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ABSTRACT in this paper we define the space cO(A)=(x=(>g()/xk-kk_1 — 0 (k— x), x 0=0. % EC) and compute
its duals. (Continuous dual, -dual and N-dual) The aim of this paper is to give same results about matrix mapping

of ¢,(4) into other sequence spaces including the convergent sequences, null sequences and bounded
sequences
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1. Introduction

Let !, c and o be the linear spaces of complex bounded, convergent and null sequences x=(xk)
respectively, normed by

x| = sup, Ix,|
where k €IN = {1,2,...} the  posilive integers. On the other hand we defined
IQ(A)={x=(xk)/Ax€Im), c(A)=(x=(xk)/Ax€c) and co(A)=(x=(xk)/Ax€co} where Ax=(xk-xk_1). xo=0 [2].
(Throughout this paper it is assumed that x0=0)

cO(A), c(a) and | (A) are Banach Spaces with the norm

JI) A = SUpy XX 4! 2.

¢, Cl, and M o=l o nco(A) are Banach with the norm ""m but they aren't Banach with the norm "" A

n
If we say sx=( k§1xk ) then we have m s= (x:(xk)lsxelw), cs=(x=(xk)/sx6c) and (c o)$=(x=(xk)/ SsxEc 0)

0’

[4]. 1. c and c, are isometrically isomorphic to mg, Cg and (co)s' respectively with their natural norms.
For instance f: 1, - mg, #(x)=Ax and 1. Mgy,
1-1(x)=sx are isometric isomorphisms. Similary |_(4), c(4) and ¢ o(A) are isometrically isomorphic to I _,

¢ and c, respectively. Obviously

(e, My = (eg, M), 100=0x
and
1 (g M) = (e My, 100=sx
are isometric isomorphisms. (1.1)
We have investigated matrix maps and related questions connected with | _(4) and c(4) in [2]. We
know that Co and ¢ have Schauder basis but | has no basis with the norm "||°° Write oy
k
=(0,0,....0.?.0,...). Then (ek) is a basis for , and (ek 1) (e .=(1,1,1,...)) is a basis for ¢, with "" and
k-1 o i
Hl,. On the other hand (E,)=(3.0....0.1,1,1...)) is a basis for M, and ¢, (&) with the norm Il so
co(A) is a separable Banach Space.
o0
We know that the continuous dual of g and ¢ is l1=(x=(xk)/ kzilxkkm' xke()) [3] (Page 110) (T

the set of complex numbers) Thus 11, is continuous dual of cO(A) by (1 1) Moreover, we can prove

that
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c=M o= C o(A)

with the norm ""u where the bar denotes closure. For this, let xECO(A) and ¢>0 be any number Then

k
there exists one and only one y=(yk)ec0 such that X, = > Y; (1.1) and a corresponding index
i=1

M=M(c)E IN such that ly Wl<e/2 for all k=M. Now we take

X 1sksM
1

Zk=(1
Lxyg oM

thus z=(z,) €cC ¢, (A) belongs to the open ball B(x.c) which is in (c (4), )

2. B-dual, N-dual and Matrix Maps
If X is a sequence space, we define

0
Xﬁ:(a:(ak)/ E ax is Convergent for each x€X}
k=1

XN=(a=(ak)/ i[" akxk=0. for each x=X). XB is called the B-(or generalized Kothe-Toeplitz) dual (1} and

we will say that XN is N-(or null) dual space of X. We have that it XCY. then YBCXB. The N-dual has
similar properties with the B-dual. For instance if XCY than YNcxN and xBcxN.

. N N_.N
Obviously c =l l,=Mj = cN= Cor

cN(A) = I:(A) = (a=(ak)/(kak)Eco). Let (X,Y) denote the set of all infinite matrices A=(ank) which map X
into Y.

LEMMA 1. Let (ak)el1 and if limklakxk|=L exists for an xeco(A), than L=0.

Proof. It is lrivial if x=(xk) is bounded. Suppose that xeco(A) is unbounded and limklakxktzbo.

Then x can't have a bounded subbequence. I (xk ) is bounded then Iimnlak X, 1=0 implies L=0. So
n n

n
we can take x'k-o for all nEIN.

