right. \tag{4.17}\\
& \times w(\tau) d \tau] w(s) d s\}
\end{align*}
$$

Hence our assumption and condition (iv) yield that $\phi(t) \in L_{w}^{2}(0, b)$.
Next, we consider (4.1) with $0 \leq \sigma<1$, and we have the following results.
Theorem 4.3. Suppose that $S(\tau) \cup S\left(\tau^{+}\right)$is bounded on $[0, b)$ and that
(i) $e_{1}(s)$ and $r_{1}(s) \in L_{w}^{2}(0, b)$ for all $s \in[0, b)$,
(ii) $\int_{0}^{t} r_{2}(s)\left(\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right) w(s) d s<\infty$,
(iii) $\int_{0}^{t} r_{2}(s)\left(\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s)\right|\right) w(s) d s<\infty$,
(iv) $\int_{0}^{t} r_{2}(s)\left(\int_{0}^{s} K_{0}(s, x) d x\right) w(s) d s<\infty$,
(v) $\int_{0}^{t} r_{2}(s)\left(\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\left(\partial^{i} / \partial x^{i}\right) K_{i}(s-x)\right| d x\right) w(s) d s<\infty$.

Then all solutions of (1.2) are bounded in $[0, b)$.
Proof. For $0 \leq \sigma<1$, the proof is the same up to (4.6). In this case (4.6) becomes

$$
\begin{aligned}
|\phi(t)| \leq & \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
+ & \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
& \quad \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{1}(s)|\phi(s)|^{\sigma}\right.
\end{aligned}
$$

$$
\begin{align*}
& +r_{2}(s)\left(\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)+K_{0}(s, x)|\phi(x)|^{\sigma}\right] d x\right. \\
& \quad+\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s)\right| \beta \\
& \left.\left.\quad+\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}^{(i)}(s-x)\right||\phi(x)| d x\right)\right] w(s) d s \tag{4.18}
\end{align*}
$$

Let,

$$
\begin{align*}
h(t)= & \sum_{j=1}^{n^{2}}\left(C_{j}+\left|\alpha_{j}\right|\right)\left|\phi_{j}(t)\right| \\
& +\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{2}(s)\right.
\end{align*} \quad\left[\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right] .
$$

Then,

$$
\begin{align*}
& |\phi(t)| \\
& \leq h(t)+\sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
& \times \int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|\left[r_{1}(s)|\phi(s)|^{\sigma}\right. \\
& +r_{2}(s)\left[\int_{0}^{s} k_{0}(s, x)|\phi(x)|^{\sigma} d x\right. \\
& \left.\left.+\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}^{(i)}(s-x)\right||\phi(x)| d x\right]\right] w(s) d s . \tag{4.20}
\end{align*}
$$

By hypothesis, there exist positive constants ξ_{1} and ξ_{2} such that,

$$
\begin{equation*}
\left|\phi_{j}(t)\right| \leq \xi_{1}, \quad\left|\phi_{k}^{+}(t)\right| \leq \xi_{2} \quad \forall j, k=1,2, \ldots, n^{2}, \tag{4.21}
\end{equation*}
$$

and from conditions (i), (ii), and (iii), it follows that $h(t)$ is bounded on $[0, b)$, that is, there exists a positive constant ξ_{3} such that $h(t) \leq \xi_{3}$ for all $t \in[0, b)$.

Then,

$$
\begin{align*}
|\phi(t)| \leq \xi_{3}+n^{2} \xi_{1} \xi_{2}[& \int_{0}^{t} r_{1}(s)|\phi(s)|^{\sigma} w(s) d s \\
& +\int_{0}^{t} r_{2}(s)\left(\int_{0}^{s} k_{0}(s, x)|\phi(x)|^{\sigma} d x\right) w(s) d s \\
& \left.+\sum_{i=1}^{n^{2}-1} \int_{0}^{t}\left(r_{2}(s) \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right||\phi(x)| d x\right) w(s) d s\right] \tag{4.22}
\end{align*}
$$

