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ABSTRACT. In this paper we characterize the Rogers q-Hermite polynomials as the only or-
thogonal polynomial set which is also D,-Appell where D, is the Askey-Wilson finite difference
operator.
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1. INTRODUCTION

Appell polynomials sets {P,(z)} are generated by the relation

AW)e™ = 32 Pule) £, (L.1)

n=0
where A(t) is a formal power series in t with A(0) = 1. This definition implies the equivalent
property that
DP,(z) = Pav(2), D = d/dz, (1.2)

Examples of such polynomial sets are

z" By.(z) H,(z)
{ZT}{ ! }{ 2] (1.3)
where B,(z) is the nth Bernoulli polynomial and H,(z) is the nth Hermite polynomials generated
by

e =) t"
et = z_% Hy(2) . (1.4)
By an orthogonal polynomial set (OPS) we shall mean those polynomial sets which satisfy
a three term recurrence relation of the form

Poyi(z) = (Anz + Bp) Pua(z) — CoPa-a(2), (n=0,1,2,--") (1.5)

with Po(z) =1, P-1(z) =0, and A,An-1Cs > 0.
By Favard’s theorem [7] this is equivalent to the existence of a positive measure da(z) such
that -
/ Po(2) P(2) da(z) = Knbum. (1.6)
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As we see from the examples (1.3) some Appell polynomials are orthogonal and some are not.
This prompted Angelesco [3] to prove that the only orthogonal polynomial sets which are also
Appell is the Hermite polynomial set. This theorem was rediscovered by several authors later on
(see, e.g., [10]).

There were several extensions and/or analogs of Appell polynomials that were introduced
later. Some are based on changing the operator D in (1.2) into another differentiation-like
operator or by replacing the generating relation (1.1) by a more general one. In most of these
cases theorems like Angelesco’s were given. For example Carlitz (6] proved that the Charlier
polynomials are the only OPS which satisfy the difference relation

APy(2) = Pa-r(2), (Af(z) = f(z +1) - f(=).) (1.7)

See [1] for many other references.

A new and very interesting analog of Appell polynomials were introduced recently, as a
biproduct of other considerations, by Ismail and Zhang [9]. In discussing the Askey-Wilson
operator they defined a new g-analog of the exponential function e*. This we describe in the
next section.

2. NOTATIONS AND DEFINITIONS

The Askey-Wilson operator is defined by

_ 6, f(x)
Do f(z) = et (2.1)
where z = cos§ and
b,9(e®) = g(q'%€’) — g(q7'/%e*). (2.2)

We further assume that —1 < ¢ < 1 and use the notation

(a;9)e = 1, (a5¢)n=(1—a)(1 —qa)---(1 —ag™?), (n=1,2,.) (2.3)

(69 = [[(1-ag). (24)
k=0
There are two q-analogs of the exponential function e® given by the infinite products
00 .’L‘k
ez , 2.5
e ‘I)oo iz (@ a) (25)
and Ke-1)
k‘I“ z*
(z;9)00 = - 2.6
o~ e = R0 2
We shall also use the function
Un(2) = i"(i" " %%; q)a(ig" /% g)n, @7
so that
u—l
Uopn(z) = [4:: +@ P 21:)(1 1 2n+2k)]
k=0
n—1
Wana(z) = 22 [] [42® — (1 - ¢ 2)(1 — g72*2)]
=0
42°Un(z) = Tnpa(2) + (1= ¢")(1 - ¢"7")¥u(2) (2.8)
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Thus

1 —an
DV, (z) = Qq(l—n)/zﬁ U, _1(z). (2.9)
and
g2 _ g=(n+1)/2
Iterating (2.9) we get
D:\Il,.(z) — 2kq%k(k+1)-%nk (g5 ¢)n U,_i(z). (2.11)

(¢:9)n-k(1 — q)*

The Ismail-Zhang g-analog of the exponential function [9] is

£(z) = fj 1 - g U, (z) 1" (2.12)

=0 2M@9n
It follows from (2.12) and (2.9) that
D,E(z) =t E(z). (2.13)

This suggested to Ismail and Zhang to define the D,-Appell polynomials as those, in analogy
with (1.1), defined by

ADEE) = 3 Pu(a) 17, (2.14)
n=0
so that
D,P.(x) = Pyoi(2). (2.15)

An example of such a set is the Rogers q-Hermite polynomials, { H,(z|q)}, (see [2, 4, 8]).

