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ABSTRACT. Let (X, Y) be a pair of compact Hausdorff spaces. It is shown that a certain

property of the class of continuous maps of Y onto X is equivalent to the non-existence of linear

isometry ofC(X) into C(Y) whose range has finite codimension > 0.

KEY WORDS AND PIRASES. Compact Hausdorff space, C(X), linear isometry, finite codimension

1991 AMS SUBJECT CLASSIFICATION CODES. 46B04, 46J10

1. INTRODUCTION
In ], A. Gutek, D. Hart, J. Jamison and M. Rajagopalan proved that there are no isometric shift

operators on C([a,b]), a result first proved in the real scalars by Holub [3]. Here [a,b] is any closed

interval in the real line and C([a, b]) is the Banach space of all continuous complex-valued functions on

[a,b]. By observing carefully the proof given in [1], one can note that C([a,b]) does not admit an

isometric shitt operator because the space [a, b] has the property that the set

{(, u) [, b] [, hi: () (), # U}

is infinite for every continuous map of [a, b] onto itselfwhich is not injective.
The purpose ofthe note is to prove the following theorem which is based on the above idea:

TI]EOREM. Let (X, Y) be a pair of compact Hausdorff spaces. Then the following two

conditions are equivalent:

(i) Ifthere is a continuous map of Y onto X which is not injective, then the set

{(,) e r r: () (), # }

is infinite.
(i0 If there is a linear isometry of G(X) into C(Y) which has a finite codtmension, then it is

surjective.

Since both ([0, 1], [0,1]) and (T1,T1) satisfy the condition (i), where Tlis the unit circle in the

complex plane, we get from this
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COROLLARY 1. "lhe only possible codtmenston of hnear tsometrtes (7([0, 1] C([0, 1]) and

C(T C(T are zero or mfimte.
Moreover, ifV is the canonical linear map ofC(T into C([0, 1]) defined by

(Vf)(t)- f(e’’) (f EC(T1),O<_t < 1),

then V is an sometry and the range of V is the set of all 9 E C([0, 1]) such that 9(0) 9(1) Hence V

has codimension 1, and if there is a finite codimensional linear isometry of C([0, 1]) into C(T ), say T,
then VT is a linear isometry of C([0,1]) into itself such that VT(C([O, 1]))c C([0,1]) and

codim(T) + From Corollary it follows that VT must be surjective, a contradiction hence we have

also proved
COROLLARY 2. /here ts nofimte codtmenstonal linear tsometry of C([O, 1]) into C(T

2. LEMMAS

In order to prove the main theorem, we have to prepare some lemmas

LEMMA 1. Let X be a compact Hausdorffspace, M a subspace ofC(X) whose codtmenston ts

n < + oo, and tf a closed boundary ofX with respect to M O.e., for any f M there exists a point :c

m tf wuh f(z)t If t,,, the supremum norm off on X). 7hen the set X\K has at most n points.

PROOF. Assume that X\K has at least n + points, say :rl :r,,+ For each _< < n + 1,

choose a function f, n C(X) such that f,(z) and f,(a:) 0 for z K {a:, z,+}\{a:,} since

K s closed In this case, {fl + M f,,+ + M} is linearly independent in C(X)/M since if

c(ft + M) + + c,-I (f,,+l + M) 0

for some complex numbers c l,...,c,_i there exists a function 9 M such that Clfl + +
c,+f,+l + 9- 0 and (snce K is a boundary of X with respect to M) a point :c0 in K such that

[19 9(Zo Then

t9 Ix, Clfl(a:0) + + Cn+lLz+l(X0)l 0,

implying c 0, c._l 0 since {fl,--,f,+l} is hnearly independent, and it follows that

codim(M) > rz +
LEMMA 2. Let X and Y be compacl Hausdorff .spaces and a continuous map of Y onto X.

If g s a fimcton m C(Y) such that g(yl)=9(y) for all pars (Yl,Ye) Y Y sansfymg

(Yl) (Ye), then there s afimcton f m C(X) such that f((y)) g(y) for all y Y.