Applying Corollary 3.8 with $f_{1}(x)=0$, we have

$$
\begin{align*}
&|\phi(t)| \leq \exp \left(\int_{0}^{t} r_{2}(s)\left(\sum_{i=1}^{n^{2}-1} \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right| d x\right) w(s) d s\right) \\
& \times\left\{\left[\xi_{3}^{(1-\sigma)}+(1-\sigma)\right.\right.
\end{aligned} \quad \begin{aligned}
& \quad \int_{0}^{t}\left(r_{1}(s)+\int_{0}^{s} r_{2}(x) k_{0}(s, x) d x\right) \\
& \quad \times \exp (1-\sigma)\left(\int_{0}^{t}\left(r_{2}(\tau) \sum_{i=1}^{n^{2}-1} \int_{0}^{\tau}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right| d x\right)\right. \tag{4.23}\\
&\left.\times w(\tau) d \tau) w(s) d s]^{1 /(1-\sigma)}\right\}
\end{align*}
$$

Hence, from conditions (i), (ii), and (iii), it follows that $\phi(s)$ is bounded on [0,b).

THEOREM 4.4. Suppose that $S(\tau) \cup S\left(\tau^{+}\right) \subset L_{w}^{2}(a, b), r_{2}(s)$ is bounded on $[0, b)$, and the following conditions are satisfied:
(i) $e_{1}(s) \in L_{w}^{2}(0, b)$ and $r_{1}(s) \in L_{w}^{2 /(1-\sigma)}(0, b)$ for all $s \in[0, b)$,
(ii) $\int_{0}^{t}\left(\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right)^{2} w(s) d s<\infty$,
(iii) $\int_{0}^{t}\left(\sum_{i=1}^{n^{2}-1} \sum_{\ell=0}^{i-1}\left|K_{i}^{(\ell)}(s)\right|\right)^{2} w(s) d s<\infty$,
(iv) $\left[\int_{0}^{s} w^{\sigma /(\sigma-2)} K_{0}^{2 /(2-\sigma)}(s, x) d x\right]^{(2-\sigma) / 2}<\infty$,
(v) $\left[\int_{0}^{s} w^{-1}\left|\left(\partial^{i} / \partial x^{i}\right) K_{i}(s-x)\right|^{2} d x\right]^{1 / 2} w(s) d s<\infty$.

Then all solutions of (1.2) are in $L_{w}^{2}(0, b)$.

Proof. For $0 \leq \sigma<1$, the proof is the same up to (4.18). Applying the Cauchy-Schwartz inequality to the integrals in (4.18), we have that

$$
\begin{align*}
& \int_{0}^{t}\left|\overline{\phi_{j}^{+}(s)}\right| r_{1}(s)|\phi(s)|^{\sigma} w(s) d s \\
& \quad \leq\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{\sigma / 2}\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)} r_{1}(s)\right|^{\mu} w(s) d s\right)^{1 / \mu} \\
& \int_{0}^{s} K_{0}(s \cdot x)\left|\overline{\phi_{k}^{+}(s)}\right|^{\sigma} d x \\
& \quad \leq\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{\sigma / 2}\left(\int_{0}^{s} w^{1-\mu} K_{0}^{\mu}(s, x) d x\right)^{1 / \mu} \tag{4.24}\\
& \int_{0}^{s}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x) \phi(x)\right| d x \\
& \quad \leq\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{1 / 2}\left(\int_{0}^{s} w^{-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right|^{2} d x\right)^{1 / 2}
\end{align*}
$$

where $\mu=2 /(2-\sigma)$. Since $\phi_{k}^{+}(s) \in L_{w}^{2}(0, b)$ (see Lemma 3.3), $k=1, \ldots, n^{2}$, and $r_{1}(s) \in L_{w}^{2 /(1-\sigma)}(0, b)$ by hypothesis, we have $\phi_{k}^{+} r_{1} \in L_{w}^{\mu}(0, b), k=1,2, \ldots, n^{2}$. Using this fact and (4.18) in (4.16), we obtain

$$
\begin{align*}
|\phi(t)| \leq h(t)+ & \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|\left|\phi_{j}(t)\right| \\
\times & {\left[\xi_{0}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{\sigma / 2}\right.} \\
& +\xi_{1}\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right| r_{2}(s)\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{\sigma / 2} w(s) d s\right) \\
& \left.+n^{2} \xi_{2}\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right| r_{2}(s)\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{1 / 2} w(s) d s\right)\right] \tag{4.25}
\end{align*}
$$

where

$$
\begin{align*}
& \xi_{0}=\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)} r_{1}(s)\right|^{\mu} w(s) d s\right)^{1 / \mu} \\
& \xi_{1}=\left(\int_{0}^{t} w^{1-\mu} K_{0}^{\mu}(s, x) d x\right)^{1 / \mu} \tag{4.26}\\
& \xi_{2}=\left(\int_{0}^{t} w^{-1}\left|\frac{\partial^{i}}{\partial x^{i}} K_{i}(s-x)\right|^{2} d x\right)^{1 / 2}, \quad \text { for } i=1,2, \ldots, n^{2} .
\end{align*}
$$