Al

(o) ~1 oo
1 — 2ztq™ + t2g™" = H,(z . 2.16
};[O( ¢ +1°¢") g SC s (2.16)
They satisfy the three term recurrence relation
H,i1(zlq) = 2zH,(z]q) — (1 — ¢")Hn-1(2]q), n=0,1,2,3,.. (2.17)

with Ho(zlq) =1, H_,(z|q) = 0.

3. THE MAIN RESULT

We now state our main result:

Theorem 1. The orthogonal polynomial sets which are also D,-Appell, i.e., satisfy (2.15) or
(2.14) is the set of the Rogers q-Hermite polynomials.

Proof Let {Qn(z)} be a polynomial set which is both orthogonal and D,-Appell. That is
{Qn(z)} satisfy (2.14) and (1.5).
We next note that (2.16) implies that

_ \n,n(n—-1)/4
ha(z]q) = “—;%E(ZT_H"(JEM) (3.1)

satisfy

thﬂ(:t'q) = hn—l(‘T'q)v (32)
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so that {h.(z|q)} is a D,—Appell polynomial set and at the same time is an OPS satisfying the
three term recurrence relation

(1= ¢"*Yhni(zlg) = (1 — q)q"*zhna(z]q) — i(l = 9)2q" " ?h,_y(zlq) (33)

It also follows from (2.14) that any two polynomial sets { R.(z)} and {S.(z)}, in that class
are related by R,(z) = Y r_q cn—kSk(z). Thus the solution to our problem may be expressed as

Q&”=?WMM@M- (3.4)
=0

for some sequence of real constants {a,}. We may assume without loss of generality that ag = 1.
The three term recurrence relation satisfied by {Q.(z)} is

(1- qn+1)Qn+1($) = ((1 - q)q"/2z + ﬂn) Qn(2) ~ 1 Qn-1(2), (3.5)

with Qo(z) = 1, Q-1(z) = 0. Thus @:(z) = = + Bo = a1 + hi(z|q), from which it follows that

ay = fo.
Putting (3.4) in (3.5) and using (3.3) to replace zhi(z|q) in terms of hx41(z|q) and hi—1(z|q)
we get, on equating coefficients of hx(z|g),

1
(1 — q(n-k+l)/2)(1 + q(n+x+k)/2)an+l_k ~ Bulni + [% _ Z(l _ q)2q(n+h)/2] an_k_1 =0, (3.6)

valid for all n and k = 0,1,2,...,n+ 1 provided we interpret a_; = a_; = 0. It is easy to see that
this system of equations is equivalent to the solution of our problem.
Putting k = n in (3.6) we get

Bn=(1—gi)(1 +¢*¥)ay. (3.7)

Hence if Bp = 0 then 8, = 0 for all n. In fact if 8, = 0 for any n = m then B, = 0 for all n.
Now we treat these two cases seperately.
Case I. (8, = 0).
The system (3.6) can now be written as

(1 - g**/2)(1 4 g+ D)ay, + [7» ~ i(l - q)’q"'*"] a1 =0. (38)
Since a; = 0 then it follows from (3.8) that ak4; = 0 for all k. In particular we get
1 - n
=710 % —ax(1 - )(1 +¢"), (3.9)
so that if a; = 0 then
Qn(z) = ha(zlq). (3.10)

Now we show that a; # 0 leads to contradiction. To do this replace k by 2k — 1. We get

1
1=+ )an + [Z(l -9 (1 - "M a1 - g)(1 + q")] an-2=0. (3.1)
Keep k fixed and let n — oo. We get (1 — ¢*¥)azx = (1 — ¢)azazi—_z. Thus

_ (- ‘I)k k
az = @ aj. (3.12)