Now let e=-|=>0, than there exists an M1=M1(s)e IN such Ihal2L <lakxkl<32—" for all kzMi. Thus we

2
get Iakl > %—1- for all kzM and
lxkl
o0
S (2.1)
k=1 x|
Xy Ix kl
We have that e 0 (k — ) [2]. Let e=1, then we have Td and —> k for all kzM2(1)C IN. If we

axk!

take max (M1, 2)—M then 2 —z %/l —-oo This contradicts with (2.1). So L must be zero.
k=1 Ix, k= Ix,

LEMMA 2. ch(a)=(a=(a,)i(ka, )1, )=E.

X
Proof. Suppose that a=(ak)E E. Since Iimk ;'5 =0 for all x=(xk) Eco(A) [2], then we get

X
Iimkakxk=limkkak % =0. This implies that aEc':(A).

N .
Now let acc °(A). Then lrmkakxk=o, for all x&c 0(A), then there exists one and only one y=(yk)Gco,
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3

such that x = k2:1yk (11

3

lim.a x, = hm kZ,amyk=0 for all y:(yk)eco It we take

a,. 1sksn

f
!
CIES
}4 0, k>n

]

we get limn k§1ankyk=0, for all XEC . Then Az(ank) e(co,co) and we have

0 n
Supn k;Iankl = sup, kZ:1Ianl = Supn nlanl <= [4] This completes the proof

For the next results we introduce the sequence (F\k) [resp matnix R] given by sz ig‘ka‘ [resp matnix
o
R=(Fny)=( 3 ap; I
LEMMA 3. ch(a)=a=(a el /R, €1, N cNa))=D

Proof. Suppose that aeD If xEco(A) then we use Abel's summation formula to get

n n k n
ax = -
k; Kk k;(i; ) (XX q) + (k;ak) X4 1

n
= 2B i) O X g) Ry - Ry ) Xy

n+1
= k§1nk O X1) By X 22

o0
This implies that 2 ax, is convergent, then ach:)(A)‘
k=1
ﬁ o0
If aECO(A) then E a Xy is convergent for all xEco(A) Obviously aEl1 If chO(A), then there
k=1

k

exists y=(y,)ec, such that x, = > y; (1.1)
i=1

Then

n n k n
k21Rkyk = k21('21yi) a +R 4 k21yk with Abel summation formula Thus we have
= =11I= =

n n n n
If we take n
i§< 3, 1sksn
Ak =
o, lon
o n

then A=(a,)E (c,.c) since lim kgfnk Yy = limg k§1ank y), exists for all yec | (2 3). This implies that
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00 n n o0
Sup,, k§1Iankl =Sup,, k§1li% a;l < = [4]. Thus we get k§1|Rk' < =. Furthermore (2.2) implies that lim

Fim_1 L exists for each xec o(A) then we get (R n)eo';(A) by lemma 1. This completes the prool.
THEOREM 1.  A=(a ) Elcy(A).c) it
T yecN(A) . for each nEIN

1- (R ) Ec(A) , for eac

T,. R= (R €(c,.0)

o
Proof. If aE(co(A),c) then the series An(x)= 2 a,, X are convergent for each nEIN and for all
k=1

-] L
XECO(A) , this implies that Supn k§1|ank| <w and lim kzpa"k = ap exists for each peIN (3] (page

oo
166). From lemma 3 we have Y 'Rnk'<°°' Iimk Rnk xk=0 for each n€IN and for all x€(c o(A). This
k=1

proves T1, It we write again (2.2) we get

m m+1
22k = 2k %R m Xme (2.4)
and o .
An (x) = k§1ank X = k§1Rnk ()(k *Xieq) (2.5)

This shows that RE(c o,c). If we use again lemma 3 and (2.5) we get the sulfficiency of T1 and T2.
Similarly we can prove that
i) AE(cO(A),cO) iff T1 and RE(c o’co)
ii) Ae(co(A). 1) it T, and Re(l. 1)
jii) AE(co(A). Mo) iff T1 , RE(lw. Im) and

B=(bpy)=(any - ap ,.1) ECo(A).C0)
iv) Ae(co(A). co(A)) iff (ank) Ecg(A), for each nEIN and C=(°nk)=(ank'an-1.kE(co(A)'co) (aok=o)

Open questions
1) Matrix maps for Mo‘
o
2) Mo has a Schauder basis with "" A Itis (Ek). (we can write x= k§1(xk - xk_1) Ek' each xeM ° )

Then (Mo, |||| A) is separable.

Is Mo separable or have a Schauder basis with "“.»7
3) It is obvious that ¢ CcC Mo Cl, and inclusions are strict. In this order, is there a separable

space E which is cC EC1_, with the norm ""m? If not, is ¢ an upper bound according to separability?
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