Applying the Cauchy-Schwartz inequality again to the integrals in (4.25) and squaring both sides, we have

$$
\begin{align*}
& |\phi(t)|^{2} \\
& \qquad 2 h^{2}(t)+4 \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2}\left|\phi_{j}(t)\right|^{2} \\
& \times \\
& \times\left[\xi_{0}^{2}\left(\int_{0}^{t}|\phi(s)|^{2} w(s) d s\right)^{\sigma}\right. \\
& \\
& \quad+\xi_{1}^{2}\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|^{2} w(s) d s\right)\left(\int_{0}^{t} r_{2}^{2}\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{\sigma}\right) \tag{4.27}\\
& \\
& \quad+n^{4} \xi_{0}^{2}\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|^{2} w(s) d s\right)\left(\int_{0}^{t} r_{2}^{2}\left(\int_{0}^{s}|\phi(x)|^{2} w(x) d x\right)^{\sigma}\right. \\
&
\end{align*}
$$

Let

$$
\begin{align*}
u(t) & =\int_{0}^{t}|\phi(s)|^{2} w(s) d s \\
\xi_{3} & =\left(\int_{0}^{t}\left|\overline{\phi_{k}^{+}(s)}\right|^{2} w(s) d s\right)^{1 / 2}, \quad j=1,2, \ldots, n^{2} \tag{4.28}
\end{align*}
$$

and integrate (4.27), to obtain

$$
\begin{align*}
u(t) \leq & 2 \int_{0}^{t} h^{2}(s) w(s) d s \\
& +4 \xi_{0}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2} \int_{0}^{t}\left|\phi_{j}(s)\right|^{2} u^{\sigma}(s) w(s) d s \\
& +4 \xi_{1}^{2} \xi_{3}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2} \int_{0}^{t}\left|\phi_{j}(s)\right|^{2}\left(\int_{0}^{s} r_{2}^{2}(x) u^{\sigma}(x) w(x) d x\right) w(s) d s \\
& +4 n^{4} \xi_{2}^{2} \xi_{3}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2} \int_{0}^{t}\left|\phi_{j}(s)\right|^{2}\left(\int_{0}^{s} r_{2}^{2}(x) u(x) w(x) d x\right) w(s) d s . \tag{4.29}
\end{align*}
$$

From our assumptions and conditions (ii) and (iii), it follows that the integral $\int_{0}^{t} h^{2}(s) w(s) d s$ is finite, that is, there exists a positive constant ξ_{4} such that $\|h(t)\|_{L_{w}^{2}(0, b)} \leq \xi_{4}$ for all $t \in[0, b)$. Applying Corollary 3.8 with $f_{1}(x)=0$, we
obtain

$$
\begin{align*}
& u(t) \leq \exp \left(\int_{0}^{t}\left(4 n^{4} \xi_{2}^{2} \xi_{3}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2}\left|\phi_{j}(s)\right|^{2} \int_{0}^{s} r_{2}^{2}(x) w(x) d x\right) w(s) d s\right) \\
& \times\left[\xi_{4}^{(1-\sigma)}+(1-\sigma)\right. \\
& \quad \times \int_{0}^{t} 4 \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2}\left|\phi_{j}(s)\right|^{2}\left(\xi_{0}^{2}+\xi_{1}^{2} \xi_{3}^{2} \int_{0}^{s} r_{2}^{2}(x) w(x) d x\right) \\
& \quad \times \exp \left((1-\sigma) \int_{0}^{s}\left[4 n^{4} \xi_{2}^{2} \xi_{3}^{2} \sum_{j, k=1}^{n^{2}}\left|\zeta^{j k}\right|^{2}\left|\phi_{j}(x)\right|^{2} \int_{0}^{x} r_{2}^{2}(\tau) w(\tau) d \tau\right]\right. \\
& \quad \times w(x) d x) w(s) d s]^{1 /(1-\sigma)} . \tag{4.30}
\end{align*}
$$

Since $\phi_{j}(t) \in L_{w}^{2}(0, b), j=1,2, \ldots, n^{2}$, and $r_{2}(t)$ is bounded on $[0, b)$, then $\phi(t) \in L_{w}^{2}(0, b)$ and hence the result.

