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Let I be a locally convex topological vector space and C a non-empty subset of /2. A mapping
p: C xI£ — [0,00) is a convex map iff for each fixed x € C,p(r,-) : I£ — (0,00) is a convex
function. For r € C, the inward set I¢(r) = {z +r(y — 1) : y € C,r > 0}. Browder (1] proved the
following extension of the Schauder’s fixed point theorem.

THEOREM 1. (Browder). Let C be a compact, conver subsct of Is and [ : (/' — I
a continuous map. If p: C x E — [0,00) is a continuous convezr map satisfying

(1) for each = # [(z), there exists a y € Ic(z) with p(z, f(z) —y) < p(z, f(£) — z), then [ has o
Jized point.

It may be stated that the importance of Theorem 1 stems from p being a continuous convex
map instead of a continuous seminorm on £. In this paper, we use the KKM principle to obtain a
result on the ‘best approximation’ that yields Theorem 1 with relaxed hypothesis on compactness.

Let X be a non-empty subset of E. Recall that a mapping F : X — 27 is a KKM map if
F(x) # 0 for each = € X, and for any finite subset A = {z,,23,....2,} C X,Co(A) € U{I(r,):
1=1,2,...,n}, where Cop(A) denotes the convex hull of A. Observe that if " is a KKM map, then
z € F(z) for each z € X.

It is shown by Fan [2] that if F : X — 2F is a closed valued KKM map, then the family
{F(z) : £ € X} has the finite intersection property.
As an immediate consequence of the above result, we have: .
LEMMA 2. If X is a non-empty compact, convez subset of £ and I' : X\ — 2F isa
closed valued KIWM map, then N{F(z):z € X} #0.
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PROOF. Define a map (¢ : X — 2X by
G(e) = F(r)N X.

Then G(r) is a nonempty compact subset of X and ( is a KKM map. Consequently, by [2],
{G(x) : £ € X} has the finite intersection property. Since X is compact, it follows that N{¢/(r) :
z€ X} #0,and hence, N{F(z):z€ X} #0. O

The following lemma is essentially due to Kim [3]. We give a proof for completeness.
Note: In the following, Co(A): stands for the closed convex hull of A.
LEMMA 3. If A and B arc compact, conver subscts of I, then Co(AU B) 1s a compact,

conver subset of I5.

PROOF. Since A and B are convex, ‘it follows Co(AU B) = {Ae+puy : v € Ay €
B,A,p€[0,1) and A+ e = 1}. Clearly, Co(AU B) is a closed and convex subset of /2. To show that
Co(AU 3) is compact,let C = [0,1] x [0,1) x Ax Band D= {Ar+py:x € A,y € B, e (01]}).
Then C is a compact subset of ¥ = [0,1] x [0,1] x £ x I in the product topology on Y. Further, the
mapping [ : Y — [ defined by f(A, i, z,y) = Ar + jy being continuous, it follows that /) = f((’)
is a compact subset of I and, hence, Co(A U B) C D is compact. 0

LEMMA 4. Let X be a non-empty conver subset of E and F : X — 2F a closed valucd
KKM map. If there exists a compact, conver set S C X such that N{F(z): x € S} is non-cmply
and compact, then N{F(z):z € X} #0.

PROOF. Let C = N{F(z) : x € S}. Then C is non-empty and a compact subsct of

E. To prove the lemma, it suffices to show that the family {/(xr) N C : z € X} has the finite
intersection property. To prove this, let A be a finite subset of X. Then Cy(A) is compact and by
Lemma 3, D = Co(S U Co(A)) is a compact and convex subset of X. Consequently, by Lemma 2,
N{F(z) : = € D} # 0. This implies that N{F(z)NC : z € A} # 0. Thus, {F(z)NC :r € X} has
the finite intersection property. Since C is compact and F(z) is closed for each z € X, it follows
that N{F(z)NC : z € X} # 0. This implies that N{F(z):z € X} # 0.

Let X be a non-empty convex subset of [ and p: X x [£ — [0,00) a convex map. A mapping
g : X — X is a p-afine map iff for each triple {z,r,,z,} C X,y € E, and A\, p € [0,1] with
A+ p=1,

p(z,y — 9(Az1 + pz2)) < max{p(z,y — g(z.)) : 1 = 1,2},

Note: If g is linear or affine in the sense of Prolla (4], then p being convex, it follows that g is p-afline
in the above sense. It is immediate that if g is p-affine, then for any finite set A = {z,,z,,...,2.} C
Xand X\; 20 with 30 A =1,

p(z,y — g(i Az,)) < max{p(z,y — g(z:)) : 1 = 1,2,...,n}

=1

for each z € X,y € . 0

The following is the main result of this paper.

THEOREM 5. Let X be a nonempty convez subset of £ and p: X x [ — [0,00) «a
continuous convezr map. Let f : X — E and g : X — X be continuous mappings with g p-affinc.
Suppose there ezist a compact, convez set S C X and a compact set K C X such that

(2) for eachy € X\IK there ezists an x € S such that p(y, f(y) — g(y)) > p(y, f(y) — 9(2)). Then
there exists a u € X that satisfies

