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Families of maps on the lattice of all antichains of a finite bounded poset that
extend the blocker, deletion, and contraction maps on clutters are considered.
Influence of the parameters of the maps is investigated. Order-theoretic extensions
of some principal relations for the set-theoretic blocker, deletion, and contraction
maps on clutters are presented.
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1. Introduction and preliminary. Let P be a finite bounded poset of cardi-
nality greater than one. We can define some maps on the lattice of all antichains
A (P) of the poset P that naturally extend the set-theoretic blocker, deletion,
and contraction maps on clutters; such maps were considered in [4, 5].

A set H is called a blocking set for a nonempty family § = {Gy,...,G»,} of
nonempty subsets of a finite set if, for each k € {1,...,m}, it holds |H NG| > 0.
The family of all inclusionwise minimal blocking sets for % is called the blocker
of 4. We denote the blocker of % by %(%).

A family of subsets of a finite ground set S is called a clutter or a Sperner
family if no set from that family contains another. The empty clutter & con-
taining no subsets of S and the clutter {0} whose unique set is the empty
subset 0 of S are called the trivial clutters on S. The set-theoretic blocker map
reflects a nontrivial clutter to its blocker, and that map reflects a trivial clutter
to the other trivial clutter: B(@) = {0} and B({0}) = @.

Let X < S and | X| > 0. The set-theoretic deletion (\X) and contraction (/X)
maps are defined in the following way: if % is a nontrivial clutter on S, then
the deletion 4\ X is the family {G € §: |G nX| =0} and the contraction /X is
the family of all inclusionwise minimal sets from the family {G — X : G € 4}.
The deletion and contraction for the trivial clutters coincide with the clutters
O\X = @/X = @ and {0}\X = {0}/X = {0}. The maps (\0) and (/0) are the
identity map on clutters; for any clutter %, we by definition have 4\0 = 4/0 = %.

Let % be a clutter on the ground set S. Given a subset X < S, we have

B(B(G)) =G, (1.1)
B(G\X = B(9G/X), B(G) /X = B(G\X). (1.2)
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Recall that the atoms of the poset P are the elements covering its least ele-
ment. Let X be a subset of the atom set P2 of P. (We denote the empty subset
of P2 by @2.) We use the denotation b : 2(P) — 2(P) for the order-theoretic
blocker map from [4], and we use the denotations (\X), (/X) : A(P) — 2(P) for
the order-theoretic operators of deletion and contraction from [5], respectively.
We do not recall those concepts here because the map b is the (@?,0)-blocker
map from Definition 2.1 of the present paper and the maps (\X) and (/X)
are the (X,0)-deletion and (X,0)-contraction maps from Definition 3.1 of the
present paper, respectively.

For any antichain A of P, the following relations hold in 2(P):

b(b(6(A))) =b(A), (1.3)
BA)\X <B(A/X) <B(A) <B(A)/X <B(A\X). (1.4)

Equality (1.3) from [4] goes back to (1.1) from [2, 3]. Comparison (1.4) from [5]
goes back to (1.2) from [6].

In the present paper, we consider families of the so-called (X, k)-blocker,
(X, k)-deletion, and (X, k)-contraction maps on A (P) parametrized by subsets
X <€ P? and numbers k € N, k < |P?|. We show that for all pairs of the above-
mentioned parameters X and k, the essential properties of the maps remain
similar to those of the (&?%,0)-blocker, (X,0)-deletion, and (X, 0)-contraction
maps on A(P) that were investigated in [4, 5]. In particular, we present ana-
logues of relations (1.3) and (1.4) in Proposition 2.6(ii) and Theorem 3.7.

We refer the reader to [7, Chapter 3] for basic information and terminology
in the theory of posets.

We use minQ to denote the set of all minimal elements of a poset Q. If Q
has a least element, then it is denoted Og; if Q has a greatest element, then it
is denoted 1.

Throughout the paper, P stands for a finite bounded poset of cardinality
greater than one, that is, P by definition has the least and greatest elements
that are distinct. We denote by I(A) and §(A) the order ideal and filter of P
generated by an antichain A, respectively.

