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LOCAL STABILITY OF THE ADDITIVE FUNCTIONAL
EQUATION AND ITS APPLICATIONS
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The main purpose of this paper is to prove the Hyers-Ulam stability of the additive
functional equation for a large class of unbounded domains. Furthermore, by using
the theorem, we prove the stability of Jensen’s functional equation for a large class
of restricted domains.

2000 Mathematics Subject Classification: 39B82, 39B62.

1. Introduction. The starting point of studying the stability of functional
equations seems to be the famous talk of Ulam [14] in 1940, in which he dis-
cussed a number of important unsolved problems. Among those was the ques-
tion concerning the stability of group homomorphisms: let G; be a group and
let G, be a metric group with a metric d(-,-). Given € > 0, does there exist
a 6 > 0 such that if a mapping h : G; — G» satisfies the inequality d(h(xy),
h(x)h(y)) < 6 for all x,y € G,, then there exists a homomorphism H : G, —
Gy with d(h(x),H(x)) < & forall x € G1?

The case of approximately additive mappings was solved by Hyers [3] under
the assumption that G; and G, are Banach spaces. Later, the result of Hyers
was significantly generalized by Rassias [11]. It should be remarked that we can
find in [4] a lot of references concerning the stability of functional equations
(see also [2, 5, 6]).

In [12, 13], Skof investigated the Hyers-Ulam stability of the additive func-
tional equation for many cases of restricted domains in R. Later, Losonczi [9]
proved the local stability of the additive equation for more general cases and
applied the result to the proof of stability of the Hosszu's functional equation.

In Section 2, the Hyers-Ulam stability of the additive equation will be inves-
tigated for a large class of unbounded domains. Moreover, in Section 3, we
will apply the previous result to the proof of the local stability of the Jensen’s
functional equation on unbounded domains.

Throughout this paper, let E; and E» be a real (or complex) normed space
and a Banach space, respectively.

2. Stability of additive equation on restricted domains. Assume that @ :
(0,00) — [0,00) is a decreasing mapping for which there exists a d > 0 such
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that
Qp(s) <s, (2.1)

for any s > d.
We now define

By ={(x,y) € E\{O}xEr: ¥ <@ (lxI)}u{(0,») €Ef:y € Ei},
(2.2)
By = {(x,y) € E?: |Ix+y| < d]}.

In the following theorem, we generalize the theorems of Skof [12, 13] and
of Losonczi [9] concerning the stability of the additive equation on restricted
domains.

THEOREM 2.1. Ifa mapping f : E; — E> with || f(0) || < & satisfies the inequal-
ity
If(x+y)=fx)-f)|l =, (2.3)

for some € = 0 and all (x,y) € Ef \ (B1 UB>), then there exists a unique additive
mapping A : E; — E» such that

If(x) - A(x)|| <39, Vx€eE. (2.4)

PROOF. First, we assume that (x,y) € By satisfies x # 0, y # 0,and x +y +
0. For this case, we can choose a z; € E; with

lzll=@Ux+y1), lzll=eUxl), |x+zil= @y, s
l[x+y+zil|=d, ||x+zi]|zd. :

Thus, the pairs (x + y,z1), (x,z1), and (y,x + z;) do not belong to B; U B.
Hence, it follows from (2.3) that

Ifx+y)=fO)—fO <[|-fx+y+z1)+ fx+ )+ f(z1)]]
+|f(x+z1) = fx) = f(z1)]]

(2.6)
+Hf(x+y+z1) = fY) = f(x+2z1)]|
<3,
for any (x,y) € B, with x =0, y +#0,and x +y * 0.
When x = 0 or y = 0, we have
Ilf x+2) =)= f I =f0)] <e. (2.7)

Taking this fact into account, we see that inequality (2.6) is valid for all (x,y) €
By with x +y + 0.
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We now assume that (x,y) € B, satisfies x + ¥ = 0 and ||x|| > d. (In this
case, ||yl = |l - x|l = d.) In view of (2.1), both the pairs (—x,—x) and (x,—2x)
do not belong to B; UB,. Hence, it follows from (2.3) that

[|f(=2x)=-2f(-x)|| <&,  ||f(=x)—f(x)-f(=2x)||<e. (2.8)

From the last two inequalities we get

IIfx+3) =)= fFO = F(0) = f(x) = f(=x)]|
<l F O +][f(=2x)=2f(-x)]]
+H|f(=x) = f(x) = f(=2x)]|

< 3e.