Putting this value in (3.11) we get ¢'~* = 1. This is a contradiction and Case I is finished.
Case II (5, # 0).
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We start with (3.6) we get, assuming a; # 0,

1 1 3 nts n
= 7(1= 0" + (1~ g})(1 + ¢ H)a} — (1= Q)(1 + ¢")as. (3.13)

Putting this value of 4, and the value of 3, in (3.7) in (3.6), and finally equating coefficients of
¢" and the terms independent of n we get the pair of equation systems

(1= g** D %ap s — (1 = g¥)arax + {(1 - ¢})a? — (1 - Q)az} ax_y =0 (3.14)
and
(1 = ¢*D)ay .y — (1 — ¢%)g*2arai+ (3.15)
{i(l — )% (g* V2 = 1) + (1 — gi)al — (1 - q)q"‘"’“az} ak-1 =0

Eliminating ax41 in these equations we get

(1= ¢%)(1 = ¢Marar + {(1 - g)as(1 — ¢*-17?) (3.16)

1 1 _1 -
—(1-¢9)(1 —¢"%)a} - 2(1-9)% 3(1—q* "”)}ak_l =0.

This equation is of the form (1 — ¢*/?)a;ar = ¢(1 — bg¥/?)ak_, so that the general solution of
(3.16) is

a

11
o= O (3.17)
(7597 )x
Putting this in (3.14) we get that 6= 0. On the other hand (3.15) gives that
& = 1(1 - ¢)%¢%. Finally putting those values of a in (3.13) we get that , = 0 which is a
contradiction.
This completes the proof of the theorem.

4. GENERATING FUNCTION

We obtain, for the g-Hermite polynomials, a generating function of the form (2.14). More
specifically we prove
Theorem 2. Let H,(z|q) be the nth Rogers q-Hermite polynomial. Then we have
oo _n(n-1)/4
q n 2 -1 2
———— H,(z|q) t" = (t*¢77; ¢*) o &(2). (4.1
P (zlg) t* = ( )oo€() )

Proof. Let A(t) =1+ ait + ast® + ast® + - -- and

AR)E(z) = Y ha(zlg)t™ (4.2)
n=0
Then we get
ha(zlg) = Y an-kce ¥i(2). (4.3)
k=0
where
Cr = (1__q)k qk(k_l)/4. (4.4)

T 2(g; )k
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To calculate the coefficients {a,} we first iterate (3.3) we get

(1 = ¢™*)(1 = ¢"**)g " hoya(zlg) (4.5)
(1—4q)?
4

4z%h,(z|q) = (—1_4—11)2

+ (2=q" = ¢")ha(zlq) + ¢ ha_z(zlq).

Putting (4.3) in (4.5), using (2.6) and then equating coefficients of ¥x(z) we get after some
simplification

4
(1- ‘1)2‘7_"_;-(1 = ¢ (1 = ¢ )ana it (4.6)

q—k-l {1 + q2k+2 _ qn+k+1 _ qn+k+2}an_k +
1— 2
(——Zﬁq"'%an_g_k =0 (k=0,1,...,n+2).
By direct calculation of a,, a2, az we see easily that a; = az = 0. Thus (4.6) shows that

azk41 = 0 for all k.
Furthermore we can easily verify that

1-¢)% . 3 .
oy = (1Y gl OB (=0,1,23,.. (47)

Hence

o0 i1 —a? .\’
A = 3(-1yL ’(“ ""q-f) (4.8)

=0 (9% 4%, 4
1-¢)%, 1
- (i),
(=]

After some rescaling we get the theorem.
As a corollary of (4.1) we state the pair of inverse relations

U, (z)

(g; Q)ag" ™™ .
Ek: @ P Do lo), (4.9)

. k(2k—n—1)
Ha(zlg) = ;(—1)*%_;\1’"-24:). (4.10)

These follows from the identities (2.5) and (2.6)
Formula (4.10) and (2.11) give

1

Hy(zlq) = (T i) s lzq_%I)g)\I’n(z)- (4.11)

This is a g-analog of the formula
e D’z = H,(z)

for the regular Hermite polynomials (1.4).
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