All antichains of P compose a distributive lattice denoted 2 (P); in the pres-
ent paper, antichains are by definition partially ordered in the following way;
if A’,A” € A(P), then we set

A < A" iff §(A') < §(A7). (1.5)

We call the least and greatest elements OA(P) and i;\(m of A(P) the trivial an-
tichains of P because, in the context of the present paper, they are counterparts
of the trivial clutters. Here, OA(}J) is the empty antichain of P and ijn(p) the one-
element antichain {0p}. We denote by v and A the operations of join and meet
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in the lattice A(P); if A", A" € A(P), then

A' VA" =min(A"UA"),
1.6
A'ANA" =min (§(A")nF(A")). (1.6)
2. (X, k)-blocker map. In this section, we consider a family of maps on an-
tichains of a finite bounded poset that extend the set-theoretic blocker map
on clutters. From now on, X is always a subset of P? and k is a nonnegative
integer less than |P?|.

DEFINITION 2.1. The (X, k)-blocker map on A(P) is the map Ef A(P) —
A(P),

A—min{beP:|i(b)ni(a)n (P*-X)| >k Va € A} (2.1)
if A is nontrivial, and

Onpy — Lacp), Tacp) — Onep).- (2.2)

Given an antichain A € A(P), the antichain Ef (A) is the (X, k)-blocker of A
inP.

We use the denotations by and b¥ instead of the denotations B?a and b¥,
respectively. The (&?2,0)-blocker map is the blocker map b on A(P) considered
in [4]. Given A € 2(P), the antichain b(A) is called the blocker of A in P.

If {a} is a one-element antichain of P, then we write Bf (a) instead of Bf ({a}).
Let a + Op. Since the blocker map on 2A(P) is antitone, for every E < b(a) — X,
we have {a} <b(b(a)) <b(b(a)—X) <b(E) <b(a).

The following statement immediately follows from Definition 2.1.

LEMMA 2.2. Let A be a nontrivial antichain of P. If Bf(A) +* 0;;<p), then, for
each a € A and for all b € 63 (A), it holds that

|[I(a)nI(b)n (P*-X)| > k. (2.3)

Let a € P, a # Op. From now on, J, denotes the family of subsets of the
atom set P? defined as follows:

Ta={Echb(a)-X:|E| =k+1}. (2.4)

Let £(P?) denote the Boolean lattice of all subsets of the atom set P?, and let
2(P)k+D) denote the subset of all elements of rank k + 1 of £(P?). Given a
(k+1)-subset E < P2, we denote by €(E) the least upper bound for E in £(P?);
conversely, given an element ¢ € £(P?)*+1 we denote by £ (¢) the (k +1)-
subset of all atoms of £(P?) that are comparable with e.
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Let A be a nontrivial antichain of P. If |b(a) — X| < k for some a € A,
then Definition 2.1 implies 6 (A) = Ox(p). In the case |b(a) — X| > k for all
a € A, Proposition 2.3 describes two alternative ways of elementwise finding
the (X, k)-blocker of A;itinvolves the set-theoretic blocker %(-) of a set family.

PROPOSITION 2.3. Let A be a nontrivial antichain of P. If |b(a) —X| > k, for
all a € A, then

by (A) =\ V B(E) = \ N B(e(e)). (2.5)

acAEE€Tq CcB({{e(E):EETa}: acA}) ec€

PROOF. We have

B (A) = N\ B} (a), (2.6)

acA

and an order-theoretic argument shows that, for every a € A, it holds that

b6 (a)=\/ B(E), (2.7)

E€T,

where B(E) = A\,cpie}.
The inclusion B} (A) 2 Vecan((iep)Eeaatacay) Nece b1 () follows from
Definition 2.1. To prove the inclusion

By (A) \/ N\ B(e71(e)), (2.8)

€CeB({{e(E):EETg}:acA}) ec€

assume that it does not hold. Consider an element b € b; (A) such that it does
not belong to the right-hand side of (2.8). In this case, there is an element a € A
such that |I(b) ni(a)n (P? - X)| < k. It means that the left-hand side of (2.8)
is not an (X, k)-blocker of A, a contradiction. O

The following lemma clarifies how the parameters of the (X, k)-blocker map
influence the image of 2(P); additionally, the lemma states that Bf is antitone.