(2.9)

Considering all the previous inequalities including (2.3), we conclude that f
satisfies the inequality

IIf(x+2) = Fx) = f()] <3, (2.10)

for all (x,y) € E2\ (B UB>) U {(u,v) €B>: |lull = d}.
Now, let (x,y) € Ef be arbitrarily given with ||x|| > d and ||y|| > d. Since @
is decreasing, we see by (2.1) that

e(lIxll) = @(d) <d < ¥, (2.11)

and this implies that (x,y) ¢ B;. If, moreover, the given pair (x,?y) belongs
to By, then (x,y) € {(u,v) € By : ||ull = d}. Otherwise, (x,y) € E3\ (B; UBy).
Hence, it follows from (2.10) that

If(x+3) = f(x) = F)] <3¢, (2.12)

for all (x,y) € Ef with ||[x|| > d and ||y = d.
Assume that (x,y) € Ef with ||x|| < d and ||y|| = 4d. In this case, we may
choose a z, € E; with 2d < ||z»]| < 3d. Then, it holds that

Ix-zlzd, ly+zlzd |x-z|=d |z=2d4,

(2.13)
|- z2|| = 24, ly+z2|=d, |z2]] = 24, [|-z2|| = 2d.
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It then follows from (2.12) and (2.13) that

If(x+)=fx)=fFOD =||f(x+2) = f(x—22) = f(y +22)||
+]| =)+ f(x—22) + f(z2)]|

+[=fO)+ f(=z2) +f (¥ +22)]] (2.14)
+[|£0) = f(z2) = f(=z2)||+]| = f(0)]]
< 13g,

for (x,y) € E? with || x|| <d and ||| = 4d.
Combining (2.12) and (2.14), we have

IIf(x+3)=fx)=F)| <13¢, (2.15)

forall (x,y) € E? with ||y || = 4d. Since the Cauchy difference f(x +y)—f(x)—
f () is symmetric with respect to x and y, we conclude that inequality (2.15)
is true for all (x,y) € E% with || x| = 4d or || y]| = 4d.

If (x,y) € Ef satisfies || x| < 4d and || y|| < 4d, then we can choose a z3 € E;
with || z3]| = 8d. Then, we have || x +z3|| = 4d. Since inequality (2.15) holds true
for all (x,y) € Ef with ||x|| = 4d or ||y = 4d, we get

Ifx+2) = f) = fD <[ =f(x+y+23) + f(x+3) + f(23) ]
+1f (x +23) = f ) = f(23) |

(2.16)
+H|f(x+y+23) = f(y) = fx+2z3)||
< 39¢,
for any (x,y) € Ef with ||x|| < 4d and || y] < 4d.
Inequality (2.16) together with (2.15) yields
[lf(x+x)=f)-f(»)| <39, Vx,yek. (2.17)

According to [1], there exists a unique additive mapping A : E; — E» that
satisfies inequality (2.4) for each x in E;. |

COROLLARY 2.2. Letd > 0 and ¢ > 0 be given. If a mapping f : E; — E> with
I (0)]| < € satisfies inequality (2.3) for all x,y € E; with max{|x|,||vI} > d
and ||x + y|| = d, then there exists a unique additive mapping A : Ey — E» that
satisfies inequality (2.4) for each x € E;.

PROOF. Because of the symmetry property of the Cauchy difference with
respect to x and y, we can, without loss of generality, assume that f satisfies
inequality (2.3) for all x,y € E; with ||y|| = d and ||x + | = d.
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For a constant mapping @ (s) =d (s > 0), define

By ={(x,y) € 1\ {0} X Ey : ¥l <d}u{(0,y) €Ef:y € E1},

(2.18)
By = {(x,y) € E?:|x+yl| < d}.
Since
EZ\By = {(x,y) € B\ {0} XEy : || ¥Il = d},
(2.19)
EZ\By = {(x,y) € Ef:lIx+y| = d},
we have

ET\(B1UBy) = {(x,¥) € B\ {0} xE1 : ||yl =d and [|x + ¥ | = d}. (2.20)

Thus, it follows from our hypothesis that f satisfies inequality (2.3) for all
(x,¥) € E{\ (B UBy).

According to Theorem 2.1, there exists a unique additive mapping A: E; —
E, that satisfies inequality (2.4) for all x € E;. O

In 1983, Skof [12] presented an interesting asymptotic behavior of the addi-
tive mappings: a mapping f : R — R is additive if and only if | f(x +y) — f(x) —
fO)—0as |x|+|y|— c.

Without difficulty, the above theorem of Skof can be extended to mappings
from a real normed space to a Banach space. We now apply Corollary 2.2 to a
generalization of Skof theorem.

COROLLARY 2.3. A mapping f : E, — E» is additive if and only if
If(x+y)=fx)=fO)|—0 (2.21)
as || x+yll — co.

PROOF. On account of the hypothesis, there exists a decreasing sequence
(&) with lim,, .« &, = 0 and

[Lf(x+y)—fx)=f()] < &n, (2.22)

for all (x,y) € Ef with ||x + y|| = n. With v = 0 and ||x|| — o, our hypothesis
implies that f(0) = 0.