(3) p(u, f(u) = g(u)) = inf{p(u, f(v) - g(z)) : « € X} = inf{p(u, [(y) = 2) : 2 € el Ix(g(u))}.
PROOF. We first prove the left equality. For this, we define a mapping G : X — 2% by
G(z) = {y € X : p(y, S(¥) — 9(¥)) < p(v, f(¥) — 9(2))}-
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Clearly, z € (/(r) and it follows that /() is closed for each + € X. We show that (7 is a KKM map.
Let y = 0L, Ary A, 20,550\ = 1,1, € X for each 1. Suppose y & U{G(x,),2 = 1,2,...,n}.
Then for each 2 = 1,2,...,n,

p(y, S(y) = 9(¥)) > ply, S (y) — 9(.))-

This implies that p(y, f(y) — 9(¥)) = p(y, [(¥) = 9(Zi=) Ar))) < max{p(u. f(y) = u(r.))r =
1,2,...,n} < p(y, f(y) — 9(y)). This inequality is impossible and, consequently, y € U{(./(r,) :
i =1,2,...,n}, that is, G is a closed valued map. Now, since S is a compact convex subset of
X, it follows by Lemma 2 that C = N{G(z) : = € S} is a nonempty closed subset of .\'. We
show that C C K. Suppose y € C and assume that y € X\/. Then by hypothesis there cx-
ists an & € S such that p(y, f(y) — g(¥)) > p(y, f(v) — a(+)). This implies that y ¢ (/(r) for
an r € S and, hence, y ¢ (', contradicting the initial supposition. Thus, (' € A and, hence,
N{G(z) : r € S} is a nonempty compact subset of /(. Hence by Lemma 4, N{((r) : 0+ € X'} # é.
If u € N{G(z) : = € X}, then for each r € X, p(u, f(u) — g(u)) < p(u, f(u) — g(r)). Further,
since u € X, it follows that p(u, f(u) — g(u)) = inf{p(x, f(x) — g(x)) : # € X}. This proves
the first equality in (3). To prove right side of the equality in (3) we first show that for each
z € Ix(g()\X, p(u, f(u) = g(v)) < p(u, f(u) — z). Now z € Ix(g(w))\X implies that therc is a
y € X and r > 1 such that y = 1z + (1 — !)g(u). Hence, by the first equality and p being convex,
it follows that p(u, f(u) — g(x)) < p(u, f(u) —y) < Ip(u, f(w) = z) + (1 = L)p(u, f(u) = g(u)). that
is, p(u, f(u) — g(uw)) < p(u, f(w) — z) for each z € Ix(g(u))\X. Since the last inequality is also
true for any z € X, it follows that p(w, f(u) — g(u)) < p(u, f(u) — z) for each = € Iy(g(u)).
Further, since the functions f,g, and p are continuous and g(u) € Ix(g(w)), it follows that
p(u, f(u) — g(u)) = inf{p(u, f(u) — z) : z € <l (Jx(g(u)))}. This proves the second equality in
(3). 0O

As a simple consequence of Theorem 2, we have

COROLLARY 6. Suppose X 1s a compact, conver subsct of I5,p : X x I5 — [0,00)
a continuous convezx function and [ : X — E a conlinuous function. Then for any conlinuous
p-affine map g : X — X, there erists a u € X that satisfies (3). Further,

(1) o f(z) € cl(Ix(g(x))) for cach x € X then p(u, f(u) — g(u)) =0,

(1) if for each r € X, with f(z) # g(z) there exists ay € cl (Ix(9(z))) such that p(r, f(x)—y) <
p(z, [(z) = g(x)), then f(u) = g(u).

PROOF. Set S = K = X in Theorem 5. Since X\I/{ = ¢, condition (2) in Theorem 5
is satisfied. Hence, there is a u € X, that satisfies (3). Clearly, (i) implies p(u, f(u) — ¢(u)) = 0.
To prove (ii), suppose f(u) # g(u). Then by hypothesis p(u, f(u) — z) < p(u, f(u) — g(u)) for some
2 € ol (Ix(g(u))). The last inequality contradicts (3). Hence, f(u) =g(v). O

It may be remarked that if g is the identity mapping of X, then Corollary 6 yields Browder’s
Theorem 1 and also extends a recent result of Sehgal, Singh, and Gastl [5] if f therein is a single
valued map.

For the next result, let P denote the family of nonnegative continuous convex functions on
X x . Note if p; and p, € P, then so is p; + p;. Also, if p is a continuous seminorm on /7, then p
generates a nonnegative continuous convex function on X x £ defined by ji(z,y) = p(y). A mapping
g: X — X is P affine if it is p-affine for each p € P.

The result below is an extension of an earlier result of Fan.

THEOREM 7. Let X be a compact, convez subset of It and f: X — I a conlinuous
function. Then for any continuous P affine map g : X — X,

(4) euher f(u) = g(u) for some u € X,
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(5) or there crists ap € P and a u € X with 0 < p(u, f(u) — g(u)) = inf{p(u, f(u) —z) : z €
el (Ix(g(w)))-

In particuler, of f(x) € cl(Ix(y(x))) for cach z, then (5) holds.

PROOF. It follows by Theorem 5 that for each p € P thereis a u = u, € X such that
p(u, Su—gu) = inf{p(u, f(x)—=z) : z € cI(Ix(g(u)))}. If for some p, p(u, f(u)— (1)) > 0, then (5) is
true. Suppose then, p(u,, f(u,) —g(u,)) =0 foreach p € P. Set A, = {u € X : p(n, [(u) — y(u)) =
0}. Then A, is a nonempty compact subset of X. Furthermore, the family {Ap : p € P} has the
finite intersection property. Consequently, there is a u € X that satisfies

(6) p(x, f(u) — g(u)) =0 for each p € P.

If f(u) # g(u), then since [ is separated, there exists a continuous seminorm p on /2 such that
p(f(u) — g(u)) # 0 and, hence, p(xu, f(u) — g(u)) > 0, contradicting (6). Thus, f(u) = g(u). Hence,
(5) holds in the alternate case. O
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