LEMMA 2.4. (i) LetY < P?, Y 2 X, and let j be a nonnegative integer, j < k.
If A€ A(P), then

BY(A) = By (A) = by (A). (2.9)
(ii) Forall A',A"” € A(P) such that A’ < A", it holds that

By (A') = by (A”). (2.10)
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PROOF. (i) There is nothing to prove if A is trivial. Suppose that A is a
nontrivial antichain of P. For each element a € A, we by (2.7) have

bi(a)=\/ B(E)Y= \/ B(E)=5}(a). (2.11)
E€T, Eﬁﬁ&?:{:

With respect to (2.6), this yields

6X(A) = \ Bf(a) = )\ B} (a) =6} (A). (2.12)

acA acA

The relation E{’f (A) = B (A) is proved in a similar way.

(ii) If A’ is a trivial antichain, then the assertion immediately follows from
Definition 2.1. Suppose that A" is nontrivial. For every a’ € A’, thereisa’’ € A”
such that {a’} < {a’’} and, as a consequence, it holds the inclusion b(a’) 2
b(a'"), (2.7) implies Bf(a’) > Bﬁ(a”), and the proof is completed by applying
(2.6). O

In addition to Lemma 2.4(ii), we need the following statement to describe
the structure of the image of A (P) under the (X, k)-blocker map.

LEMMA 2.5. For any A € X(P), it holds that
BY (6Y (A)) = A. (2.13)

PROOF. If A is a trivial antichain of P, then the lemma follows from
Definition 2.1 because, in this case, we have Bf(ﬁf(A)) = A. Suppose that A
is nontrivial. If 65 (A) = Ox(p), then we have 63 (65 (A)) = 1xp) > A and we are
done. Finally, suppose that Bf (A) is a nontrivial antichain. On the one hand,
according to Lemma 2.2, for each a € A and for all b € Ef (A), it holds that

[i(a)ni(b)n (P*-X)| > k. (2.14)
On the other hand, we, by Definition 2.1, have
6Y (67 (A)) =min{g € P: |1(g) nI(b)n (P*-X)| >k Vb b} (A)}. (2.15)

Hence, we have 6 (63 (A)) > A. |

We complete this section by applying a standard technique of the theory of
posets to the lattice (P) and the (X, k)-blocker map on it. See, for instance,
[1, Chapter IV] on (co)closure operators.
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PROPOSITION 2.6. (i) The composite map b} o b} is a closure operator on
A(P).

(i) The poset By (P) = {b (A) : A € A(P)} is a self-dual lattice; the restriction
map Byl p) is an anti-automorphism of 3; (P). The lattice 3} (P) is a meet-
subsemilattice of the lattice A(P).

(iii) For every B € % (P), its preimage (6%)~'(B) under the (X,k)-blocker
map is a convex join-subsemilattice of the lattice A(P). The greatest element of
(6)~1(B) is by (B).

PROOF. In view of Lemmas 2.4(ii) and 2.5, assertions (i) and (ii) are a corol-
lary of [1, Propositions 4.36 and 4.26]. To prove (iii), choose arbitrary ele-
ments A’,A” € (b;)~'(B), where B = b3 (A) for some A € 24(P), and note that
BY (A" VA") =bX(A") ABY (A”) = B.If B = Ox(p), then b (B) = 1xp) is the great-
est element of (65)'(B). If B = 1xp), then (6%)~'(B) is the one-element sub-
poset {og(p)} of A(P). Finally, if B is a nontrivial antichain of P, then the ele-
ment 63 (B) = b7 (bf (A)) is by (2.15) the greatest element of (6})~'(B). Since
the (X, k)-blocker map is antitone, we can see that the subposet (Bf Yy~1(B) of
A (P) is convex. O

We call the poset Bi‘ (P) from Proposition 2.6(ii) the lattice of (X, k)-blockers
in P. The poset 3(P) =B?a (P) is called in [4] the lattice of blockers in P.