By Corollary 2.2, there exists a unique additive mapping A, : E; — E> such
that

[|f(x)—An(x)|| <39¢,, VxE€EE. (2.23)

Now, let I and m be integers with m > [ > 0. Then, inequality (2.23) implies
that

|| (x) = Am (x)]| = 39€m <39, (2.24)
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for x € E1, and further, the uniqueness of A, implies that A,, = A; for all
integers I,m > 0, that is, A;, = A; for any n € N. By letting m — o in the last
inequality, we get

If(x) = A1 (x)]| =0, (2.25)

for any x € E;, which means that f is additive. The reverse assertion is trivial.
O

3. Stability of Jensen’s equation on restricted domains. Kominek investi-
gated in [8] the Hyers-Ulam stability of the Jensen’s functional equation

xX+y
2

2/ (532) = o+ F ), 3.1)

for the class of mappings defined on a bounded subset of RN. On the other
hand, the author proved in [7] the Hyers-Ulam stability of that equation on
unbounded domains.

In this section, we use Theorem 2.1 to generalize the theorems of the author
and of Kominek.

Let @ :[0,0) — [0,00) be a decreasing mapping that satisfies ¢1(0) = dgy >
0. Define

Bi = {(x,¥) € EI\{O}xE1: vl < @1 (lIxI)} u{(0,y) € E}:y € E1},
By ={(x,y) €E}: |x+yll <do}, (3.2)
D={(0,y) €E:lly¥|l = do}.

THEOREM 3.1. If a mapping f : E1 — E» satisfies the inequality

r(52)-reo-ron)| < (3.3)

for some € = 0 and all (x,y) € E?\ (B; UBy) UD, then there exists a unique
additive mapping A : E; — E»> such that

[|f(x)—A(x)—f(0)]] < 78¢, (3.4)

for any x € E;.

PROOF. If we substitute g(x) for f(x)— f(0) in (3.3), then

H29<x;y)—g(x)—g(y)Hse, (3.5)
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for any (x,v) € E2\ (B UB>) UD. With x = 0 and || = do, inequality (3.5)
yields

) s

for each y € E; with || y| = do. Replace y by x + v (|| x + y|l = dy) in inequality
(3.6) to get

"2g(¥)—g(x+y)“ss, (3.7)

for all x,y € E; with || x + | = do.
It follows from (3.5) and (3.7) that

lg(x+y)—gx)-g(»)||

< Hg(X+y) —2g<¥>H+H2g(x;y) -g(x) —g(y)H (3.8)

< 2,

for every (x,y) € E2\ (B; UB,) UD with || x + ¥l = do. Since (x,y) € E2\ (B, U
B,) implies that ||x + ¥ [ = do, the mapping g surely satisfies

llg(x+y)—g(x)-g(»)] <2, (3.9

for all (x,y) € E2\ (B; UB»).
It trivially holds that @, (s) < s for all s > dy. On account of Theorem 2.1,
there exists a unique additive mapping A : E; — E» such that

llg(x) — A(x)]|| < 78¢, (3.10)

for each x in E;. O

Let @2 :(0,00) — [0,00) be a continuous and decreasing mapping that satis-
fies

0<d=inf{s>0:@2(s) =0} < 0. (3.11)

Furthermore, assume that the restriction @3|o,4; is strictly decreasing.
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Now, we define
Bi={(x,y) € EI\ {0} xEr: Iyl < @a2(lx)} U{(0,y) €Ef:y € Ey},
(3.12)

By = {(x,y) € E?: |l x + ¥l <do},
D ={(0,y) €Ef:llyll = do},

where we set dy = inf{d,lim_o; @2(s)}.
COROLLARY 3.2. If a mapping f : E1 — E» satisfies inequality (3.3) for some
>0 and all (x,y) € El2 \ (B1 UBy) UD, then there exists a unique additive

mapping A : Ey — E» satisfying inequality (3.4) for all x € E;.
PROOF. First, we define a mapping @q:[0,00) — [0, ) by
for s =0,
(3.13)

do,
Pols) = {inf{(pz(s),infmz‘l(s)}, for s > 0,

where we set qo?f1 (t) ={s>0:@2(s) =t} and inf & = . (We cannot exclude

the case @;!(s) = @ from the above definition.) We define

By ={(x,y) € E\{O} X Er : vl < @o(lxIN}u{(0,y) € Ef:y € Ei},
(3.14)

={(x,y) €E}: x+yl <do},

B>
D =1{0,y) €EZ: ||yl = do}.

The fact that @g(s) < @»(s) for all s > 0 implies that B; ¢ B;. Since B, = B,
and D = D, we get
E?\(BiUB>)UD C E2\ (B, UB»)uD. (3.15)

Now, assume that (x,y) € E?\ (B, UB;) UD but (x,y) ¢ E?\ (B UB) UD.
Because (x,v) € D and (x,y) & B>, we have

(3.16)

x +0, lx+yll = do.