PROOF. Let g be a function in C(Y) such that 9(Yl) g(Y2) for all pairs (y,y.,.) Y x Y

satisf3,ing (y) (y.:) Let Y/ be the quotient space of Y defined by , 7r the canonical map of Y

onto Y/, and r the canonical map of Y/ onto X Then the complex-valued function . on Y/
defined by .() g(y) for each 9 Y/ is continuous, so setnng f . ---1 it is easy to see that f is a

function with the desired properties

Finally, we will need the following result whose proof is straightforward

LEMMA 3. Let X be a compact Hausdorff space, K a compact subset of X, and AI. the

Banach subspace of C(X) conststmg of all f C(X)whtch are constant on K. Then the Banach

space C(X)/Aa- ts tsomorphtc to a quotwnt space ofC(K).
3. PROOF OF THEOREM

(1) (n) Let T be a hnear isometry of C(Xi into Ct,Y) which has a fimte codlmension Bythe

decomposition theorem of Holsztynskl [2], there exists a closed boundary K of Y with respect to

TiC(X) ), a continuous map h of K onto X, and a continuous unimodular function u on Y such that

(Tf )()
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for all .f E C(X) and y E K Since T has a finite codimension, it follows from Lemma that Kis a

closed subset of Y whose complement is a finite set. Then h has a continuous extension to Y, say .
We claim that the map . is injective Assume the contrary Then by the condition (i) there is a

mutually different sequence {a1,/31,a2,2,... in Y such that (a,) z(/3,,) for all positive integers n,

and where we can assume without loss of generality that al,/31, a2,/32, C K. Let n be any positive

integer, and for each 1 _< < n choose a function 9, in C(Y) such that 9,(az)= 1 and 9,(Y)= 0

for all y Y\U,, where U, is a sufficiently small neighborhood of cq. In this case

{91 + T(C(X)) 9, + T(C(X))} is linearly independent in C(Y)/T(C(X)), since if

Cl(g -- T(C(X))) + + c,(9, + T(C(X))) 0

for some complex numbers cl, c, there exists f C(X) such that c191 + + Cn9 Tf, implying

q (,) + +
(T]) (,)
(,)/(h(,))
u(,)f(h(,))

(Tf)($,)
(,)
(,)

{,z(,) + +
(,)

=0

for each 1 n. It follows that T has an infinite codimension since n is arbitrary, a contradiction.

Consequently, must be injective, K Y, and h is a homeomorphism of Y onto X. If for any

g C(Y), we set

1g(h_l(x))y(z) (h_()

for each x E X, then we obtain that f C(X) and Tf g, so that T is surjective.

(ii) = (i). Let be a continuous map ofY onto X which is not injective. Then we have to show

that the set

{(u,) e r ’. () (),u #

is infinite under the condition (ii). If not, then all -1 (x)(x
_
X) are non-empty finite sets, and also

{x e X" card(-l(x))> 2} is a non-empty finite set, say {xl ,x,,}, where "card" denotes the

cardinal number. Set

(Tcf)(y) /((y))

for each f C(X) and y Y. Then T is a linear isometry of C(X) into C(Y) and since is not

injective, it follows that T is not surjective. Put

A, {g C(Y)" g is constant on -1(x,)} (i 1, n)

and

A {g C(Y) g is constant on }U -(,)
i=l

n
Then A C_ I"1 Ai, and hence C(Y)/ ["] A, is isomorphic to (C(Y)/A)/I, where I=

i=1 i=1

{g+ A C(Y)/A’g ["] A,}. On the other hand, T(C(X))= f"l A, since the inclusion
i=1 i=1
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TO(C(X)) C_ I’] A, is trivial, and the reverse inclusion follows immediately from Lemma 2 Also by

Lemma 3, C(Y)/A is isomorphic to a quotient of C(Y0), where I/’o [,_J -(a:,) Consequently,
i=1

codim(T) dim(C(Y)/To(C(X)
<_ dim(C(Y)/A)
<_ dim(C(Y0))

< card(-l(x,))

Hence To has a finite codimension, and so must be surjective by the condition (ii)

contradiction, so the implication is proved

But this is a
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