3. (X, k)-deletion and (X, k)-contraction maps. In this section, we consider
order-theoretic extensions of the set-theoretic deletion and contraction maps
on clutters.

DEFINITION 3.1. (i) If {a} is a nontrivial one-element antichain of P, then
the (X, k)-deletion {a}\xX and (X, k)-contraction {a} /xX of {a} in P are the
antichains

{a}, if |b(a)nX| <k,

X=1. 3.1
X =0 6o i 1B X > K, G-
{a}, if |b(a)nX| <k,
{a} kX =B (BF (@), if [B(a)nX]| >k, b(a) ¢ X, (3.2)
Lap), if [b(a)nX| >k, b(a) < X.

(ii) If A is a nontrivial antichain of P, then the (X, k)-deletion A\ X and
(X, k)-contraction A/ X of A in P are the antichains

AX = \/ ({lab\wX), ArX=\/ ({a}iX). (3.3)

acA acA
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(iii) The (X,k)-deletion and (X, k)-contraction of the trivial antichains of P
are

0 (p) \k X = Ox(p) kX = On(p),

- - N (3.4)
Lap) \k X = 1ap) kX = Lau(p).
(iv) The map
(\kX) : %(P) — A(P), A— A\kX, (3.5)
is the operator of (X, k)-deletion on A(P).
The map
(hX):A(P) — A(P), A— A}X, (3.6)

is the operator of (X, k)-contraction on 2(P).

Given an antichain A € A(P), we use the denotations A\X and A/X in-
stead of the denotations A\oX and A /o X, respectively. The (X,0)-deletion map
(\X) : A(P) —» A(P) and the (X,0)-contraction map (/X) : A(P) — 2X(P) are the
operators of deletion and contraction on A(P), respectively, considered in [5].

The following observation is an immediate consequence of Definition 3.1. If
a',a’ €Pand {a'} <{a”} in A(P), then

{a'}\uX <{a"}\kX, {a'}hX<{a"}iX; (3.7)

hence, in view of (3.3) and (3.4), we can formulate the following lemma.

LEMMA 3.2. IfA',A” e X(P) and A’ < A", then
A\ X < A"\ X, A X < A" [k X. (3.8)
Moreover, if {a} is a one-element antichain of P, then we have
{a}\rX < {a} <{a} /X, (3.9)

and a more general statement is true.

LEMMA 3.3. IfA € A(P), then
AWk X <A< ALX. (3.10)

Another consequence of Definition 3.1 is that, for a one-element antichain
{a} of P, it holds that

B (a)\ikX < B ({a} kX) < B3 (a) < b (a) kX < b; ({a}\kX). (3.11)
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Let {a} be a nontrivial one-element antichain of P. We obviously have
({a}\kX)\k X = {a}\kX. We show that ({a} /X)X = {a} ik X.If |b(a) N X| <k,
then Definition 3.1 implies ({a}/xX) xX = {a} kX = {a}; further, if |b(a) N X| >
k and b(a) < X, then Definition 3.1 implies ({a}/xX) kX = {a} kX = i;t(p). Sup-
pose that [b(a) N X| > k and b(a) ¢ X. In this case, on the one hand, we have
({a} kX)X = {a} kX by Lemma 3.3, on the other hand, for every element
b € {a} kX = by (6 (a)), we have b} (b) > b7 (a), and, as a consequence, we
have ({a} kX) kX = Vpeiayx (D} X) < B (B} (@) = {a} kX. We arrive at the
conclusion that ({a} /xX) kX = {a} /xX. With respect to (3.3), we can formulate
the following lemma.

LEMMA 3.4. If A€ XA(P), then
(A X))\ X = A\rX, (ARX) kX = AR X. (3.12)

Lemmas 3.2, 3.3, and 3.4 lead to a characterization of the (X, k)-deletion and
(X, k)-contraction maps in terms of (co)closure operators.