Moreover, (x,y) should belong to B; \ By, that is,
(3.17)

0 <inf@; ' (lIx]l) < Iy Il < @2(lx1).



LOCAL STABILITY OF THE ADDITIVE FUNCTIONAL EQUATION ... 23

(Since || x|l > 0 and @2 |04 is strictly decreasing, we have inf 5! (|x||) > 0.) If
we assume that (y,x) € By, then we get ||x|| < @2 (||y]). This fact implies that
|yl <inf (pz’l(llxll), which is contrary to (3.17). Hence, by (3.16), we conclude
that (v,x) ¢ By UB». This fact together with (3.3), yields

r(255)~ron-roo| < (3.18)

for all (x,y) € E2\ (B UB») UD.
We now define another mapping @ : [0, ) — [0, ) by

do, for s =0,
@(s) =1inf {@2(s),infp;1(s)}, for0<s<dy, (3.19)
sup {@2(s),sup@;'(s)}, fors>dy,

where d; > 0 is the unique fixed point of @y, thatis, d; = @»(d;), and we set
inf@ = oo and sup @ = 0.

Let s; > 0 (i = 1,2,3,4) be arbitrarily given with 0 < 51 < 5, < d; < 53 < 4.
Since @» is decreasing, we have

lim @2(s) = @2(s1) = @a(s2) = di = P2(s3) = P2(sa),
s—0+ (3 20)
d=inf@;'(s1) = inf @;' (s2) = d1 = sup ;' (s3) = sup ;' (s4).

Hence, we get

@0) = @(s1) = @(s2) = P(s3) = P(s4) (3.21)

which implies that @ is decreasing.
Similarly as before, we define

By ={(x,y) e I\ {0} xEr: ¥l <@ (llxI)}u{(0,») € E}:y € E1},
By ={(x,y) € E;: Ix+yl <do}, (3.22)
D ={(0,y) € E{: |yl = do}.

Since B, D By, B> = Bo, and D = D, we may conclude that inequality (3.3) holds
true for all (x,y) € E3\ (B UB,) UD.

According to Theorem 3.1, there exists a unique additive mapping A: E; —
E; such that inequality (3.4) is true for any x € E;. O

The author in [7] proved that it needs only to show an asymptotic property
of the Jensen difference to identify a given mapping with an additive one.
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Let X and Y be areal normed space and a real Banach space, respectively. A
mapping f: X — Y with f(0) = 0 is additive if and only if

|2 (B32) - o0 -] —o (3.23)

as [[x|l + |yl — co.
By using Theorem 3.1, we now prove an asymptotic behavior of additive
mappings which generalizes the above result.

COROLLARY 3.3. A mapping f : Ey — E> with f(0) = 0 is additive if and only
if

er(352) - s - —o (3.24)

as || x+yll — co.

PROOF. According to our hypothesis, there exists a decreasing sequence
(&) with limy, .. &, = 0 and

x+y

(52 -reo-ro|| < en, (3.25)

for all (x,y) € E? with ||x +y| = n.
The mapping @, : [0,0) — [0,c0) defined by @(s) = —s+n (s > 0) is de-
creasing. Moreover, it holds that @, (0) = n. We define

By ={(x,y) € I\ {0} xEy : |>¥]l < =lixll+n}u{(0,y) €E?:y € E1},
By = {(x,y) € E{: Ix+ ¥l <n}, (3.26)
D={(0,y) €E{:llyll = n}.

Since B UB» = {(x,y) €EZ:x =0or |[x+y| <n} and D = {(x,y) € E?:
x =0and |[x +y| = n}, we have

E2\(B1UBy) = {(x,v) €E?:x # 0 and ||x + y| = n}, (3.27)
and hence
E3\(B1UB2)UD = {(x,y) €E?:|lx+yl =n}. (3.28)

Therefore, inequality (3.25) holds true for all (x,y) € Ef \(B1UB»)UD.
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According to Theorem 3.1, there exists a unique additive mapping A, : E; —
E> such that

[|f(x)—An(x)|| <78&,, Vx€EE. (3.29)

Now, let [ and m be positive integers with m > L. Then, it follows from (3.29)
that

[|f(x)—Am(x)|| < 78&m < 78¢, (3.30)

for x € E;. However, the uniqueness of A,, implies that A,,, = A; for all positive
integers [ and m, that is, A,, = A; for any n € N. By letting m — o in the last
inequality, we get

[|f(x)—=A;(x)]| =0, (3.31)

for each x € E;, which implies that f is an additive mapping.
The reverse assertion is trivial because every additive mapping f : E; — E»
is a solution of the Jensen functional equation (see [10]). |
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