Corollary 4.5. Suppose that $S(\tau) \cup S\left(\tau^{+}\right) \subset L_{w}^{2}(0, b) \cap L^{\infty}(0, b)$ and the following conditions are satisfied:
(i) $e_{1}(s) \in L_{w}^{2}(0, b)$ and $r_{1}(s) \in L_{w}^{p}(0, b)$ for any $p, 1 \leq p \leq 2 /(1-\sigma)$,
(ii) $r_{2}(s)$ and $K_{i}^{(\ell)}(s) \in L_{w}^{2}(0, b) \cap L^{\infty}(0, b)$ for $\ell=0, \ldots, i-1 ; i=1, \ldots, n^{2}-$ 1 ,
(iii) $\int_{0}^{t}\left(\int_{0}^{s}\left[e_{2}(s)+e_{3}(x)\right] d x\right)^{2} w(s) d s<\infty$,
(iv) $\left(\int_{0}^{s} w^{\sigma /(\sigma-2)} K_{0}^{2 /(2-\sigma)}(s, x) d x\right)^{(2-\sigma) / 2}<\infty, 0 \leq \sigma<1$,
(v) $\left[\int_{0}^{s} w^{-1}\left|\left(\partial^{i} / \partial x^{i}\right) K_{i}(s-x)\right|^{2} d x\right]^{1 / 2}<\infty, i=1, \ldots, n^{2}-1$.

Then all solutions of (1.2) belong to $L_{w}^{2}(0, b) \cap L^{\infty}(0, b)$.
Proof. The proof follows from Theorems 4.3 and 4.4. We refer to [6, 7, 8, 11] for more details.

References

[1] R. P. Agarwal, A note on Grace and Lalli's paper, J. Math. Anal. Appl. 86 (1982), no. 2, 471-475.
[2] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Mathematical Monographs, Oxford University Press, New York, 1987.
[3] W. N. Everitt and D. Race, Some remarks on linear ordinary quasidifferential expressions, Proc. London Math. Soc. (3) 54 (1987), no. 2, 300-320.
[4] W. N. Everitt and A. Zettl, The number of integrable-square solutions of products of differential expressions, Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 215226.
[5] S. R. Grace and B. S. Lalli, Asymptotic behaviour of certain second order integrodifferential equations, J. Math. Anal. Appl. 76 (1980), no. 1, 84-90.
[6] S. E. Ibrahim, Boundedness for solutions of general ordinary quasi-differential equations, J. Egyptian Math. Soc. 2 (1994), 33-44.
[7] _, On L_{w}^{2}-quasi-derivatives for solutions of perturbed general quasidifferential equations, Czechoslovak Math. J. 49(124) (1999), no. 4, 877890.
[8] J. S. W. Wong, Square integrable solutions of perturbed linear differential equations, Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), 251-254.
[9] E. H. Yang, On asymptotic behaviour of certain integro-differential equations, Proc. Amer. Math. Soc. 90 (1984), no. 2, 271-276.
[10] , Asymptotic behaviour of certain second order integro-differential equations, J. Math. Anal. Appl. 106 (1985), no. 1, 132-139.
[11] A. Zettl, Square integrable solutions of $L y=f(t, y)$, Proc. Amer. Math. Soc. 26 (1970), 635-639.
[12] , Deficiency indices of polynomials in symmetric differential expressions. II, Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), no. 20, 301-306.
[13] , Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), 453-474.
[14] , The limit-point and limit-circle cases for polynomials in a differential operator, Proc. Roy. Soc. Edinburgh Sect. A 72 (1975), no. 3, 219-224.
[15] ——, Perturbation of the limit circle case, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 103, 355-360.

Sobhy El-Sayed Ibrahim: Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Kalubia, Egypt

E-mail address: abomohamed@hotmai1.com