PROPOSITION 3.5. The map (\xX) is a coclosure operator on A(P). The map
(/xX) is a closure operator on X (P).

The following proposition is a counterpart of Lemma 2.4(i).

PROPOSITION 3.6. LetY < P?, Y 2 X, and let m be an integer, k < m < |P?|.
If A e A(P), then

A\mX = A\kX = A\Y,
(3.13)
AX <ARY <AlmY.

PROOF. If A is a trivial antichain, then the proposition follows from (3.4).
Suppose that A is nontrivial. For each a € A, (3.1) implies {a}\rX = {a}\+Y,
(3.2) implies {a} /x X < {a}/xY, and (3.3) yields

AX = \/ ({a}\eX) = \/ ({a}\Y) = A\Y,

acA acA

(3.14)
ApX =\ ({athX) = \/ ({a}ikY) = AKY.
acA acA
Other relations are proved in a similar way. O

We denote the images (\;(X)(A(P)) = {A\xX:A€XA(P)} and (/xX)(X(P)) =
{AX : A € A(P)} by A(P)\xX and 2A(P)/xX, respectively. We can interpret
well-known properties of (semi)lattice maps and (co)closure operators on lat-
tices in the case of the (X, k)-deletion and (X, k)-contraction maps.
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Definition 3.1 implies that the maps (\¢X), (/xX) : 2(P) — A(P) are upper
{Og‘(p),i;‘ p)}-homomorphisms, that is, for all A", A” € A(P), we have (A" v
A"\ X=A"\ X)V(A"\rX)and (A’ VA") X =(A" X)V (A"t X), and, more-
over, we have OA Y\ X = On(p)/kX OA(p) and 1;1‘(p)\kX = 1}1(p)/kX = 1)1(1,7)

The posets A(P)\xX and 2(P) /x X, with the partial orders induced by the
partial order on 2A(P), are lattices.

We call the poset A(P)\¢ X the lattice of (X, k)-deletions in P, and we call the
poset A(P) /x X the lattice of (X, k)-contractions in P.

The lattice 2(P)\; X is a join-subsemilattice of 2(P). Denote by Axp),, x the
operation of meet in 2A(P)\ X. If D’,D"" € A(P)\X, then we have D" Axp)\, x
D" = (D' AD")\iX.

The lattice A (P) /X is a sublattice of A (P).

If D € A(P)\rX, then the preimage (\xX) (D) of D under the (X, k)-deletion
map is the closed interval [D,D V \/gcx:gj=x+1 D(E)] of A(P).

If D € A(P)/xX, then the preimage (/xX)~'(D) of D under the (X,k)-
contraction map is a convex join-subsemilattice of the lattice Z(P), with the
greatest element D.

Relations (1.2) and (1.4) have the following analogue.

THEOREM 3.7. If A € A(P), then
B (A)\i X < BY (A X) < BX (A) < B (A) kX < bF (A\rX). (3.15)

PROOF. There is nothing to prove if A is a trivial antichain. Suppose that A
is nontrivial. The relations

B (A)\k X < B (A) <BY(A) kX, B (AKX) <BY(A) <bf (A\kX) (3.16)

follow from Lemmas 3.3 and 2.4(ii).
We need the following auxiliary relations. If A" and A” are arbitrary an-
tichains of P, then

(A" AA") kX < (A"\kX) A (A" \kX), (3.17)
(A'ANA") kX < (A X) A (A 1 X). (3.18)

To prove by (A)\kX < b; (A/kX), we use (3.17) and (3.11), and we see that

By (A)\k X = ( A Bf(a))\kx = A\ B (@)\kX) = N\ 6 ({a} i X)
acA acA acA

(3.19)
=5i‘< V ({a}/kX)) = b} (A/kX).

acA
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To prove b3 (A) kX < b} (A\xX), we use (3.18) and (3.11), and we see that

B (A) JoX = ( A sf(m)/kx < A\ B @ix) = A B (la)\eX)

o “ e (3.20)
=5i‘( V ({a}\kX)) = BX(A\X).
acA 0
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